

© NVIDIA Corporation 2010

Graphics Processing Unit (GPU)

© NVIDIA Corporation 2010

What GPUs Do

GeForce Quadro

Tegra Tesla

© NVIDIA Corporation 2010

The “New” Moore’s Law

Computers no longer get faster, just wider

You must re-think your algorithms to be parallel !

Data-parallel computing is most scalable solution

The World’s Programmers

© NVIDIA Corporation 2010

Why GPU Computing?

0

20

40

60

80

100

120

140

160

2003 2004 2005 2006 2007 2008 2009 2010

Peak Memory Bandwidth
GBytes/sec

Tesla 8-series

Tesla 10-series

Nehalem

3 GHz

Westmere

3 GHz

Tesla 20-series

0

200

400

600

800

1000

1200

2003 2004 2005 2006 2007 2008 2009 2010

Peak Floating Point Performance
GFlops/sec

Tesla 8-series

Tesla 10-series

Nehalem

3 GHz

Tesla 20-series

Westmere

3 GHz

Tesla 20-series

Tesla 10-series

NVIDIA GPU X86 CPU Single Precision: NVIDIA GPU Single Precision: x86 CPU

Double Precision: NVIDIA GPU Double Precision: x86 CPU ECC off

© NVIDIA Corporation 2010

Accelerating Insight

4.6 Days

27 Minutes

2.7 Days

30 Minutes

8 Hours

13 Minutes
16 Minutes

3 Hours

CPU Only Heterogeneous with Tesla GPU

© NVIDIA Corporation 2010

Detecting IEDs

CPU

12 mph

GPU

77 mph

© NVIDIA Corporation 2010

Reducing Radiation from CT Scans

28,000 people/year develop

cancer from CT scans

UCSD: advanced CT

reconstruction reduces

radiation by 35-70x

CPUs: 2 hours

(unusable)

CUDA: 2 minutes

(clinically practical)

Only 2% of surgeons can operate

on a beating heart

Patient stands to lose 1 point of IQ

every10 min with heart stopped

GPU enables real-time motion

compensation to virtually stop

beating heart for surgeons:

Courtesy Laboratoire d’Informatique de Robotique et de Microelectronique de Montpellier

Surgery on a Beating Heart

© NVIDIA Corporation 2010

Simulating Shampoo

Axel Kohlmeyer

Temple University

The outcome is quite

spectacular…with two GPUs we

can run a single simulation as

fast as on 128 CPUs of a Cray

XT3 or on 1024 CPUs of an IBM

BlueGene/L machine.

“

“
We can try things that were

undoable before. It still blows

my mind.

“ “

Surfactant Simulation

“Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash”, Mathew G. Pelletier, February 8, 2008

Detect contaminants in cotton lint

Cotton is over cleaned

Results in Fiber Damage

GPUs enables real-time feedback
while cleaning cotton

96% lower fiber damage

$100M additional potential revenue

Cotton

© NVIDIA Corporation 2010

Tianhe-1A

Fastest Supercomputer in the World

2.507 PetaFLOP/s 7,168 Tesla GPUs

© NVIDIA Corporation 2010

0

500

1000

1500

2000

2500

Tianjin Tianhe-1A ORNL Jaguar NSCS Nebulae Tokyo Tech
Tsubame

Tera 100

3 of Top5 are Tesla GPU Supercomputers

© NVIDIA Corporation 2010

And More Efficient

0

1

2

3

4

5

6

7

8

0

500

1000

1500

2000

2500

Tianhe-1A Jaguar Nebulae Tsubame Tera 100

M
eg

aw
at

ts

G
ig

a
fl

o
p
s

© NVIDIA Corporation 2010

Early 3D Graphics

Perspective study of a chalice

Paolo Uccello, circa 1450

© NVIDIA Corporation 2010

Early Graphics Hardware

Perspective study of a chalice

Paolo Uccello, circa 1450

Artist using a perspective machine

Albrecht Dürer, 1525

© NVIDIA Corporation 2010

Early Electronic Graphics Hardware

SKETCHPAD: A Man-Machine Graphical Communication System

Ivan Sutherland, 1963

© NVIDIA Corporation 2010

The Graphics Pipeline

The Geometry Engine: A VLSI Geometry System for Graphics

 Jim Clark, 1982

© NVIDIA Corporation 2010

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Key abstraction of real-time graphics

Hardware used to look like this

One chip/board per stage

Fixed data flow through pipeline

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

© NVIDIA Corporation 2010

RealityEngine Graphics

 Kurt Akeley , SIGGRAPH 93

SGI RealityEngine (1993)

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

© NVIDIA Corporation 2010

InfiniteReality: A real-time graphics system

Montrym et al., SIGGRAPH 97

SGI InfiniteReality (1997)

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Remains a useful abstraction

Hardware used to look like this

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

© NVIDIA Corporation 2010

The Graphics Pipeline

Hardware used to look like this:

Vertex, pixel processing became

programmable

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

pixel_out

main(uniform sampler2D texture : TEXUNIT 0, pixel_in

{

 pixel_out OUT;

 float d= clamp(1.0 – pow(dot(IN.lightdist, IN.light

 float3 color = tex2D(texture, IN.texcoord).rgb;

 OUT.color = color * (d + 0.4);

 return OUT;

}

© NVIDIA Corporation 2010

The Graphics Pipeline

Hardware used to look like this

Vertex, pixel processing became

programmable

New stages added

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

Geometry

pixel_out

main(uniform sampler2D texture : TEXUNIT 0, pixel_in

{

 pixel_out OUT;

 float d= clamp(1.0 – pow(dot(IN.lightdist, IN.light

 float3 color = tex2D(texture, IN.texcoord).rgb;

 OUT.color = color * (d + 0.4);

 return OUT;

}

© NVIDIA Corporation 2010

The Graphics Pipeline

Hardware used to look like this

Vertex, pixel processing became

programmable

New stages added

 GPU architecture increasingly

centers around shader execution

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

Geometry

Tessellation

pixel_out

main(uniform sampler2D texture : TEXUNIT 0, pixel_in

{

 pixel_out OUT;

 float d= clamp(1.0 – pow(dot(IN.lightdist, IN.light

 float3 color = tex2D(texture, IN.texcoord).rgb;

 OUT.color = color * (d + 0.4);

 return OUT;

}

Modern GPUs: Unified Design

Shader D

Shader A

Shader B

Shader C

Shader

 Core

ibuffer ibuffer ibuffer ibuffer

obuffer obuffer obufferobuffer

Discrete Design Unified Design

Vertex shaders, pixel shaders, etc. become threads

running different programs on a flexible core

© NVIDIA Corporation 2010

L2

Framebuffer

SP SP

L1

TF

T
hr

ea
d

P
ro

ce
ss

or

Vertex Thread Issue

Setup & Rasterize

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

GeForce 8: Modern GPU Architecture

© NVIDIA Corporation 2010

L2

Framebuffer

SP SP

L1

TF

T
hr

ea
d

P
ro

ce
ss

or

Vertex Thread Issue

Setup & Rasterize

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

GeForce 8: Modern GPU Architecture

© NVIDIA Corporation 2010

L2

Framebuffer

Modern GPU Architecture: GT200

SP SP

L1

TF

SP

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

L2

Framebuffer

SP SP

L1

TF

SP SP SP

L1

TF

SP SP SP

L1

TF

SP SP SP

L1

TF

SP

SP SP

L1

TF

SP SP SP

L1

TF

SP SP SP

L1

TF

SP SP SP

L1

TF

SP SP SP

L1

TF

SP

T
hr

ea
d

S
ch

ed
ul

er

Vertex Thread Issue

Setup & Rasterize

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

© NVIDIA Corporation 2010

D
R

A
M

 I
/F

H

O
S

T
 I

/F

G
ig

a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

NVIDIA next-gen “Fermi” architecture

Current GPU Architecture: Fermi

© NVIDIA Corporation 2010

GPUs Today

Lessons from Graphics Pipeline

Throughput is paramount

Create, run, & retire lots of threads very rapidly

Use multithreading to hide latency

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”
3B xtors

How to build a parallel machine:

SIMD

Thinking Machines CM-2

MasPar MP1 (front), Goddard MPP (back)

© NVIDIA Corporation 2010

How to build a parallel machine:

Hardware Multithreading

Tera MTA

How to build a parallel machine:

Symmetric Multiprocessing

SGI Challenge

Intel Core2 Duo

© NVIDIA Corporation 2010

Fermi, Oversimplified

32-wide SIMD (two 16-wide datapaths)

48-way hardware multithreading

16-way SMP

24576 threads in flight

@ 512 FMA ops per clock

© NVIDIA Corporation 2010

GPU Computing 1.0: GPGPU

(Ignoring prehistory: Ikonas, Pixel Machine, Pixel-Planes…)

Compute pretending to be graphics

Disguise data as triangles or textures

Disguise algorithm as render passes & shaders

Trick graphics pipeline into doing your computation!

© NVIDIA Corporation 2010

Typical GPGPU Constructs

© NVIDIA Corporation 2010

Typical GPGPU Constructs

A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware

Nolan Goodnight et al., 2003

GPU Computing 2.0: CUDA

Thread

per-thread
local memory

. . .

Kernel bar()

per-device
global

memory

Global barrier

Kernel foo()

.

per-block
shared
memory

Block

Local barrier

Serial Code

Serial Code

© NVIDIA Corporation 2010

GPU Computing 3.0: An Ecosystem

Research & Education

Mathematical
Packages

Hardware & Product Lines

Libraries

Fortran

Languages & API’s

Integrated
Development Environment

Tools & Partners

Algorithmic
Sophistication Cloud Services

http://aws.amazon.com/

© NVIDIA Corporation 2010

GPU Computing Today

By the numbers:

 200 Million CUDA capable GPU’s

 600,000 CUDA Toolkit downloads

 100,000 active GPU Computing Developers

 8,000 members in Parallel Nsight developer program

 362 Universities teaching CUDA worldwide

 11 CUDA Centers of Excellence worldwide

© NVIDIA Corporation 2010

CUDA Today

2007 2008 2009 2010

CUDA Toolkit 1.x

• C Compiler

• C Extensions

• Single Precision

• BLAS

• FFT

• SDK w/ 40 samples

• Win XP 64

• Atomics support

• Multi-GPU support

CUDA Toolkit 3.x

• Fermi arch support

• C++ Class Templates

• C++ Class Inheritance

• Tools updates

• cuda-memcheck

• GPUDirect™

• 16-way concurrency

• Function pointers

 & recursion

CUDA Toolkit 2.x

• Double Precision

• cuda-gdb

• Visual Profiler

• Compiler

 Optimizations

• Vista 32/64

• Mac OSX

• 3D Textures

• HW Interpolation

 New in 3.2

• New CUSPARSE Library

• New CURAND Library (Sobol)

• Support for 6GB Tesla, Quadro

• Multi-GPU Debugging

• Math Library Perf Increases

• Cluster Management Features

• Integrated TCC Mode

• DP FFT

• Parallel Nsight

 (beta)

• 16-32 conversion

 intrinsics

• Performance

 enhancements

© NVIDIA Corporation 2010

thrust::sort

sort.cu

#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

#include <thrust/generate.h>

#include <thrust/sort.h>

#include <cstdlib>

int main(void)

{

 // generate random data on the host

 thrust::host_vector<int> h_vec(1000000);

 thrust::generate(h_vec.begin(), h_vec.end(), rand);

 // transfer to device and sort

 thrust::device_vector<int> d_vec = h_vec;

 // sort 1B 32b keys/sec on Fermi

 thrust::sort(d_vec.begin(), d_vec.end());

 return 0;

}

http://thrust.googlecode.com

© NVIDIA Corporation 2010

Workloads

Each GPU is designed to target a mix of known and

speculative workloads

The art of GPU design is choosing these workloads

 (and shipping on schedule!)

What workloads will drive future GPUs?

High performance computing

Graphics

Computational graphics

© NVIDIA Corporation 2010

Filtering

Separable filters

Depth of field

Film bloom

Subsurface scattering

Anisotropic diffusion

Depth of field

Data-dependent filters

MLAA, SRAA, etc.

© Per Lonroth, Mattias Unger, DICE

From Metro 2033, © THQ and 4A Games
Halo 3 © Bungie Studios Crysis © Crytek GmbH

Realistic Skin Rendering

d’Eon, Luebke, Enderton EGSR 2003

Subpixel Reconstruction Anti-Aliasing

Chajdas, McGuire, Luebke I3D 2011

© NVIDIA Corporation 2010

Histogram

Luminance values for

tone mapping

Sample distribution for

shadow map creation

HDR in Valve’s source engine
Sample Distribution Shadow Maps

Lauritzen, Salvi, Lefohn, I3D 2011

© NVIDIA Corporation 2010

Rasterization as Iteration

Real-Time Stochastic Rasterization on Conventional GPU Architectures

McGuire, Enderton, Shirley, Luebke, HPG 2010

Rasterize convex hull of moving triangle

Ray trace against triangle at each pixel

Rasterization as Iteration

Darken pixels by % of hemisphere blocked by nearby triangles

Compute triangle regions of influence to find affected pixels

Two Methods for Fast Ray-Cast Ambient Occlusion, Samuli Laine & Tero Karras, EGSR 2010

© NVIDIA Corporation 2010

CUDA Tessellation

Flexible adaptive geometry generation

Recursive subdivision

Real-Time View-Dependent Rendering of Parametric Surfaces

Eisenacher, Meyer, Loop 2009

Ray Tracing

OptiX: A General-Purpose Ray Tracing Engine, Parker et al., SIGGRAPH 2010

Key GPU Workloads

Computational graphics (but don’t forget DirectXn-1)

Scientific and numeric computing

Image processing – video & images

Computer vision

Speech & natural language

Data mining & machine learning

Key CUDA Challenges

Express other programming models elegantly

Persistent thread blocks: fill machine, fetch work, repeat

Producer-consumer: work queues, work stealing, …

Nested & irregular parallelism: divide&conquer, BFS, …

Task-parallel: kernel, thread block or warp as parallel task

Express locality: deep memories, compute “places”

Improve & mature development environment

Key GPGPU Researcher Challenges

Foster high-level libraries, languages, platforms

Domain-specific tools & packages

“Horizontal” programming layers & patterns

Rethink algorithms, numerics, approaches

Computation is cheap

Data movement is costly

Think parallel !

© NVIDIA Corporation 2010

Final Thoughts – Education

We should teach parallel computing in CS 1 or CS 2

Computers don’t get faster, just wider

Manycore is the future of computing

Insertion Sort Heap Sort Merge Sort

Which goes faster on large data?

Students need to understand this!

now

ALL Early!

© NVIDIA Corporation 2010

Computational Challenge

© NVIDIA Corporation 2010

Fermi Features, Spoken in HPC

Full scatter-gather and automatic predication to simplify

SIMD programming (SIMT)

Hardware accelerated task distributor for dynamic load

balancing

Dynamically partitionable register file

High performance atomic operations

On-chip crossbar network

Local scratchpad per core for fine-grained thread coop

IEEE 754-2008 floating point with high-speed fp64

High-speed GDDR memory interface

Optional ECC protection on DRAM, L2, L1, ShMem, RF

Mature programming models based on C, C++, Fortran

CUDA

Examples

CUDA C Example

void saxpy_serial(int n, float a, float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Serial C Code

Parallel C Code

© NVIDIA Corporation 2009

Example: Parallel Reduction

Summing up a sequence with 1 thread:
 int sum = 0;

 for(int i=0; i<N; ++i) sum += x[i];

Parallel reduction builds a summation tree

each thread holds 1 element

stepwise partial sums

N threads need log N steps

one possible approach:

Butterfly pattern

© NVIDIA Corporation 2009

Example: Parallel Reduction

Summing up a sequence with 1 thread:
 int sum = 0;

 for(int i=0; i<N; ++i) sum += x[i];

Parallel reduction builds a summation tree

each thread holds 1 element

stepwise partial sums

N threads need log N steps

one possible approach:

Butterfly pattern

© NVIDIA Corporation 2009

Parallel Reduction for 1 Block

// INPUT: Thread i holds value x_i

int i = threadIdx.x;

__shared__ int sum[blocksize];

// One thread per element

sum[i] = x_i; __syncthreads();

for(int bit=blocksize/2; bit>0; bit/=2)

{

 int t=sum[i]+sum[i^bit]; __syncthreads();

 sum[i]=t; __syncthreads();

}

// OUTPUT: Every thread now holds sum in sum[i]

