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ABSTRACT

Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation
profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument.
Aims. Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very
effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators.
Methods. The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity con-
straint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied
not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes
our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the
solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic).
Results. The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data
corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image
reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better
fidelity with respect to the measurements with a comparable computational effectiveness.
Conclusions. If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the
RHESSI context when count modulation profiles are used as input data.
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1. Introduction

Expectation maximization (EM; Dempster et al. 1977) is an it-
erative algorithm that addresses the maximum likelihood prob-
lem when 1) the relation between the unknown parameter (or
set of parameters) and the measured data is linear; 2) the data
are drawn from a Poisson distribution; 3) the unknown param-
eter satisfies the positivity constraint. EM represents a general-
ization of the image restoration method introduced by Lucy and
Richardson Lucy (1974) for the deconvolution problems typi-
cal of focused astronomy, and it is successfully applied to sev-
eral reconstruction problems in optics, microscopy and medical
imaging. The present paper applies EM for the first time to the
hard X-ray count modulation profiles measured by the nine ro-
tating modulation collimators (RMCs) mounted on the Reuven
Ramaty High Energy Solar Spectroscopic Imager (RHESSI;
Lin et al. 2002). More specifically, we show here that, when
combined with an optimal stopping rule for the iterative pro-
cess, EM provides reliable reconstructions with notable compu-
tational effectiveness.

The RHESSI imaging concept translates the rotational mod-
ulation synthesis first introduced for non-solar observations to a
solar context Hurford et al. (2002). In RHESSI, a set of nine ro-
tating collimators, characterized by nine pairs of grids with nine
different pitches, time-modulates the incoming photon flux be-
fore it is detected by the nine corresponding Ge crystals. The
resulting signal is a set of nine time series representing the
count evolution provided by each collimator-detector system at
different time bins. Therefore, these count modulation profiles

represent the temporal or rotation angle/phase variation of the
count rates for each grid.

Since the transformation from the flux distribution on the
image plane to the set of count modulation profiles is linear,
the RHESSI image reconstruction problem is the linear inverse
problem of describing the flux distribution from the count modu-
lation profiles. EM describes the observed data and the unknown
as realizations of stochastic quantities and then searches for the
flux distribution that maximizes the probability of the observa-
tion under the constraint that the pixel content must be positive.
In fact, when the noise distribution on the data is Poisson, this
constrained maximum likelihood problem can be transformed
into a fixed point problem whose solution is obtained iteratively
by means of a successive approximation scheme. From a theo-
retical viewpoint, the convergence properties of this algorithm
when the number of iterations grows are not completely known.
However, it is always observed in applications that stopping the
procedure at some optimal iteration regularizes the reconstruc-
tion, thus preventing the occurrence of over-resolving effects or
short-wavelength artifacts. In this paper, this optimized stop-
ping rule is determined by utilizing the concept of constrained
residual and by imposing that the empirical expectation value of
this stochastic variable coincides with its theoretical expectation
value.

The plan of the paper is as follows. In Sect. 2 we describe the
RHESSI imaging concept in more detail and introduce the linear
transformation modeling the data formation process. Section 3
contains the formulation of the iterative algorithm, together with
its stopping rule. Section 4 validates EM in the case of several
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synthetic modulation profiles simulated from plausible configu-
rations of the flux distribution. Finally, in Sect. 5 we consider the
application of EM to three sets of observed RHESSI data. Our
conclusions are in Sect. 6.

2. RHESSI count modulation profiles

The RHESSI imaging hardware is made of nine subcollimators,
each one consisting of a pair of separated grids in front of a hard
X-ray/gamma-ray detector. In each subcollimator the two grids
are identical and parallel and are characterized by a planar array
of equally-spaced, X-ray-opaque slats separated by transparent
slits. The grid pitches of the different collimators are arranged
according to a geometric progression with factor

√
3, with de-

tector 1 providing the maximum resolution power and minimum
signal-to-noise ratio and detector 9 providing the minimum res-
olution power and maximum signal-to-noise ratio. RHESSI ro-
tates around its own axis with a period of around 4 s and this
rotation, combined with the presence of the grids, induces the
modulation of the count rates. Therefore in this framework, there
is no detector plane containing physical pixels (as in focused
imaging) and here pixels are just a mathematical idealization in
the image reconstruction process. If we describe the brightness
distribution by means of the vector f of dimension N2 × 1 (in
this lexicographic ordering each vector index denotes one of the
N2 pixels), then the expected count modulation detected by sub-
collimator l is given by

g(l) = H(l) f , (1)

where the vector g(l) has dimensions P(l) × 1, P(l) is the number
of time bins discretizing the time evolution of the modulation
for detector l and H(l) with dimension P(l) × N2, is the matrix
modeling the transformation from the image to the measurement
space. The entries of H(l) can be interpreted in a probabilistic
way as

H(l)
im = AP(l)

im�ti (2)

where A measures the detector area and P(l)
im is the probability

that a photon originating in pixel m will be counted in the ith time
bin of detector l during the time interval�ti. If the image analysis
performed involves data collected by M of the nine subcollima-
tors, then the overall signal formation process is described by

g = H f , (3)

where g has dimensions L × 1, L =
∑M

l=1 P(l) and contains all the
modulation profiles, while H has dimensions L × N2 and repre-
sents the image operator mimicking the action of the telescope.
The EM algorithm, together with its optimal stopping rule, pro-
vides an estimate of f by means of an iterative regularized in-
version of H.

3. The EM algorithm

Expectation maximization is a statistical algorithm maximizing
the probability that the data vector is a realization corresponding
to a Poisson random vector g. In fact, in this case, the likeli-
hood, i.e. the probability to observe g from the model H f , can
be written as

P(g| f ) =
L∏

i=1

e−(H f )i
(H f )gi

i

gi!
, (4)

where the ratio should be intended point-wise, element by ele-
ment. We observe that maximizing this probability corresponds
to minimizing the Cash statistic (C-statistic; Cash 1979)

Cstat(g, f ) =
2
L

L∑
i=1

gi log
gi

(H f )i
+ (H f )i − gi. (5)

The likelihood maximizer is constrained to the set of positive
solutions; i.e., the algorithm solves the constrained optimization
problem

arg max
f≥0

P(g| f ) = arg min
f≥0

Cstat(g, f ), (6)

which can be transformed into a fixed-point problem solved by
means of the successive approximation scheme

fk+1 = fk
HT

(
g

H f k

)
HT1

, (7)

with a positive (constant) initialization and where 1 denotes the
vector made of all unit entries (in this equation and in the fol-
lowing ones, products and ratios must be considered component-
wise). Since H is ill-conditioned, this iterative algorithm should
be regularized by applying some stopping rule. To this aim we
observe that the asymptotical behavior of Eq. (7) is such that
either fk → 0 or

αk =
HT

(
g

H fk

)
HT1

(8)

converges to 1. This implies that, asymptotically,

zk =

∥∥∥∥∥∥ fk HT

(
1 − g

H fk

)∥∥∥∥∥∥
2

(9)

tends to zero, and therefore a reasonable stopping rule for EM in
the RHESSI case is

zk � E(zk), (10)

where E(zk) denotes the expectation value of zk.

4. Numerical validation

In order to assess the reliability of EM we setup a validation test
based on the following process:

1. Five different configurations of the flaring region were in-
vented (see Fig. 1), with the first row characterized by very
different topographical and physical properties (e.g., size,
position, number and distance of disconnected components,
or relative intensity of the components). Specifically, the
original configurations are a line source with constant den-
sity along the line (case A); a line source with intensity vary-
ing along the line, i.e. four compact sources and a weak one,
all sources being aligned (case B); two Gaussian sources
with flux ratio equal to 1 (case C); two Gaussian sources with
flux ratio equal to 5 (case D); two Gaussian sources with flux
ratio equal to 10 (case E);

2. For each flaring configuration, three different synthetic sets
of count modulation profiles were realized, characterized
by three different levels of statistics (low, medium, high).
Operationally, matrix H was applied to the simulated map,
the resulting count expected values at each time bin were
scaled with three different values to simulate three different
levels of statistics (an average of 1000 counts per detector
for the low level, 10 000 for the medium level and 100 000
for the high one);
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Fig. 1. Validation of EM with synthetic data. First row: the simulated
configurations. Rows 2 through 4: reconstructions provided by EM cor-
responding to count modulation profiles characterized by three different
levels of statistics (second row: average of 100 000 counts per detector;
third row: average of 10 000 counts per detector; fourth row: average of
1000 counts per detector.

3. EM was applied to each one of the resulting 15 data sets in
order to reconstruct the images;

4. A set of routines was applied for the quantitative assess-
ment of the algorithm performance. These routines compute
specific physical and geometrical parameters in the images,
which are particularly significant for the different configura-
tions, and compare the values with the corresponding ground
truth values in the simulation maps of Fig. 1, first row.

Rows 2 through 4 of Fig. 1 contain the reconstructions provided
by EM for the three different levels of statistics and use the count
modulation profiles provided by all nine RHESSI detectors. The
assessment routines are applied to these maps and compute the
following parameters.

Case A (line source with constant intensity):

– A1: orientation (ground truth: 0 deg).
– A2: number of reconstructed sources (ground truth: 1).

While reconstructing a line source, most (if not all) imaging
methods tend to break it up into a set of compact sources (this
occurs particularly at low levels of statistics). The routine
computes the number K of intersection knots between the
reconstructed line profile and the straight line with the same
orientation passing through the full width at half maximum
(FWHM). The number of reconstructed sources is counted
as K/2.

– A3: length (ground truth: 20.2 arcsec). The routine computes
the FWHM in the direction of the orientation line.

– A4: width (ground truth: 1.35 arcsec). The routine computes
the FWHM in the direction orthogonal to the orientation line.

Case B (line source with intensity varying along the line)

– B1: orientation (ground truth: 0 deg).
– B2: number of reconstructed sources at FWHM (ground

truth: 4). Computed as in case A2.
– B3: length (ground truth: 16.9 arcsec). Computed as in

case A3.
– B4: width (ground truth: 1.35 arcsec). Computed as in

case A4.

Case C (two sources with flux ratio 1)

– C1: position of the first reconstructed source (ground truth:
0 arcsec). The routine computes the distance between the
peak of the first reconstructed source and the corresponding
simulated one.

– C2: position of the second reconstructed source (ground
truth: 0 arcsec). The routine computes the distance between
the peak of the second reconstructed source and the corre-
sponding simulated one.

– C3: separation of the reconstructed sources (ground truth:
20 arcsec). The routine computes the distance between the
two peaks.

– C4: orientation of the separation line (ground truth: 0 deg).
The routine computes the orientation of the line passing
through the two reconstructed peaks.

– C5: flux ratio (ground truth: 1). For each simulated source,
the routine computes the disk centered on the correspon-
dence with the peak and the radius such that 99% of the
flux is within the disk. Then, in the reconstructed image, the
routine computes the fluxes contained in the two disks and
computes the ratio.

For Case D (two sources with flux ratio 5) and Case E (two
sources with flux ratio 10) the routines compute the same pa-
rameters as in Case C.

We performed this analysis by comparing the parameters
obtained by EM with the original simulation parameters and
with the ones obtained by different imaging algorithms, namely:
Pixon (Puetter 1995; Metcalf et al. 1996), CLEAN (Högbom
1974), Maximum Entropy (Bong et al. 2006), a forward-fit algo-
rithm for visibilities and uv_smooth (Massone et al. 2009) (for
all algorithms we used all nine RHESSI detectors). In Table 1
we reported just the results provided by Pixon, since among the
methods using modulation profiles as input, it provided among
the best results. The Pixon algorithm models the source as a su-
perposition of circular sources (or pixons) of different sizes and
parabolic profiles and looks for the one that best reproduces the
measured modulations from the different detectors. This tech-
nique is generally considered to be the most reliable one in pro-
viding the most accurate image photometry (Dennis & Pernack
2009), but at the price of a very notable computational burden.
In this experiment we configured the Pixon algorithm in Solar
SoftWare (SSW) according to an optimized procedure based on
heuristic arguments.

5. Application to real observations

We applied EM to RHESSI observations recorded in correspon-
dence with three real flaring events. We considered the 2002
April 15 flare in the time interval 00:06:00−00:08:00 UT and
in the energy interval 12−14 keV; the 2002 February 20 flare
in the time interval 11:05:58−11:06:41 UT and in the energy
interval 25−30 keV; the 2002 July 23 flare in the time interval
00:30:00−00:32:00 UT and in the energy interval 100−300 keV.
In all cases detectors 3 through 8 are used for the observa-
tions. The reasons for this choice are as follows. Detector 2
has been characterized by malfunctions since the beginning
of the RHESSI mission, detector 1 is characterized by a very
small signal-to-noise ratio while the coarse information car-
ried by detector 9 is not crucial for reconstructing these events.
Figure 2 compares EM reconstructions with the ones provided
by Pixon and CLEAN, while Table 2 contains the correspond-
ing C-statistic for the six detectors employed in the analysis.
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Table 1. Assessment of EM and Pixon performances for synthetic data.

EM Pixon EM Pixon EM Pixon g. t.
105 105 104 104 103 103

A1 –0.1 –0.1 –0.4 –0.6 3.3 3.8 0.0
A2 1 1 3 2 2 2 1
A3 18.9 19.8 17.8 18.3 13.5 14.5 20.2
A4 2.1 3.0 1.9 2.2 3.5 4.3 1.4
B1 0.0 –0.1 –0.1 0.0 –1.0 0.1 0.0
B2 4 4 4 4 3 3 4
B3 16.4 17.8 16.4 16.6 15.9 17.1 16.9
B4 2.1 3.8 2.2 2.8 1.9 3.1 1.4
C1 0.7 0.7 0.7 0.7 0.7 0.7 0.0
C2 0.7 0.7 0.7 0.7 0.7 0.7 0.0
C3 19.0 22.0 19.0 19.0 20.0 19.0 20.0
C4 3.0 –2.6 0.0 0.0 0.0 0.0 0.0
C5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
D1 0.7 1.6 0.7 1.6 0.7 3.6 0.0
D2 0.7 1.6 0.7 1.6 0.7 3.5 0.0
D3 20.0 18.0 19.0 19.0 20.0 24.0 20.0
D4 0.0 0.0 –3.1 0.0 –2.9 –2.4 0.0
D5 4.7 5.1 5.0 5.6 7.6 11.5 5.0
E1 0.7 1.6 0.7 7.6 3.5 9.9 0.0
E2 0.7 1.6 0.7 7.5 3.5 9.9 0.0
E3 19.0 19.0 19.0 28.0 23.0 27.7 20.0
E4 0.0 0.0 0.0 –2.1 0.0 –12.5 0.0
E5 10.0 11.7 16.2 17.0 29.7 42.7 10.0

Notes. 105, 104 and 103 (counts per detector) indicate the three differ-
ent levels of statistics considered in the test. The comparison is made
with the parameters characterizing the simulated configurations repre-
sented in the first row of Fig. 1 (ground truth parameters in the last col-
umn). The meaning of the parameters in the first column is described
in the text. Parameters A2, B2, C5, D5 and E5 are pure numbers; pa-
rameters A1, B1, C4, D4 and E4 are in deg; all other parameters are
in arcsec.

In these experiments CLEAN parameters have been chosen ac-
cording to optimized heuristic recipes (Dennis & Pernack 2009).
According to these results, EM and Pixon are characterized by
values of the C-statistic almost systematically close to 1 (and sig-
nificantly lower than the ones provided by CLEAN). This means
the EM and Pixon can reproduce the data with comparable ac-
curacy (significantly better than the one achieved by CLEAN),
although EM reduces the computational time of up to a factor
4. Indeed, for April 15, 2002, the computational time is around
100 s for EM and more than 400 s for Pixon; for February 20,
2002, the computational time is around 50 s for EM and almost
220 s for Pixon; for July 23, 2002, the computational time is
around 125 s for EM and more than 460 s for Pixon. This same
4-to-1 scaling holds true independently of the kind of hardware
used for the tests. We also observe that in the Pixon implemen-
tation we used for these experiments the computations of the
time profiles and back projections are done more efficiently by
using optimized combinations of the spatial variation as spatial
sine and cosine patterns (annsec, annular-sector, implementa-
tion). Implementing EM according to this same representation
will improve the computational gain provided by this algorithm
of another factor 5.

6. Conclusions

This papers shows that expectation maximization can be effec-
tively applied to reconstruct hard X-ray images of solar flares
from the count modulation profiles recorded by the RHESSI
mission. This method is an iterative likelihood maximizer with a

Fig. 2. Performance of EM with real data observed by RHESSI. First
row: EM reconstructions; second row: Pixon reconstructions; third row:
CLEAN reconstructions. First column: 15 April 2002 event; second col-
umn: 20 February 2002 event; third column: July 23 2002 event.

Table 2. Performance of EM with real data observed by RHESSI: com-
parisons of C-statistic provided by EM, Pixon and CLEAN.

April 15 2002

3 4 5 6 7 8
EM 1.36 1.38 1.21 2.21 2.31 5.30
Pixon 1.46 1.51 1.49 2.30 2.46 5.11
CLEAN 14.50 13.98 13.86 27.65 41.07 77.79

February 20 2002

3 4 5 6 7 8
EM 1.09 1.10 1.04 1.16 1.06 0.88
Pixon 1.21 1.25 1.15 1.17 1.30 1.11
CLEAN 1.73 1.70 1.72 2.19 2.51 3.25

July 23 2002

3 4 5 6 7 8
EM 1.080 0.973 1.220 1.341 1.690 1.837
Pixon 1.176 1.007 1.224 1.340 1.702 1.797
CLEAN 5.302 5.326 4.711 5.756 3.908 9.878

positivity constraint, which explicitly exploits that the noise af-
fecting the measured data is Poissonian. We utilized an optimal
stopping rule that regularizes the algorithm, achieving an opti-
mal trade-off between the C-statistic and the numerical stability
of the reconstruction. We are aware that this test of the C-statistic
is not conclusive, since images affected by significant artifacts
may reproduce the experimental data with high accuracy; how-
ever, low C-statistic values coupled with the positivity constraint
can be considered as a diagnostic of reliable reconstructions.

We validated EM against synthetic count modulation pro-
files corresponding to challenging simulated configurations and
characterized by three levels of statistics. Then we applied the
method against the RHESSI observations of three flaring events
and compared the reconstructions with the ones provided by
Pixon and CLEAN. The results of these experiments show that
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EM combines a reconstruction fidelity (in terms of C-statistic)
comparable to the one provided by Pixon (which, however, is
much more demanding from a computational viewpoint) with
a computational efficiency comparable to the one offered by
CLEAN (which, however, predicts the count modulation pro-
files by means of a significantly worse C-statistic). Our next step,
which is currently under construction, will be to generalize this
approach to the reconstruction of electron flux maps of the flar-
ing region. Electron flux maps of solar flares can already be gen-
erated by hard X-ray count visibilities (Piana et al. 2007). We
are currently working on an EM-based approach to the recon-
struction of electron images, where the input data are the count
modulation profiles and the imaging matrix to invert accounts
for both the effects of the bremsstrahlung cross-section and the
Detector Response Matrix mimicking the projection from the
photon to the count domain. The advantage of this approach over
the visibility-based one should be that EM provides an analysis
framework that is closer to the data, because we can model all of
the detector effects with higher accuracy.
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