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ABSTRACT

A novel model for the variability in aerosol optical thickness (AOT) is presented. This model is based on the

considerationofAOTfields as realizations of a stochastic process that is the exponent of an underlyingGaussian

process with a specific autocorrelation function. In this approach, AOT fields have lognormal PDFs and

structure functions with the correct asymptotic behavior at large scales. The latter is an advantage compared

with fractal (scale invariant) approaches. The simple analytical form of the structure function in the proposed

model facilitates its use for the parameterization of AOT statistics derived from remote sensing data. The new

approach is illustrated using a 1-yr-long globalMODISAOT dataset (over ocean) with 10-km resolution. It was

used to compute AOT statistics for sample cells forming a grid with 58 spacing. The observed shapes of the

structure functions indicated that, in a large number of cases, the AOT variability is split into two regimes that

exhibit different patterns of behavior: small-scale stationary processes and trends reflecting variations at larger

scales. The small-scale patterns are suggested to be generated by local aerosols within the marine boundary

layer, while the large-scale trends are indicative of elevated aerosols transported from remote continental

sources. This assumption is evaluated by comparison of the geographical distributions of these patterns derived

from MODIS data with those obtained from the GISS GCM. This study shows considerable potential to en-

hance comparisons between remote sensing datasets and climate models beyond regional mean AOTs.

1. Introduction

Atmospheric aerosols through their direct and in-

direct radiative effects remain a significant source of

uncertainty for the historical forcing of climate (Hansen

et al. 2000; Myhre et al. 2013; Koch et al. 2007; Unger

et al. 2008) and consequently for the assessment of

projected change. Resolving this uncertainty requires

the synergistic combination (through intercomparisons

and assimilations) of aerosol models and observational

datasets (Kinne et al. 2006; Quaas et al. 2009; Huneeus

et al. 2011). As a part of an effort to define new strategies

and methodologies for the intercomparison of model

and satellite data, it looks promising to include analysis

of more detailed characteristics of aerosol variability

and go beyond traditional comparison of aerosol optical

thickness (AOT) averaged over a geographical region.

In particular, structure functions (SFs) provide a
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uniform description of the strength and spatial scale of

AOT fluctuations. The structure function [see, e.g.,

Davis et al. (1994) and the next section] describes the

average difference in value over scale. In the framework

of traditional scale-invariant (fractal) models, the SF is

assumed to have a power-law form characterized by the

scaling (Hurst) exponent H. SFs together with power

spectra have been widely used to characterize scaling of

turbulence-driven fluctuations of various atmospheric

fields, such as temperature, wind speed, humidity, etc.

(e.g., Gage and Nastrom 1986; Lilly 1989; Lovejoy and

Schertzer 2010, 2012). Scaling techniques were also

successfully used in analysis of various cloud datasets

(Cahalan and Snider 1989; Davis et al. 1996, 1997, 1999;

Marshak et al. 1997).

The scaling properties of AOT were studied by

Anderson et al. (2003) using autocorrelation statistics.

This study revealed that mesoscale aerosol variability

(at 40–400-km scales) is a common feature of lower-

tropospheric aerosol light extinction. Another appli-

cation of scaling analysis to AOT variability was

performed by Alexandrov et al. (2004). They studied

AOT scaling using the 1-month dataset from a sun-

photometer network operated by the U.S. Department

of Energy Atmospheric Radiation Measurement Pro-

gram in Oklahoma and Kansas. The network provided

an irregular grid with a mean distance between neigh-

boring sites of roughly 80 km, and the temporal sampling

was 20 s. This dataset therefore allowed for both tem-

poral and spatial AOT variability to be analyzed.

Alexandrov et al. (2004) found that the temporal vari-

ability of AOT can be separated into two scale-invariant

regimes: microscale (0.5–15 km), where fluctuations are

governed by 3D turbulence (H’ 0.3), and intermediate

scale (15–100km), characterized by a transition toward

large-scale 2D turbulence (H ’ 0.4–0.5). The temporal

evolution of AOT scaling exponents during the month

appeared to be correlated with changes in aerosol ver-

tical distribution, while their spatial variability reflected

the site’s topography.

Unfortunately, the scale-invariant variability model

with its power-law SF being divergent at large scales

does not naturally reflect an important statistical prop-

erty of real AOT fields: the statistical independence of

AOT values at points separated by a large distance. This

property means that the SF approaches a constant value

(double the AOT variance) at a sufficiently large scale.

To deal with this problemwithin the fractal framework, a

number of scaling regimes are introduced separated by

scale breaks. In this study, we present a new AOT vari-

ability model that has an advantage over the scale-

invariant approach because its SFs have the correct

asymptotic behavior. In this approach, we construct an

AOT field by taking the exponent of an underlying

Gaussian random process with a specified autocorrela-

tion function. This ensures that AOT fields have log-

normal PDFs (O’Neill et al. 2000), while their structure

functions are power law at small scales and approach a

constant at large scales. The simple analytical expression

for the SF of this model facilitates its application to real

AOT datasets.

We will apply our analytical model to the statistics

derived from the global Moderate Resolution Imaging

Spectroradiometer (MODIS) AOT product (Remer

et al. 2005, 2008; Levy et al. 2010). It will be shown that

the shapes of the MODIS-derived SFs in many cases

suggest the presence of two distinctive variability

modes, which we attribute to two aerosol layers sepa-

rated by height (one within the boundary layer, the

other above it). Such a separation adds a ‘‘third di-

mension’’ to the 2D MODIS dataset and can be quan-

titatively evaluated by comparison with the aerosol

vertical structure in climate models (even if the climate

model resolution is insufficient for computation of the

SFs themselves). To demonstrate this possibility, we

present a comparison between the aerosol modes de-

rived from theMODIS dataset and those obtained using

3D AOT fields simulated by the NASA Goddard In-

stitute for Space Studies (GISS) Model E2 (Schmidt

et al. 2014).

2. Statistics of AOT fields

Statistical properties ofAOT (as well as ofmany other

geophysical parameters) are characterized by their

probability distribution (PDF) and structure functions.

The latter describes the dependence of the expected

difference between AOT values measured at two points

in space or time on their separation (see, e.g., Davis et al.

1994; Alexandrov et al. 2004; Lovejoy and Schertzer

2012). The SF is equivalent to the variogram that is used

in geostatistics (Curran 1988). In our model, we will use

the second-order SF that is defined for a 1D case as

follows:

S
2
(r)5 [t(x1 r)2 t(x)]2

5
1

L2 r

ðL2r

0

[t(x1 r)2 t(x)]2 dx . (1)

Here, t is the AOT, r is the lag, or separation between

points, and the overbar denotes averaging over x within

the range of [0, L], where L is the sample size. This

implies the validity of the ergodicity hypothesis such

that an ensemble average over realizations is equivalent

to an average over the spatial variable x. The definition
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of S2 is equivalent to that of the variance of the in-

crement field:

D
r
t(x)5 t(x1 r)2 t(x) ; (2)

that is,

S
2
(r)5Var(D

r
t) , (3)

assuming that Drt5 0. The structure function definition

for the 2D case is similar to that for the 1D case:

S
2
(r)5 [t(x1 r)2 t(x)]2 , (4)

where x and r are now 2D vectors and r5 jrj. The av-

eraging in x is performed over some spatial domain. This

implicitly assumes statistical isotropy of the AOT field.

Computation of a structure function (1D or 2D) does

not require continuity of the AOT dataset, which can

have gaps or even be a collection of values at discrete

points in space or time. To derive an SF, we take all

available data points and consider all possible pairs of

them. For each pair, we calculate the distance and the

difference in AOT between the two points. Then the

set of these distances and differences from all pairs is

used to build a histogram (square difference in AOT vs

distance between points), which is the SF for this

dataset.

Later in the paper, we will consider a model with two

layers, one of which is determined by the marine

boundary layer, while the other is advected from else-

where. Such layers can be regarded as statistically in-

dependent. In general, if the aerosol field consists of n

statistically independent layers each having an AOT of

t(i)(x), the total AOT

t(x)5 �
n

i51

t(i)(x) (5)

will have the following statistics:

t5 �
n

i51

t(i), Var(t)5 �
n

i51

Var[t(i)] , (6)

and

S
2
(t; r)5 �

n

i51

S
2
[t(i); r] . (7)

The latter relation follows from Eq. (3).

In the important case of scale-invariant (fractal) fields,

structure functions have a power-law form:

S
2
(r)} r2H , (8)

whereH 2 (0, 1) (Mandelbrot 1982). Larger values ofH

correspond to smoother functions that may have sub-

stantial trends, while smaller values indicate finer-scale

variability and more stationarity (see, e.g., Marshak

et al. 1997). A Hurst exponent of 1/2 corresponds to

classical Brownian motion (CBM), which is a Markov

process with independent increments. Processes with

other values of H, called fractional Brownian motions

(FBM), are non-Markovian: their increments either

correlate (forH. 1/2) or anticorrelate (forH, 1/2). The

theoretical values of H that are characteristic of vari-

ability in wind speed and passive scalar advection in

turbulent flows are 1/3 for 3D turbulence (Kolmogorov

1941) and 1 for 2D turbulence (e.g., Gage and Nastrom

1986). In their study of sun-photometer-derived AOT

time series, Alexandrov et al. (2004) found values of

H ranging from 0.1 to 0.6.

It is known that AOT fields exhibit a scale-invariant

structure over certain scale ranges (Alexandrov et al.

2004); however, AOT variability at all scales cannot be

described by a single fractal model. It is natural to as-

sume that the AOT values at two points located far

enough from each other can be considered independent.

Thus, at large scales, S2(r) becomes the variance of the

difference between two independent variables, which is

equal to the sum of the variances of those variables. As

we assume that the AOT field is statistically homoge-

neous, these variances are the same and equal to the

global variance of the dataset. Thus,

S
2
(r/‘) ’ 2Var(t) (9)

is a scale-independent constant. A power-law SF Eq.

(8), which diverges at large scales, is inconsistent with

this asymptotic constraint (i.e., the global variance

does not exist in fractal models). This means that

fractal characterization of AOT variability can only

be made over a restricted range of scales, and the

value of H will be dependent on the range of scales

selected. In a model with finite global mean t and

variance Var(t)5 s2 the autocorrelation function is

defined to be

W(r)5
[t(x)2 t][t(x1 r)2 t]

Var(t)
, (10)

which is related to the structure function by the

expression

S
2
(r)5 2s2[12W(r)] . (11)

The asymptotic condition Eq. (9) then means that

W/ 0 as r/‘.
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3. The statistical model for AOT

In this section, we will define the AOT variability

model and derive the corresponding expressions for

structure and autocorrelation functions. AOT datasets

are known to have lognormal PDFs (O’Neill et al. 2000),

and it is therefore natural to use a statistical model of

them where t5 exp(h), with h being a Gaussian field

defined by its mean, variance, and autocorrelation

function w(r). Realizations of such a process can be

constructed using Fourier filtering techniques that use

power spectrum computed for a prescribed autocorre-

lation function (see, e.g., Bell 1987). An alternative

method to generate a Gaussian field using the summa-

tion of multiple realizations of a binary Markov process

is described in the supplemental material.

It is shown in appendix A following the approach

described by Mejia and Rodriguez-Iturbe (1974) that

the structure and autocorrelation functions of the AOT

field can be expressed through the autocorrelation

function w(r) of the underlying Gaussian process:

S
2
(r)5 2s2

u2 uw(r)

u2 1
; (12)

W(r)5
uw(r) 2 1

u2 1
. (13)

Here, we use the notation

u5
s2 1 t2

t2
, (14)

where t and s are themean and standard deviation of the

AOT field, respectively. The function w(r) should be

positive and obey the following properties: w(0)5 1 and

w(r/‘)5 0. The former ensures that S2(0)5 0, while

the latter means that S2(r/‘)5 2s2. Probably the

simplest functional form of w(r) satisfying these condi-

tions is exponential:

w
M
(r)5 e2r/Le , (15)

whereLe is the autocorrelation length. For example, the

autocorrelation function of the Gaussian model based

on binary Markov processes (see the supplemental

material) has this form. When w(r) is exponential, the

structure function is linear in the small-scale limit:

S2(r � Le)} r. This is appropriate for an AOT field

that behaves as a classical Brownian motion (having

H 5 1/2). However, in our previous study (Alexandrov

et al. 2004) that considered relatively small temporal

and spatial scales, we found that the AOT’s structure

functions showed power-law dependence on the lag:

S2(r � Le)} r2H . We will see similar small-scale behavior

of SFs computed for the MODIS AOT product. This

means that, at small scales, real AOT fields resemble

FBMs with Hurst exponents not necessarily equal to 1/2.

These observations prompt us to generalize the expo-

nential functional shape in Eq. (15) to accommodate the

appropriate power-law behavior for the small-scale limit

case. We choose the following expression:

w(r)5 e2(r/Le)
2H

, (16)

which is analytically simple and captures the observed

behavior of real AOT fields. For nonexponential w(r),

parameter Le is not precisely the autocorrelation

length, so we will call it the ‘‘characteristic length’’

instead. It characterizes the typical size of inhomoge-

neities in the AOT field. Figure 1 shows how the shape

of the reduced structure function S2(r)/2s
2 computed

according to Eqs. (12) and (16) depends on the three

parameters: the relative standard deviation n5 s/t, Le,

and H. We see that the dependence on n is relatively

weak, while variations in Le change the length scale of

the function. It is also seen that the SF’s value at r5Le

does not depend on H (this simplifies fitting of remote

sensing data).

4. Derivation of the model parameters from
observations

We assume that the observational dataset provides a

PDF of AOT values (from which we determine t and s),

as well as the structure function S2(r). Then we compute

the parameter u according to Eq. (14) and derive the

formula

w(r)5
1

lnu
ln

�
u2

u2 1

2s2
S
2
(r)

�
(17)

from Eq. (12). If this function is positive, the model

parameters can be obtained from Eq. (16) when it is

written as

2lnw(r)5

�
r

L
e

�2H

. (18)

First, we determine Le from the condition

2lnw(L
e
)5 1. (19)

The small-scale H can then be derived from Eq. (18) by

linear regression in ln(r/Le):

ln[2lnw(r)]5 2H ln

�
r

L
e

�
. (20)
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5. Application to the MODIS AOT product

The proposed variability model was evaluated using

the AOT product (collection 5, level 2, 550-nm wave-

length) from the MODIS instrument on the Terra

satellite (Levy et al. 2010). MODIS is on polar orbit,

observing a 2330-km-wide swath. There are gaps in

MODIS observations near the equator, while the

measurements from different orbits overlap near the

poles. The aerosol retrieval creates a ‘‘10 km’’ prod-

uct, which has 10-km resolution at nadir, extending to

40 km at swath edge. We took a 1-yr-long (2006)

global AOT dataset with 10-km resolution and com-

puted the means, variances, and structure functions

for the data from overlapping 108 3 108 cells (with

ocean and land treated separately). The centers of the

cells form a grid with 58 3 58 resolution. To avoid the

effects of overlapping orbits on the satellite data at

high latitudes, we restricted our retrievals to the area

between 608S and 608N. Here, we present the results of

our analysis only for the measurements over ocean,

where variability of surface albedo is small compared

to that of AOT.

Computation of structure functions follows the pro-

cedure outlined in section 2. For a given day and a

given 108 3 108 cell, we take all available 10 km 3
10 km pixels. If the number of these pixels exceeds a

threshold of 200 regardless of their distribution within

the cell, we proceed with the analysis and consider all

possible pairs of pixels. For each pair of pixels, we

determine the distance and the difference in AOT

between them. After this, we collect these parameters

from all pairs and use them to construct a histogram of

square difference in AOT versus distance between

pixels using a 10-km bin size. This histogram is re-

garded as the SF for this cell. Note that the computa-

tion of SFs for 2D datasets implies statistical isotropy;

thus, the resulting structure function is the direction-

ally averaged representation of AOT variability. We

estimate the mean and the standard deviation of the

AOT in the cell using the data from the available pixels

and use these values to parameterize the SF according

to our model, as described in section 4. This procedure,

applied to all admissible cells, provides a global daily

dataset of t, s, and the SF parameters Le and H on a

grid with 58 resolution (our 108 3 108 cells overlap).

Combining these parameter values over multiple days

gives us a time series, which we average over a month

or a season (using only the days when the data are

available) to obtain the corresponding mean values.

The averaging helps to reduce the statistical noise in

the dataset. It appears that the above described pa-

rameterization does not always provide a good fit to the

observed SF because of insufficient sample size (see

section 6 for details). While the SF parameters still

have a qualitative meaning in such cases, we modify

our analysis (as described in section 7) to better ex-

plore the information content of the data.

FIG. 1. Dependence of the normalized structure function

S2(r)/2s
2 shape [Eqs. (12) and (16)] on the parameters (top) n5 s/t,

(middle) Le, and (bottom) H.
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6. Sampling effects

It is generally difficult to characterize the accuracy of

structure functions computed from satellite data, since

in each case we have to deal with a single realization of

the stochastic process governing the variability in the

AOT. The statistics computed using this realization may

deviate from those of the (hypothetical) complete sta-

tistical ensemble, so we have to assume that this de-

viation is not significant. Using multiple datasets does

not solve this problem since the AOT variability pa-

rameters are not the same for different times, locations,

and sample sizes. The size of the sample (108 3 108 in our
case) is a free parameter to be chosen by the in-

vestigator. It should be large enough to collect enough

satellite pixels for statistical analysis, while still suffi-

ciently small to reveal spatial variability in the derived

statistics. Another issue with the SF analysis, as well as

with any statistical method applied to satellite data, is

whether the AOT values at the pixels where retrievals

are available are representative of the whole sample

area. This is of particular concern if the number of

available pixels is small or their spatial distribution is

uneven. Note that over ocean, less than 10%of all global

10-km boxes in the MODIS product have valid AOT

retrieval as a result of avoidance of clouds and sun glint.

We deal with this issue by setting a threshold on the

number of data pixels in the sample and also by con-

trolling the quality of SFs (those that are too noisy to be

well fit by our models are discarded).

To give an example of the effect of sample size on the

retrieved statistical parameters, we compare structure

functions and their parameterizations from two datasets

representative of different scales (shown in Fig. 2). One

of these areas is a 1208 3 708 region covering more than

half of the Pacific Ocean, while the other is its local

subset—a typical 108 3 108 cell used in our analysis. The

data are from 17 January 2006. Figure 3 (top left) shows

the regional structure function (the AOT data used

for the SF computation are shown in the insert). We see

that the 5000-km scale is sufficient to observe the be-

ginning of the SF’s saturation. The AOT in this sample

has a mean of 0.13 and a standard deviation of 0.062.

Despite some noise at larger scales, this SF fits our

variability model well with Le 5 815 km and H 5 0.39.

Figure 3 (top right) shows the same SF (red curve) over a

smaller lag range (up to 1500km) together with the SF

from the 108 3 108 subset (green curve). We see that,

while the local SF largely inherits the shape of the re-

gional one, the 1000-km sampling range is not sufficient

to reach the scale at which the SF saturates. Note also

that the local standard deviation of 0.042 is 30% smaller

than that for the large region. Figure 3 (bottom) dem-

onstrates that the local SF can be fit by our model in

different ways depending on whether the local (Fig. 3,

bottom left) or regional (Fig. 3, bottom right) variance

value is used, yielding very different values of Le: 165

and 845 km, respectively.

Rigorous quantitative estimation of the sampling er-

ror in the determination of the SF would have to take

into account spatial correlations between the AOT

values in different pixels. This is a rather complicated

task, which goes beyond the scope of this exploratory

study. Instead, we present in Fig. 4 a qualitative analysis

of the influence of the number of pixels on the compu-

tation of the SF. Figure 4 shows the complete local SF

from Fig. 3 (green curve) and the number of pixel pairs

Np contributing to this SF at each scale (black curve).

This number increases with the lag at small scales, while

decreasing at large scales because of the effect of finite

sample size. It looks like the effect ofNp on the SF starts

to dominate once a threshold is crossed. The SF mono-

tonically increases with lag and is in good agreement

with its regional analog (Fig. 3, top right) up to the scale

of 1100km (dashed line in Fig. 4), at which point it

breaks. The number of pairs at this lag is 1800. The

reason for this behavior is in the rapid growth at this

point of N21/2
p , which determines the statistical un-

certainty of the SF computation. This is illustrated in

Fig. 4 by two orange curves corresponding to

S2 6 constant 3 N21/2
p [the constant here is taken equal to

2max(S2)]. The admissible scale range with a number of

pairs larger than this value is shown in Fig. 4 by the blue

horizontal line. Besides the part with r . 1100km, this

range does not include the first two bins corresponding

to lags of less than 20km. We will see below that such a

scale range is sufficient for SF parameterization.

The example described above demonstrates that there

are two negative effects of having a smaller sample size

FIG. 2. Two geographical regions of different scales, MODIS

data from which were used for computation of structure functions

presented in Fig. 3.
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on SFs and their parameterizations. First, the reduction

in the number of pixel pairs especially affects the large-

scale range, where the structure function is expected to

saturate to its asymptotic value. This may yield in-

complete SFs showing no saturation at all. Second, the

dependence of the AOT variance on the sample size

(when this size is small) may lead to ambiguity in pa-

rameterization of SFs.

7. Information content of incomplete structure
functions

While the example from the previous section shows

that an incomplete (not reaching saturation) structure

function cannot be used for the retrieval of regional-

scale statistics, such SFs can still provide valuable in-

formation on AOT variability at specific geographic

locations. A closer look at Fig. 3 (top right) reveals a

feature in the local SF curve at scales smaller than

600km distinguishing it from the regional SF. We call

this feature a partial saturation. Figure 3 (bottom left)

demonstrates that the shape of the local SF in this scale

range is consistent with our model if the local variance is

used in the fitting process. The fit yields H 5 0.56 and

Le 5 165 km. This behavior can be explained by the

presence of trends in small samples. These trends reflect

the nonstationary nature of AOT variability at small

scales (where it behaves as an FBM) and are averaged

out in statistics for a sufficiently large dataset. To explain

the shape of the partial saturation feature, we de-

compose (using, e.g., linear regression) the 1D or 2D

small-scale AOT sample into a sum of two independent

components: a trend (which is close to a linear function)

and a stationary field. Then, according to Eq. (7), the

total SF can be represented as a sum of SFs of these

components. By the nature of this decomposition, the

stationary component’s SF quickly saturates at scales

smaller than the typical trend length. The structure

function of the trend component has the form S2(r)} r2

(corresponding to fractal model with H 5 1). The plot

of a sum of such two functions (see Fig. 5) is similar to

those in Figs. 3 and 6. Here, we see a partial saturation at

FIG. 3. Structure functions computed fromMODIS data over the South PacificOcean obtained on 17 Jan 2006.

(top left) SF (red) for large 1208 3 708 area exhibiting statistical saturation at large scales. The blue curve

represents the parametric fit to the data. (top right) SF (red) for large 1208 3 708 area exhibiting statistical

saturation at shorter scale range in comparison with local SF (green) from a 108 3 108 area. Maps presenting

MODIS pixels used for SF computations are included as inserts. (bottom left) Fit to the local SF using locally

measured standard deviation. (bottom right) As in (bottom left), but using the large-scale value of the standard

deviation from (top left).
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smaller scales (inherited from the stationary SF) fol-

lowed by an increase at larger scales where the trend’s

SF starts to dominate. This pattern does not affect scales

larger than the typical length of a trend.

The strength of a trend can be evaluated by the dif-

ference between the AOT variance in the sample and

the stationary component variance inferred from the

saturation value of its SF. For example, we see that the

trend contributions to the SFs in Figs. 3 (bottom left)

and 6a are weak, since in these cases the AOT variances

in the samples can be explained by the stationary com-

ponents alone. On the other hand, the SFs in Figs. 6b–e

show indications of stronger trends.

While some trends can be present in an ambient

aerosol layer (as is likely to be the case in Fig. 3),

stronger trends may indicate the presence of aerosol

plumes transported above the marine boundary layer

(MBL) from remote continental sources. Such plumes

are large in scale and relatively smooth, since they are

not affected by boundary layer turbulence. They are also

localized (being a plume) by proximity to their sources

and characteristic wind patterns. This localization in-

duces trends in AOT between the center of the plume

and its edges. This allows us to assume a two-mode

aerosol structure with a transportedmode located above

the MBL and associated with the trend component in

AOT and a local (or MBL) mode located within the

MBL and associated with the stationary component

in AOT.

The parameters of the transported-mode SF cannot

be retrieved using the local AOT variance; however, the

MBL-mode SF can be separated and characterized fairly

well because of its small-scale saturation (see appendix

B for a description of the technique). Knowing the mean

and the variance of the MBL AOT allows us to also

determine the parameters of the transported mode by

subtraction of the MBL values from those of the

total SF.

Besides the two-mode method, we also continue to

employ the single-mode technique described in section

4. It uses the local variance and derives the values of Le

and H. While the quality of the fit of the SF to a single-

mode model may be less than perfect, the characteristic

lengths Le obtained in this way still provide a proxy for

the scale of total (not just MBL) AOT variability.

8. Examples of structure functions from MODIS
dataset

Figure 6 presents examples of the structure functions

computed using MODIS data from five different 108 3
108 ocean regions (shown in Fig. 6, top left). All the data

are from the same day, 18 August 2006, and the pixels

used are shown in the inserts. In three out of five of the

presented cases, SFs show pronounced partial saturation

at scales below 400km indicative of strong trends in

AOT. One of the exceptions is the case from the rela-

tively pristine Pacific Ocean that is unaffected by long-

range aerosol transport (Fig. 6a; similar to Fig. 3, bottom

left). The absence of a trend contribution to the AOT

variance and the short characteristic length of the MBL

component (Le 5 65km) suggest that the aerosol in this

area is predominantly from local sources (e.g., sea

spray). The SF from African coastal waters (Fig. 6b)

looks quite different. A large AOT value (1.0) and

partial saturation in the SF are consistent with signifi-

cant amounts of Saharan dust in this region. There the

aerosol has essentially a two-layer structure with a lower

local aerosol (e.g., sea spray) within the marine bound-

ary layer (which typically has a height of 500–600m) and

an elevated dust layer transported from continental

sources at 2–5 km above the sea level. If we assume that

t } s, then two-thirds of AOT in this case comes from the

elevated layer. The single-mode estimate of the vari-

ability scale is large (Le 5 475km), while the MBL

component’s SF has a much more modest scale

Le 5 115 km. Besides locally produced sea spray, the

FIG. 5. Schematic representation of the partial saturation feature

seen in structure functions from Figs. 6 and 3 as a sum of stationary

and trend components.

FIG. 4. Structure function from Fig. 3 (green) and the number of

MODIS pixel pairs Np that contributed to the SF value at each lag

(black). The lag interval with admissible number of pairs (.1800) is

indicated by the blue horizontal line. The two orange curves cor-

responding to S2 6 constant 3 N21/2
p illustrate the growth of SF

computation uncertainty with the decline of Np.
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MBL can also contain some dust falling from the ele-

vated layer. Figure 6c presents the SF from an area off

the coast of equatorial Africa that is known to be af-

fected by biomass burning smoke from the continent.

While this is quite an interesting region to study, the

data look consistently noisier than those from other

places. The relatively large ratio s/t 5 0.75 indicates

intermittency (presence of isolated high values) in the

FIG. 6. Structure functions computed using MODIS data from various 108 3 108 ocean regions obtained on 18 Aug 2006. (top left) The

lettered regions correspond with (a) relatively pristine Pacific Ocean unaffected by long-range aerosol transport; (b) African coastal

waters with strong presence of Saharan dust; (c) area off coast of equatorial Africa affected by biomass-burning smoke; (d) northern

Indian Ocean with presence of dust from Arabian Peninsula; and (e) middle of the Indian Ocean, data that still show presence of the

transported aerosol. In (a)–(e), the red curve corresponds to the SF derived from the data, while the fits obtained from single-mode (solid)

and two-mode (dashed) models are shown by blue lines. The SFs and parameters of the stationary MBL AOT component are shown in

green. Maps showing the actual MODIS pixels used for SF computations are included in (a)–(e) as inserts.
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sample and may point to undetected clouds below the

smoke layer. Some inconsistency between MODIS and

CALIOP AOT from this region and season was also

reported byRedemann et al. (2012). Figure 6d shows the

SF from the northern Indian Ocean off the coast of the

Somali Peninsula. This area is affected by dust transport

from the Arabian Peninsula. This structure function

looks similar to that for the Saharan dust case (Fig. 6b)

and has similar parameters; however, the AOT here is

much smaller: 0.4. The SF from the middle of the Indian

Ocean (Fig. 6e) also has a pronounced partial saturation

feature, while the AOT ’ 0.1 there is as small as in the

Pacific Ocean case. This may indicate the presence of a

rather thin elevated aerosol layer transported by the

west winds (which are strong in this area in summer)

from the southern part of Africa.

9. Geographical mapping of AOT variability

The parameters of the structure functions derived

from the MODIS global satellite dataset together with

the means and variances of the AOT can be used to

characterize aerosol variability on a planetary scale. We

illustrate this possibility by constructing 58 3 58 resolu-
tion maps of the AOT variability parameters averaged

over summer (June–August) 2006. Figure 7 presents

maps of the mean AOT, its standard deviation, and the

ratio of the standard deviation to the mean. It is in-

teresting to observe that this ratio lacks features asso-

ciated with high-AOT areas (such as Saharan dust or

biomass burning smoke), and the whole range of s/t

variability is quite narrow: between 0.3 and 0.6.

The SF parameters Le andH derived using the single-

mode approach are presented in Fig. 8. The larger values

of both of these parameters, especiallyLe, correspond to

the areas where continental aerosols are advected over

the ocean: Saharan dust to the west of northern Africa

and biomass burning smoke to the west of the sub-

equatorial part of this continent, dust from the Arabian

Peninsula spreading into the northern Indian Ocean,

and also smoke and pollution transport from South

America, Africa, and Australia driven by the westerly

winds of the Southern Ocean (especially in the southern

IndianOcean). Except for the latter case, these areas are

associated with large AOT values (see Fig. 7, top). One

can observe an unusual low-value feature in the plot of

H going in a south–north direction in thewestern Pacific,

close to the international date line. This artifact is

probably caused by a known minor problem with the

definition of the MODIS day (sometimes an orbit

crossing the date line is counted on the wrong day) and

can also be seen in some other datasets (see, e.g.,

Redemann et al. 2012).

Under certain assumptions (described in section 7 and

in appendix B), the structure function parameterization

allows us to split the total AOT into the elevated

(transported) and the MBL modes. While the structure

function of the elevated mode cannot be reliably char-

acterized, the MBL component’s SF can be extracted

FIG. 7. Seasonal averages ofMODISAOT retrievals for summer

2006: (top) mean, (middle) standard deviation, and (bottom) ratio

of the standard deviation and mean.
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and fitted by our model. The typical values of Le for this

component are around 100 km and show little geo-

graphical structure, while the exponent H varies be-

tween 0.2 and 0.5 with some decrease toward the

Southern Ocean. In some cases (such as the one pre-

sented in Fig. 6a) only onemode is detected in the SF. In

our computations of the averages, we attribute such

single-mode AOTs to the elevated mode if Le . 150km

and to the MBL mode otherwise. The geographical

distributions of the AOT components will be discussed

in section 10 in comparison with GCM output.

10. Comparison with GCM output

While producing a plausible qualitative picture, the

proposed layer separation technique needs to be eval-

uated by comparison with 3D aerosol datasets. We ob-

tained such a dataset from the NASA GISS GCM

simulations for the year 2006. Here, we present com-

parisons for summer 2006 used in examples of MODIS

data described above, while comparisons for all seasons

of this year are available as supplementalmaterial to this

paper. The GISS Model E2 (Schmidt et al. 2014) pro-

duces 3D AOT fields with 28 resolution in latitude and

2.58 in longitude. Vertical resolution of the model is

defined in sigma units, so it varies with surface pressure.

Converted to a height, it is about 200m at sea level and

increases with altitude. The simulated AOT is divided

between several aerosol species: dust, sea salt, biomass

burning, industrial pollution, and secondary organic

aerosols. Calculation of the boundary layer height in the

model is based on the Richardson number criterion, as

described by Yao and Cheng (2012).

The seasonally averaged mean AOT map from the

GCM simulations is presented in Fig. 9 (top). Visual

comparison between this map and that in Fig. 7 (top)

reveals a number of qualitative deviations of the model

results from the observations, including a notable lack of

Saharan dust and a smaller AOT in the Caribbean. The

largest model–satellite differences are seen in the

Southern Ocean, which is known to be one of the most

FIG. 8. As in Figs. 7a,b, but for retrieved structure function

parameters of single-component model: (top) Le and (bottom) H.
FIG. 9. Maps of seasonal averages fromGISSGCMoutput: (top)

total AOT and (bottom) MBL height. The simulations are for

summer 2006.
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difficult regions on the planet for both observations and

modeling. There the GCM-produced AOT values are as

high as 0.3–0.4, while MODIS detects only background

aerosols with an optical thickness of 0.1 or less. These

discrepancies in AOT can be caused by many factors,

detailed analysis of which is outside the scope of this

study. For example, the satellite retrievals can be af-

fected by inadequate cloud screening, while the AOT in

the GCM may be biased by an anomalously large MBL

height in the Southern Ocean (clearly seen in Fig. 9,

bottom), as well as by uncertainties in the assumed size

distributions and hygroscopic properties of sea salt

aerosols.

Figure 10 presents the partition of the total AOT into

the above-MBL (Fig. 10, top) and within-MBL (Fig. 10,

bottom) components. Figure 10 (left) shows the results

from MODIS SF analysis, while Fig. 10 (right) presents

theAOTs obtained from the partition of theGCMAOT

profiles by the MBL height (Fig. 9, bottom). Note that

the MODIS-derived maps in Fig. 10 were enhanced to

make them look similar to the GCM plots: MODIS

AOT was interpolated from the original 58 3 58 grid (as

in Fig. 7), to the 2.58 3 2.58 grid (similar to that of the

model) and then smoothed using a moving average. The

larger model–satellite differences in the component

optical thicknesses are seen in the same regions as those

in the total AOTs [e.g., in the Southern Ocean (where

the model attributes most of the AOT to the MBL

component)]. As to the mode separation in general, we

see that in the regions with long-range transport of large

aerosol masses (Saharan dust, biomass burning in

western Africa) the SF analysis of the MODIS data

shows more aerosol in the boundary layer than

the model.

The partition of the AOT into two modes allows us to

compute the fraction of the total AOT that is in the

FIG. 10. Maps of averaged AOTs for summer 2006: (top) transported and (bottom) MBL components from (left) MODIS structure

function analysis and (right) GISS GCM output. The data presented in (left) have been enhanced for comparison with the GCM by

interpolating to a 2.58 3 2.58 grid and smoothing by a moving average. Note that the averages for each mode in MODIS SF dataset were

taken only over the days when this mode was present; thus, the component means do not add up to the total mean in Fig. 7 (top).
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elevated mode. This parameter can be used as an in-

dicator of long-range transport, even when the trans-

ported aerosol mass is optically thin. Figure 11 presents

the geographical distributions of this ratio derived from

the observations (Fig. 11, left) and from the GCM data

(Fig. 11, right). Above, we mentioned that mixing be-

tween aerosol layers in the model is weaker than in the

SF analysis. This means that the GCM AOT ratio plot

has more contrast than its MODIS analog: large AOT

ratios are larger, while the small ones are smaller. Thus,

in order to enhance comparisons between aerosol

transport features in the model and observations, we

increased the contrast in Fig. 11 (left) by reducing the

color range.

The geographical distribution of the AOT ratio in

Fig. 11 (left) is similar to that of Le in the single-mode

approach that is shown in Fig. 8 (top). This confirms that

large-scale features in AOT are associated with elevated

plumes. In addition to the West African biomass burn-

ing and the dust advected from the Sahara and the

Arabian Peninsula, Fig. 11 shows some more subtle

similarities that are not readily seen in the total AOT

plots. The advection of industrial pollution and biomass

burning aerosols from the eastern coasts of Brazil and

especially South Africa (across, respectively, the At-

lantic and the Indian Oceans) shows stronger presence

in observational data than in the GCM results, although

it can be seen in both datasets. The same can be said

about the feature off the northwestern coast of Australia

having very small AOT (,0.1), which is probably asso-

ciated with smoke. We should note, however, that the

quality of the aerosol-mode separation at such small

AOTs may be questionable because of the limited ac-

curacy of MODIS retrievals (cf. Levy et al. 2010). The

largest differences between the GCM results and our

retrievals are seen in the South Pacific, where our in-

terpretation of MODIS data indicates long-range aero-

sol transport by the westerly winds. However, the

model, as it can be seen in Fig. 10, attributes most of the

aerosol there to the boundary layer. Relatively high

elevated-mode fractions indicate industrial pollution

transport from North America and East Asia in both

datasets; however, this indication is stronger in the

GCM output.

11. Conclusions

We introduced a new statistical model for variability

of atmospheric AOT. It is based on a representation of

AOT fields as realizations of a stochastic process that is

the exponent of an underlying Gaussian process with an

autocorrelation function of the form given in Eq. (16).

The AOT in this model has a lognormal PDF with the

mean t and the standard deviation s, while its structure

function has the analytical form defined by Eq. (12) with

two parameters: the characteristic length Le and the

scaling exponentH. The AOT fields obeying our model

formulation are similar to a fractional Brownian walk

with the Hurst exponent H at small scales (r � Le),

while they become stationary at large scales (r � Le).

This behavior is reflected in the shape of the SF: it has a

power-law form at small lags r, while approaching a

constant in the large-scale limit. This constant is equal to

double the AOT’s variance, indicating, as expected, that

AOT values from distant points are statistically in-

dependent. This asymptotic behavior of the SF gives our

model an advantage compared to the traditional fractal

(scale invariant) model, in which the structure function

has a power-law form at any scale, thus diverging in the

asymptotic regime. In the fractal framework, variability

FIG. 11. As in Fig. 10 (top), but for the fractions of the above-MBLAOT in the total AOT. Note that the color bars for (left) MODIS and

(right) GISS GCM are chosen differently to enhance comparison of geographical features.
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description for a realistic field often requires an artificial

split of the scale range into several parts equipped with

different fractal models and separated by scale breaks.

The simple analytical form of the SF in our model

facilitates its use for parameterization of AOT statistics

derived from remote sensing data. We gave examples of

such applications using the MODIS AOT product (over

ocean) at 10-km spatial resolution. We demonstrated

using the data from the 1208 3 708 area in the Pacific

Ocean that our statistical model adequately describes

AOT variability on a regional scale with SF saturation

occurring around 5000-km lag (Fig. 3, top left). We also

computed the means, standard deviations, and SFs of

the AOT field for seasonal global datasets consisting of

overlapping 108 3 108 sample cells, centers of which

form a grid with 58 spacing. Examples of SFs from a

variety of such samples are presented in Fig. 6. While

108 3 108 or higher grid resolution is necessary to cap-

ture geographical differences in the variability patterns

of AOT, this sample size appears to be too small for

saturation of the SF to be observed. This, together with

scaling of the AOT’s variance, prevents us from

performing a complete parameterization of these

structure functions over the whole available scale range.

However, some important information on AOT vari-

ability can still be obtained from these SFs based on

their behavior at scales below 400km, where they often

exhibit partial saturation. This feature is indicative of a

split in variability between nonstationary trends and

stationary components that we attribute to local pro-

cesses. The partial SF describing the stationary compo-

nent saturates at scales around 100 km, so it can be

extracted and parameterized according to our model.

The presence of a strong trend in the data (that may be

associated with long-range transport) can be detected

even qualitatively, simply by looking at the shape of the

SF. In such a case, the variance corresponding to the

partial saturation value of the SF is significantly smaller

than the total variance in the sample.

While, rigorously speaking, we only observe the split

in the total column AOT variability rather than that in

aerosol mass, we can formally associate the large- and

small-scale variability patterns with two aerosol modes

each having its own fraction of the total AOT. One of

these modes corresponds to locally produced aerosol

located within the marine boundary layer, while the

other represents nonlocal aerosol processes, such as

long-range transport above the MBL. Geographical

mapping of the results presented in Fig. 8 and Figs. 10

and 11 confirmed that areas where larger values of

characteristic lengths and higher fraction of elevated-

mode AOT are observed are also known to be affected

by long-range aerosol transport (desert dust, biomass

burning smoke, etc.). The advantage of ourmethod is in its

ability to detect transport of relatively thin aerosol plumes

that are not clearly identified in the total AOT datasets.

The set of variability parameters that can be derived

from satellite data in addition to the mean AOT has the

potential to enhance comparisons between remote

sensing datasets and climate models. High-spatial-

resolution models can now provide data for structure

function analysis. Even when a climate model does not

have spatial resolution sufficiently high for computation

of structure functions, it can still be used to calculate the

elevated-mode fraction in AOT, which is comparable to

that obtained from SF analysis of satellite data. Indeed,

the 3D AOT from a climate model can be divided using

the boundary layer height into the MBL and elevated

components. In this study, we presented a qualitative

example of such a comparison between AOT mode

separation results from MODIS SF analysis and from

the GISS GCM simulations. Despite some differences

described in section 10, both datasets showed many

similar aerosol transport patterns. Such comparisons are

very useful for further development and testing of the SF

technique and also for evaluating and improving the

models, especially in terms of their long-range transport

and aerosol lifetime.

We plan to continue such comparisons in the future,

also involving aerosol-height-resolved measurements,

such as those made by Cloud–Aerosol Lidar with Or-

thogonal Polarization (CALIOP) onboard the NASA

Cloud–Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) satellite (Winker et al. 2009,

2010), as well as high-resolution GCMs. For example,

our preliminary tests showed that the 1.1258 3 1.1258
resolution of the European Centre for Medium-Range

Weather Forecasts (ECMWF) model (Morcrette et al.

2009; Benedetti et al. 2009) or the Spectral Radiation-

Transport Model for Aerosol Species (SPRINTARS)

(Takemura et al. 2000, 2005; Geogdzhayev et al. 2014) is

sufficient for the computation of structure functions for

108 3 108 samples.
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APPENDIX A

Statistics of Modeled AOT Fields

Here, we derive the statistics of the exponential AOT

field

t5 eh , (A1)

based on a Gaussian process h having the mean m, var-

iance s2, and autocorrelation function w(r). The field

t has lognormal PDF with the mean

t5 em1s2/2 (A2)

and the variance

s2 5 (es
2

2 1)t2 5 (u2 1)t2 . (A3)

Here, we introduced the parameter

u5 es
2

5
s2 1 t2

t2
. (A4)

We start derivation of the structure function for t with

computation of the corresponding autocorrelation

function. The covariance between t1 5 t(t) and

t2 5 t(t1 r) has the form

Cov(t
1
, t

2
)5 (t

1
2 t)(t

2
2 t)5 t

1
t
2
2 t2 . (A5)

To compute it, we need to know the mean of

t1t2 5 exp(h1 1h2). The random variable h1 1h2

being a sum of normally distributed variables is nor-

mally distributed itself. It has the mean 2m and the

variance

Var(h
1
1h

2
)5 2Var(h)1 2Cov(h

1
1h

2
)

5 2s2[11w(r)] . (A6)

Thus, the exponent of this variable is distributed log-

normally with the mean

t
2
t
1
5 e2m1s2(11w) 5 t2uw , (A7)

and the autocorrelation function for t has the form

W(r)5
t2[uw(r) 2 1]

s2
5

uw(r) 2 1

u2 1
. (A8)

Note that, as w(0)5 1 and w(r/‘)5 0, W(r) has the

same properties. The structure function can be com-

puted according to Eq. (11):

S
2
(r)5 2s2

u2 uw(r)

u2 1
5 2s2

u

u2 1
[12u2z(r)] , (A9)

where z(r)5 12w(r). It is easy to see that S(0)5 0 and

S2(r/‘)5 2s2. In the small-scale limit, if we assume

z(r)} r2H , the structure function has the same power-

law behavior:

S
2
(r/ 0)} r2H , (A10)

indicating that AOT behaves as fractional Brownian

motion with the Hurst exponent H.

APPENDIX B

Fitting Structure Functions with Partial Saturation

The real satellite data examples presented in Fig. 6

indicate that, in many cases, the structure function

shapes deviate from the form described by Eqs. (12) and

(16) and Fig. 1. The characteristic concave feature in the

100–500-km-scale range (partial saturation) suggests

that these SFs are superpositions of two components

corresponding to a trend(s) and a relatively stationary

AOT field. While the trend component’s SF is expected

to be simply quadratic in scale, it appears that we can

successfully fit themeasured structure function using the

same model for both components. This means that we

formally assume that aerosol consists of two indepen-

dent modes or layers. We need to keep in mind, how-

ever, that while the MBL SF has physical meaning, the

representation of the trend contribution as a formal SF is

an abstraction used only for fitting. Since parameters of

the trend SF have no real meaning, we relax the re-

quirement of H , 1 for it to improve fitting flexibility.

We assume that the stationary and the trend compo-

nents are statistically independent, as if they indeed

correspond to two layers separated by height. Then the

statistics of these components satisfy the system of

equations following Eqs. (5)–(7):

S
2
(r)5 S

(1)
2 (r)1 S

(2)
2 (r) , (B1)

t5 t
1
1 t

2
, (B2)

s2 5 s21 1 s22 , (B3)

where t, s, and S2(r) are known, while t1, t2, s1, s2, and

the parameters of the two SF components are to be

determined. Here and below, index 1 corresponds to the

trend component, while index 2 corresponds to theMBL

component. The retrieval algorithm is essentially a

curve fitting of the measured S2(r) by the family of

component SFs with parameters satisfying the condi-

tions Eqs. (B2) and (B3). To make this fitting more

robust and to reduce the number of retrieved param-

eters (which may have trade-offs between them), we
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complement the latter two equations with another

condition:

s
1

t
1

5
s
2

t
2

(B4)

(which is equivalent to u1 5u2). We see in real satellite

data shown in Fig. 7 that the ratio s/t indeed is not very

variable, so the assumption of Eq. (B4) is quite natural.

In our approach, first the single-mode retrieval is per-

formed to get an estimate Le of the variability scale.

Then the fitting is performed over a single free param-

eter a that is the fraction of the trend component in the

total variance. In this notation,

s
1
5 s

ffiffiffi
a

p
and s

2
5 s

ffiffiffiffiffiffiffiffiffiffiffi
12a

p
, (B5)

and the retrieval method utilizes the assumption that the

MBL component’s structure function S(2)(r) quickly

saturates and is close to the constant 2s22 in the scale

range betweenLe/2 andLe. Thus, for each value of a the

trend SF in this range can be computed as

S
(1)
2 (r)5 S

2
(r)2 2s22 5 S

2
(r)2 2s2(12a) . (B6)

This SF is then fitted in the range [Le/2, Le] according to

the method described in section 4, given

u
1
5

s21
t21

1 15
(s

1
1 s

2
)2

t2
1 15 (

ffiffiffi
a

p
1

ffiffiffiffiffiffiffiffiffiffiffi
12a

p
)2
s2

t2
1 1.

(B7)

Here, we used that according to Eq. (B4)

t
1
5

s
1

s
1
1 s

2

t . (B8)

After the parameters of S(1)(r) are determined, its ana-

lytical form is derived from Eqs. (12) and (16) and

subtracted from S2(r) to obtain S
(2)
2 (r), which is also

parameterized using the single-mode method. For each

value of the parameter a the tightness of the fit in the lag

range [0, Le] of the measured structure function S2(r) by

the corresponding analytical form S
(1)
2 (r)1 S

(2)
2 (r) is

evaluated, and the value of a is determined by the best fit.

Figure B1 illustrates the above fitting method on the

example of the data from the IndianOcean, which is also

presented in Fig. 6e. The red curve corresponds to the

SF derived from the data. The partial saturation is

clearly seen at the scales below 400km. The initial

single-mode fit based on the variance observed in the

sample is shown by the dashed blue curve. The dis-

crepancy between the measured SF and the fit are evi-

dent, since the SF exhibits large-scale behavior

inconsistent with the local variance s2 (the asymptote 2s2

of the fitting curve is shown by the horizontal dashed

line). The two-mode fit assuming the same variance s2 is

depicted by solid blue curve, while its trend and MBL

components are represented in orange and green, re-

spectively. This fit also significantly deviates from the

measured SF at scales larger than 400 km; however, it

closely captures the SF’s shape at smaller scales, allow-

ing us to single out theMBL component’s SF and to split

the total AOT into within- and above-MBL parts.
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