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[1] A global database of approximately 1.7 million observations of the partial pressure of
carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used
to estimate its spatial autocorrelation structure. The patterns of the lag distance where
the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first
baroclinic Rossby radius of deformation indicating that ocean circulation processes play a
significant role in determining the spatial variability of pCO2. Separate calculations for
times when the Sun is north and south of the equator revealed no obvious seasonal
dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean
Weather Station (OWS) ‘‘P’’ in the eastern subarctic Pacific (50�N, 145�W) is the only
fixed location where an uninterrupted time series of sufficient length exists to calculate a
meaningful temporal autocorrelation function for lags greater than a few days. The
estimated temporal autocorrelation function at OWS ‘‘P’’ is highly variable. A spectral
analysis of the longest four pCO2 time series indicates a high level of variability occurring
over periods from the atmospheric synoptic to the maximum length of the time series,
in this case 42 days. It is likely that a relative peak in variability with a period of 3–6 days
is related to atmospheric synoptic period variability and ocean mixing events due to wind
stirring. However, the short length of available time series makes identifying temporal
relationships between pCO2 and atmospheric or ocean processes problematic.
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oceanic CO2, J. Geophys. Res., 110, C08002, doi:10.1029/2004JC002723.

1. Introduction

[2] The partial pressure of CO2 (pCO2) in seawater is a
vapor pressure of CO2, and hence governs the magnitude of
the CO2 transfer flux across the sea-air interface when
multiplied with sea-air gas transfer coefficient. It is a
sensitive function of temperature doubling with every
16�C [Takahashi et al., 1993]. It is also a sensitive function
of the total concentration of CO2 (TCO2) species dissolved
in seawater,

TCO2 ¼ CO2½ �aqueous þ HCO�
3 þ CO��

3 ;

that depends on the net biological community production,
the rate of upwelling of subsurface waters rich in CO2, and
the air-sea CO2 flux. The local sensitivity may be expressed

in terms of the Revelle factor,
@lnpCO2

@lnTCO2

, which varies from

8 with lower TCO2 concentrations in tropical waters to 15

with higher concentrations in polar waters. In the surface
mixed layer, the effect of warming on pCO2 is counteracted
by lower TCO2 caused by photosynthetic fixation of CO2,
as often seen during spring bloom periods, and the effect of
cooling is counteracted by increasing TCO2 usually caused
by upwelling of subsurface waters rich in respired CO2.
Consider the following example. A parcel of polar ocean
water at �1.9�C warmed to an equatorial temperature of
30�C without changes in TCO2 and other chemicals,
increases its pCO2 by a factor of 4. If the typical nitrate
in this water (�35 mmol/kg) is completely utilized by
biological growth with the Redfield N/C ratio of 16/106,
then the TCO2 in the same water would decrease from
2150 mmol/kg to 1920 mmol/kg. Thus there is a decrease in
pCO2 by a factor of (1920/2150)10 � 33% (using a Revelle
factor of 10). This example illustrates that over the global
oceans, the effect of change in temperature is roughly
compensated by changes in TCO2, and that the time-space
variation in surface seawater pCO2 is dictated primarily by
interactions between the effects of temperature, net
biological production, and the deep water upwelling rate.
Using climatological mean data, Takahashi et al. [2002]
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have observed that in subtropical gyres, seasonal changes in
pCO2 are due primarily to temperature changes, whereas
those in subpolar and polar waters are due primarily to
TCO2 changes caused by winter upwelling of subsurface
waters and spring plankton blooms in spring. However,
finer scale time-space variability of surface water pCO2 has
not been investigated using semi-continuous underway
surface water pCO2 measurements which have been made
in increasing numbers during recent years.
[3] In this study, the global distribution of the isotropic

spatial autocorrelation structure of available pCO2 under-
way measurements is calculated. The approach taken is
similar to that of Murphy et al. [2001], who investigated
pCO2 autocorrelation structure in the Bering Sea. The
motivation is to identify the scales of variability that are
resolved in the pCO2 data, and attempt to relate some of that
variability to known physical processes. In addition, time
series data available from OWS ‘‘P’’ is similarly analyzed to
provide an example of temporal autocorrelation structure
and variability. It is hoped that a quantified estimate of
autocorrelation scales will be useful to investigators, par-
ticularly future data assimilation efforts, for decisions on
how best to use the 1.7 million measurements in choosing
averaging and subsampling schemes for their work.

2. Data

[4] For the global studies, most of the pCO2 measure-
ments in surface mixed layer waters (hereinafter referred to
simply as pCO2) are mostly composed of underway ship-
board measurements and a much smaller number of
measurements for discrete water samples collected at
hydrographic stations. The underway data used for both
Takahashi et al. [1997, 2002] studies was temporally
averaged to 12-hourly intervals, the averaging reducing
the number of total observations as underway measure-
ments in the complete data set are sometimes taken as
frequently as every 2 min, but usually several times per
hour. The 12-hourly (approximately 100 km) averaging
period was chosen ostensibly to maintain the larger scale
gradient structure of pCO2 in the total data set.
[5] While the raw number of pCO2 measurements (cur-

rently approaching 1.7 million in some data sets) may seem
adequate, or perhaps even large, for global studies, the
number of actual data values used in past studies is much
lower because of the averaging of the underway data as
noted above. Even the choice of averaging period/distance
is, in some ways, an ad hoc choice depending on the scales
of interest and the accuracy of underway data versus station
point data. Indeed, the relative paucity of accurate pCO2

measurements has led some investigators to try to infer
pCO2 values from other properties of the seawater, such as
temperature. For example, Boutin et al. [1999], Cosca et al.
[2003], and Feely et al. [2004] found strong covariability
between pCO2 and sea surface temperature in the equatorial
Pacific, and Loukos et al. [2000] were able to show a useful
predictive skill of temperature and salinity for TCO2 in the
equatorial Pacific.
[6] The pCO2 data used here is an expanded version of

the data used by Takahashi et al. [2002], including about
760,000 new observations bringing the total to approxi-
mately 1.7 million. The data was collected between 1970

and 2003, and its geographic and rough temporal distribu-
tions are shown in Figure 1. Note that, for the most part, the
entire Indian and South Pacific Oceans are only sparsely
sampled prior to 1990. Much of the sampling in the South
Atlantic occurred between 1985 and 1989. Prior to 1985,
the only sub-basin that is sampled more densely is the North
Atlantic. A caution on the results presented here is that the
results apply to sampling that primarily took place post
1984.
[7] All autocorrelation calculations are performed on data

interpolated to regularly spaced segments with a distance of
2 km between successive data points. Interpolating pCO2

data across gaps larger than 20 km is not done. For gaps
larger than 20 km, a new segment is defined. Also,
interpolation across a gap in time of longer than 10 days
is not allowed, and a new segment would be defined. This
latter condition was very rarely met. Average autocorrela-
tion functions are calculated globally on a 10� � 10� grid.
The location of the segment is taken to be the average
latitude and longitude of the measurement locations.
Segments shorter than 60 km were not included in the
calculations, and no single segment was allowed to exceed
1000 km, approximately the length of the grid box. For
segments longer than 1000 km, a group of subsegments,
broken every 1000 km, was used for the calculations. Thus
the autocorrelations describe variability on approximate
spatial scales less than the grid box resolution.
[8] The global distribution of segments is not homoge-

neous, and the number of segments in each grid box is
presented in Figure 2. Areas of densest coverage include the
tropical Pacific, the North Pacific near the coast of Japan
and north of 45�N, the northwest Indian Ocean, the Carib-
bean, and specific locales in the Southern Ocean. In many
places, the correlations presented are the result from only
one or two segments, such as is the case for much of the
South Atlantic and Pacific Oceans. In those areas, little
confidence can be placed in the autocorrelation structure,
but they are nevertheless presented for completeness.
[9] In addition to the global 10� grid, seven ocean-

relevant areal averages of autocorrelation functions are
presented. Those areas include: the Kuroshio subtropical
gyre, 135�E–180�E, 25�N–40�N; eastern equatorial
Pacific, 180�E–80�W, 10�S–10�N; northeast Pacific,
150�W–120�W, 30�N– 50�N; East Australia gyre,
150�E–180�E, 40�S–10�S; Gulf Stream subtropical
gyre, 80�W–50�W, 25�N–40�N; North Atlantic subpolar
gyre, 60�W–10�W, 40�N–60�N; and the tropical Indian,
30�E–100�E, 20�S–10�N.

3. Spatial Autocorrelation Structure

[10] The lag autocorrelation function, AC(lag), is calcu-
lated as follows:

AC lagð Þ ¼

XN�lag

i¼0
xi � �xð Þ xiþlag � �x

� �
XN�lag

i¼0
xi � �xð Þ2

;

where x is the measurement value and an overbar
represents the average value. The spatial distance of the
lag is simply the product of the index lag times the grid
resolution between consecutive data points, in this case,
2 km. For this study, we present results for an isotropic
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autocorrelation only, understanding that there are locations
where the autocorrelation function is almost certainly not
isotropic, near 40�N–45�N in the North Pacific, for
example. Murphy et al. [2001] performed identical
calculations for 24 basin long repeat tracks of pCO2

measurements made over a 48-month period along nearly
great circle routes in the North Pacific. That study
concentrated on the large-scale spatial decorrelation
estimates, and found that pCO2 data became completely
decorrelated (AC = 0) at about 1.5� longitude (105 km
along the east-west direction) in the Bering Sea and 3.5�
longitude (250 km along the NW-SE direction) in the Gulf
of Alaska. In this study, it is the smaller scale variability
that is of interest, and many data segments are not of
sufficient length to allow AC to approach 0.

[11] The significance of the calculated spatial AC is
naturally dependent on the number of input data points to
the AC calculation. A typical segment in this study consists
of about 400 data points. Using a Student-T test criterion,
only AC exceeding 0.1 is significant at the 95% confidence
limit. For the worst case scenario of 30 data points, any AC
exceeding 0.51 is significant at the 95% confidence limit.
[12] Rather than presenting an estimate of the spatial

autocorrelation function for each grid box, the global
structure is presented as the lag distance at which the
autocorrelation estimate drops below a specific value. The
first map (Figure 3a) indicates the distance over which
the autocorrelation is termed high, here, greater or equal
to 0.8. The second map is the distance over which the
autocorrelation is termed elevated, 0.6. Both the 0.8 and 0.6

Figure 1. Spatial and temporal distributions of ocean surface pCO2 measurements taken between 1970
and 2003. The location is marked on the map by a colored marker. The color of the marker indicates the
pentad during which the observation was taken.
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values of AC are always significant at the 95% confidence
limit. These definitions of high and elevated are arbitrary
but nevertheless convenient for discussion purposes. The
statistical significance of each autocorrelation is a function
proportional to the number of data points that enter into the
calculation of AC and varies geographically in this study
(see Figure 2). The globally recognizable feature is that the

lag distance is shorter in high-latitude areas and increases
toward the equator, consistent with the dependence of the
Rossby radius of deformation on the inverse of the local
Coriolis acceleration.
[13] The largest area where high autocorrelations extend

to the greatest distance is in the immediate vicinity of the
equatorial Pacific where that distance is routinely greater

Figure 3. (a) Global distribution of lag distance where the spatial autocorrelation exceeds 0.8, and
(b) the lag distance where the spatial autocorrelation exceeds 0.6.
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than 80 km, ranging from 100 km to 250 km. There is some
indication this ‘‘high correlation distance’’ is greater north
of the equator than it is to the south in the Pacific Ocean. In
the Atlantic, the high correlation distance is greater north of
the equator than it is directly on the equator. In the Indian
Ocean, the high correlation distance is greater south of the
equator than it is to the north of the equator. The asymmetry
in the Indian Ocean may be due to the long annual Rossby
waves that dominate much of the variability in the southern
Indian Ocean but does not in the north.
[14] In the Northern Hemisphere subtropical gyres, the

distance is greater (about 50 km) in the Atlantic compared
to the Pacific where the distance is below 30 km. This
distribution would be consistent with the eddy transfer
scales in these gyres as the internal deformation radius
of the subtropical gyre in the Atlantic is about 45 km, and
the deformation radius is about 25 km in the Pacific (see
Emery et al. [1984] for estimates of deformation radii
based on local vertical Brunt-Väissälä profiles). At high
latitudes, the high correlation distance is 20 km and
shorter, consistent again with the smaller deformation
radii at these latitudes. Thus, in general, the distance for
autocorrelations greater than 0.8 is consistent with scales
set by the physical properties of the ocean flow in many
areas.
[15] Not surprisingly, there are aspects of the elevated

autocorrelation distance (Figure 3b) that are similar to the
patterns of high correlation distance. For example,
the longest distance for elevated autocorrelations is in the
equatorial Pacific. Also, there are longer distances for
elevated autocorrelation in the Gulf Stream gyre compared
to the Kuroshio subtropical gyre as in the high correlation
distance pattern. However, there are areas in the high
latitudes that have elevated autocorrelation distance that
are comparable to the distances in the subtropics. This is
somewhat evident in both the North Atlantic and North
Pacific, indicating the autocorrelation function does not
have a steep drop between 0.8 and 0.6 in those areas. Also
note that the distances with elevated correlation are longer
in the Gulf of Alaska compared to those east of the dateline
at the same latitude consistent with the calculations of
Murphy et al. [2001].
[16] It is worth noting that even though the Murphy et al.

[2001] study and this study used differing resolutions for the
input data (10 km versus 2 km for the present study), both
studies seemingly arrive at the same lag distance over which
the autocorrelation drops below 0.8 in the northern North
Pacific, about 20–40 km. However, the same zonal asym-
metry appearing in both studies is a little surprising. The
data used by Murphy et al. [2001] for the northernmost
tracks between 170�E and 165�W were restricted within the
Bering Sea, and the pCO2 variability may likely reflect local
turbulence generated by the Aleutian Island chain. In
contrast, the variability of the northern North Pacific in
our study is represented mainly by data south of the island
chain in the open North Pacific. Here the shortened auto-
correlation scales seem more likely tied to the variability of
the Kuroshio Extension and Oyashio as opposed to local
island effects that may have been important in the analysis
of Murphy et al. [2001].
[17] Around the Antarctic Circumpolar Current, the situ-

ation is more complex, and changes in the elevated auto-

correlation distance often vary greatly in adjacent grid
boxes. The variability in this region is controlled by a
strongly meandering zonal flow. The spatial scale of the
local variability is much smaller than the 10� � 10� box
used in this study. Thus the Antarctic Circumpolar Current
and its variability are very much undersampled, and this
may explain the strong box-to-box variability in the auto-
correlation calculations presented here.
[18] The same calculations were repeated, except that

average autocorrelation structures were calculated for two
seasons, March–August and September–February, when
the Sun is at maximum zenith in the Northern and Southern
Hemisphere, respectively. Except for a slight tendency for
there to be longer autocorrelation distances in the subtropical
gyres when the Sun is at zenith in the local hemisphere, there
is very little seasonal change with the calculated autocorre-
lation structure. The change in the subtropical gyres was not
significant enough to warrant showing the figures for the
seasonal changes. The rapid change in autocorrelation struc-
ture over relatively short distances near the Antarctic Cir-
cumpolar Current did not change with season. Thus biology
seems an unlikely candidate for a single controlling factor of
this spatial behavior. This is consistent with the small
seasonal amplitudes of pCO2 observed in the 40�S–60�S
zone suggesting that pCO2 changes due to SST are largely
compensated by changes in TCO2 due to the biological
utilization and upwelling [Takahashi et al., 2002]. The
highly variable current and wind forcing make it difficult
to assign any one reason for such variability in this area of
strong horizontal and vertical mixing.
[19] Figure 4 is the estimated autocorrelation structure for

seven specific geographic areas defined in the DATA
section of this manuscript. Along with the estimated struc-
ture, a least squares best fit exponential curve to the average
autocorrelation function is given to provide an estimate of
an exponential decay scale of this structure. As indicated by
the 10� � 10� estimates, the equatorial Pacific has the
longest exponential decay scale of about 139 km. Also, the
Gulf Stream decorrelation scale is nearly double that which
occurs near the Kuroshio. An unexpected result is the
relatively long 92 km e-folding scale in the North Atlantic
subpolar gyre. Note, however, that the drop-off for the
highest correlation scales is not represented well by the
best fit line in this area and a simple exponential decay
would be an obviously poor choice for a functional repre-
sentation of the autocorrelation function. This is also the
case in the East Australia current region. Note that there is
no reason to expect that the AC function should be well
represented by a simple exponential decay. Indeed, many
physical variables are not well represented by such a
function [e.g., Rienecker et al., 1987]. The reason for
providing an exponential estimate is for a globally consis-
tent basis for comparison. Caution is advised for detailed
comparisons where the AC does not seem to follow a
simple exponential decay.

4. Temporal Autocorrelation Structure

[20] Within this pCO2 database, there are but a few time
series of sufficient length to conduct meaningful temporal
autocorrelation analysis. The pCO2 time series at Hydro-
station ‘‘S’’ (32�100N, 64�300W) and Bermuda Atlantic
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Time Series Study (BATS) site (31�500N, 64�100W) [Bates
et al., 1998] in the Sargasso Sea, did not contain an
uninterrupted time series longer than a few days. Much of
the temporal analysis previously done for OWS ‘‘P’’ used,
at best, weekly averaged data. For example,Wong and Chan
[1991] analyzed the seasonal variation of pCO2 at OWS

‘‘P’’ using monthly and weekly averaged values of pCO2

and reported slightly higher values of pCO2 during summer
compared to winter. Here the emphasis is on detailed
temporal autocorrelation structure.
[21] The temporal autocorrelation structure for the

11 longest uninterrupted time series from OWS ‘‘P’’ are

Figure 4. Estimated average spatial autocorrelation functions for seven specific geographic locations
(solid lines with circles) and their best fits (dashed lines) assuming an exponential decay scale.
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shown in Figure 5. The 6-hourly reported data have been
averaged to daily values to remove diurnal effects. All these
time series are from the 1970s with the longest segment
being 42 days during 1978. Others are as short as 10 days.
The shorter segments obviously have less confidence asso-
ciated with the estimated structure. For the shorter segments,
only AC exceeding 0.6 are significant at the 95% level. For
the longer temporal segment, AC exceeding 0.38 are sig-
nificant. Whereas there are instances where the autocorre-
lation coefficient remains relatively high after a 5-day lag,
the longer decorrelation scales can really not be associated
with any particular time of year. The last two structures for

the summer of 1978 illustrate this point. Whereas for Julian
days 171–200 during 1978 the autocorrelation coefficient at
5-day lag is about 0.6, immediately following for Julian
days 202–212, the coefficient is near 0 between 2 and 3 day
lags. From the data available, it is difficult to assign a
general structure to the temporal autocorrelation structure of
daily pCO2, even for a particular season. It is possible that
longer period averaging, say weekly or monthly, might
produce more consistent autocorrelation structure; however,
the available data cannot support those calculations.
[22] Because uninterrupted time series of oceanic pCO2

are scarce, an attempt is made to use other variables as a

Figure 6. Four longest time series of daily averaged pCO2 from Ocean Weather Station (OWS) ‘‘P’’ in
the eastern subarctic Pacific (50�N, 145�W). These pCO2 series are chosen for display because the length
of each time series is at least 30 days. The year of observation is shown above each plot, and the Julian
Day is marked on the abscissa.

Figure 5. Estimates of the temporal autocorrelation structure for the 11 longest uninterrupted time series from Ocean
Weather Station (OWS) ‘‘P’’ in the eastern subarctic Pacific (50�N, 145�W). The year of observation is shown above each
plot, and the Julian Day of the beginning and end of each series is labeled within the plot.
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proxy to estimate the pCO2 correlation structure, specifi-
cally temperature because of the great sensitivity of pCO2 to
temperature. Boutin et al. [1999] and Cosca et al. [2003]
found that some of the pCO2 variability in the eastern
equatorial Pacific could be explained by the variability in
temperature. Here the four time series with pCO2 data
for at least 30 uninterrupted days is used to investigate the
co-variability of pCO2 with temperature and salinity. The
four pCO2 time series are shown in Figure 6. As in the work
of Wong and Chan [1991], most of the values of pCO2 are
between 290 and 340 matm. The exception occurred during
the summer of 1976 when a likely mixing event dropped
surface pCO2 values to near 250 matm. The temperature and
salinity data for this period show no unusual behavior. Since
no nutrient concentration data are available for this period,
the low pCO2 values cannot be attributed unequivocally to
biological utilization of CO2.

[23] Rather than presenting a simple correlation, we
choose to present the coherence spectra between the
temperature and pCO2 data. The data are detrended by
removing a linear best fit line, likely removing most of any
local seasonal signal. The estimate of coherence between
variables is identical to unity except when smoothing is
applied to the estimates of the Fourier transforms and the
auto and cross spectra. For this analysis, a simple Hanning
smoother, where a spectral component is replaced with a
weighted (1-2-1) average of its surrounding components, is
applied twice. The coherence spectra for the four time
periods between temperature and pCO2 are shown in
Figure 7. The value of coherence being 1 at either side
of the frequency extremes is owing to no smoothing of the
spectra at end points. For the limited number of input data
and Fourier smoothing applied, only coherences above
0.67 are significant at the 95% confidence limit.

Figure 7. Coherence spectra between temperature and pCO2 for the four time periods shown in
Figure 6. The coherence was estimated using a Hanning (1-2-1) filter on both the Fourier transforms and
the auto- and cross-spectral estimates. The associated 95% significance level (dashed lines) on coherence
squared is 0.67.
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[24] The jaggedness in each of the coherence spectra is
obvious. Whereas the 1976 and 1977 periods might indicate
greater coherence at lower frequencies, the 1978 sequences
do not. Except for the 1977 series, there is a local peak at
0.2 cycles per day that might indicate that pCO2 variability
is related to mixing forced by atmospheric synoptic vari-
ability. However, it is difficult to say that a clear picture of
covariability between pCO2 and temperature on any partic-
ular timescale. Although not presented, the results are no
more clear for pCO2 and salinity covariability than they are
for pCO2 and temperature covariability at OWS ‘‘P.’’
[25] The seasonal variability of pCO2 observed in the

OWS ‘‘P’’ area is generally less than 30 matm (with an
exception of one event in the summer of 1976) as shown in
Figure 6. This is about 20% of 140 matm that is expected
from the 9�C seasonal SST changes if no change in TCO2

occurred (@ ln pCO2/@T = 0.0423�C�1). Takahashi et al.
[2002] have shown that the temperature effect was largely
cancelled by the biological drawdown of TCO2 during
spring through summer and by the upwelling of CO2-rich
deep waters during fall through winter. Hence the CO2

system in this area depends only weakly on the seawater
temperature. This accounts for the highly variable coher-
ence between pCO2 and SST, and the 0.2 cpd peak which
may represents the effects of wind-induced deep mixing
events.

5. Summary and Conclusions

[26] A global database containing mainly underway
measurements of surface water pCO2 is used to estimate
the spatial autocorrelation structure on a 10� latitude-longi-
tude grid. Since the pCO2 is a sensitive function of
temperature and the total CO2 concentration in seawater,
which depends on biological utilization and upwelling of
CO2-rich subsurface waters, its variability reflects both
physical as well as biological processes. The pCO2 is more
densely sampled in space and time in the Northern Hemi-
sphere than the Southern Hemisphere. The longest spatial
correlations occur in the equatorial Pacific where the
autocorrelations are above 0.8 out to distances between
80–100 km. The other equatorial areas also have relatively
long correlation scales compared to other areas of the globe.
The North Atlantic subtropical gyre has spatial correlation
scales that tend to be about double the correlation scales in
the subtropical gyre associated with the Kuroshio. This
geographic distribution is similar to the distribution of the
values of the first baroclinic Rossby radii of deformation as
calculated by Emery et al. [1984], indicating that the
physical properties of the flow field are a likely contributor
to factors controlling the correlation scales. In the Indian
Ocean, the correlation scales in the Southern Hemisphere
tend to be longer than those in the Northern Hemisphere. A
possible explanation for this variability can again be related
to the controlling mechanisms of the flow field. An impor-
tant mode for the southern Indian Ocean variability stems
from long annual Rossby waves that are generated on the
eastern side of the basin and propagate westward.
The northern half of the basin is much more reactive to
the strong forcing of the monsoonal flows. The correlation
scales tend to be shortest at higher latitudes, again consistent
with the scales of the deformation radius, but there is an

indication that after an initial steep drop off of the autocor-
relation, there is a slowing of the drop off between 0.8 and
0.6 in the northern Atlantic.
[27] An attempt to estimate the temporal correlation

structure is made at the only geographic location with
relatively long (longer than about 10 days) uninterrupted
time series of pCO2 data at OWS ‘‘P’’ in the eastern North
Pacific. Eleven time series were used to calculate the
correlation structure with highly variable results. Most of
these time series indicated a significant drop in autocorre-
lation (0.5 and lower) after 1–2 days. Three of the time
series contained a more gentle drop off in the temporal
correlation, but after 5 days, the correlation was only about
0.5. There was no obvious seasonal dependence in the
temporal autocorrelation structure. Indeed, two of the time
series that were separated by a single day during the
summer of 1978 produced a drastically different autocorre-
lation structure from each other.
[28] The coherence of the geographic distribution of the

spatial autocorrelation structures with physical properties of
the flow, such as the internal Rossby radius of deformation,
is encouraging. As assimilation models are contemplated for
pCO2, it is necessary to have confidence in an error
covariance model for the data being ingested. An autocor-
relation function provides a good start, and the fact that
some of the global variability can be related to other
physical variables gives some hope that any analysis prod-
uct will be of more use than the ingested data alone.
However, the inability to estimate a temporal autocorrela-
tion structure is troubling. Even at OWS ‘‘P’’ where time
series data exist, a stable estimate of that correlation
structure proved difficult. Long uninterrupted time series
measurements at fixed locations, such as those being con-
ducted near the Pacific equator and elsewhere using moored
buoy pCO2 systems by the NOAA group, will help to
improve our understanding of temporal variability scale.
The estimates of the spatial correlation structure ignored any
time change along a particular track, yet those correlations
remained high over long distances, which also means over a
time period of more than a couple days. Although modeling
studies may be useful as a first guess for estimating pCO2

correlation structure, confident estimates will require more
and targeted measurements over the entire globe.
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