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ABSTRACT

Total predictability within a chaotic system like the earth’s climate cannot increase over time. However, it

can be transferred between subsystems. Predictability of air temperature and precipitation in numerical

model forecasts over North America rebounds during late spring to summer because of information stored in

the land surface. Specifically, soil moisture anomalies can persist over several months, but this memory cannot

affect the atmosphere during early spring because of a lack of coupling between land and atmosphere.

Coupling becomes established in late spring, enabling the effects of soil moisture anomalies to increase at-

mospheric predictability in 2-month forecasts begun as early as 1 May. This predictability is maintained

through summer and then drops as coupling fades again in fall. This finding suggests summer forecasts of

rainfall and air temperature over parts of North America could be significantly improved with soil moisture

observations during spring.

1. Introduction

The atmosphere is a chaotic system where non-

linearities and instabilities cause small uncertainties

in the initial state to grow exponentially in time. This

error growth and the nature of the current observ-

ing system limit useful deterministic weather predic-

tions to roughly 2 weeks (Shukla 1981; Simmons and

Hollingsworth 2002). Any useful atmospheric predict-

ability beyond 2 weeks must arise from interactions with

the more slowly varying parts of the climate system, such

as the ocean, land, sea ice, or snow cover, or from pre-

dictable external forcing. On seasonal time scales, at-

mospheric variability due to external radiative forcing

is believed to be negligible, whereas variability due to

interactions with the ocean and land is well established

(Shukla and Kinter 2006).

According to information theory, the total pre-

dictability of any stochastic (Markov) system decays

monotonically with time (Cover and Thomas 1991).

Thus, the predictability of the entire climate system

decreases with the length of forecast. However, this

theorem pertains to the system as a whole, not to indi-

vidual components. Can the predictability within one

component of the earth’s climate system, such as the

atmosphere or ocean, increase with forecast lead time?

Such behavior is sometimes called ‘‘return of skill’’ or

‘‘rebound in predictability’’ (Anderson and Van den Dool

1994; Alexander et al. 1999; Wajsowicz 2007).

Previous studies of weather predictions have identified

individual forecasts in which prediction skill increases

with lead time, but these appear to be statistically in-

significant random variations, in the sense that they oc-

cur as often as expected compared to chance (Anderson

and Van den Dool 1994; Kleeman 2007). Technically, any

variable with an oscillatory autocorrelation function

could be said to exhibit rebound in predictability, because

the square of the autocorrelation periodically increases

and most predictability measures are monotonically
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related to the square of the autocorrelation function

(DelSole and Tippett 2007). Such oscillatory autocorre-

lation functions are known to occur in the tropical Pacific

Ocean and have been explained as coupled atmosphere–

ocean interactions associated with the El Niño–Southern

Oscillation phenomenon (Philander 1990). Similar fea-

tures have been found in the tropical Indian Ocean

(Alexander et al. 1999). The ‘‘reemergence mechanism’’

explains rebounds in the North Pacific Ocean at a

12-month lead, arising after winter temperature anoma-

lies in the deep-ocean mixed layer become separated from

the surface because of stratification and resurface when

the mixed layer deepens the following fall (Alexander

et al. 1999). In this paper, we present evidence of a previ-

ously unidentified mechanism for rebound in predict-

ability and show that this mechanism can play a significant

role in atmospheric predictability.

2. The GLACE-2 forecast experiments and
measures of potential predictability

The data used for this analysis come from the second

phase of the Global Land–Atmosphere Coupling Ex-

periment (GLACE-2), an internationally coordinated

numerical modeling study in which ensembles of sub-

seasonal forecasts are produced with a variety of state-

of-the-art long-range forecasting systems (Koster et al.

2010, 2011). Each participating model produced two

parallel sets of 2-month retrospective 10-member en-

semble forecasts, with each forecast driven for a given

start date by the same set of persisted sea surface tem-

perature (SST) anomalies and starting with the same set

of 10 slightly different atmospheric initial conditions

(typically generated by perturbing the atmosphere). The

key difference between the two forecast ensembles is

that one set, denoted LA/O, is initialized with exactly

the same ‘‘realistic’’ (observationally based) land sur-

face conditions, whereas the other set, A/O, is initialized

with ‘‘randomized’’ land surface conditions. For the latter

set, the initial land state for each ensemble member is

drawn from a probability density function appropriate for

the forecast start date considered. Because the same at-

mospheric initial conditions and sea surface temperatures

are used in the two sets of experiments, the comparison of

predictability metrics between LA/O and A/O isolates

the impact of land surface initialization on atmospheric

predictability. Both sets of GLACE-2 experiments con-

sist of 100 independent 2-month retrospective ensemble

forecasts, one for each of 10 start dates (1 April, 15 April,

. . . , 15 August) in each year spanning 1986–95. Fore-

casted precipitation, near-surface air temperature, soil

moisture, and evaporation were averaged over four

consecutive 15-day intervals for analysis.

A variable is defined to be unpredictable if its distri-

bution given antecedent conditions is identical to the

distribution regardless of antecedent conditions (Lorenz

1973). The former and latter distributions are called the

forecast and climatological distributions, respectively. A

necessary condition for predictability is for the forecast

and climatological distributions to differ. A sufficient

condition for distributions to differ is for the mean of

one distribution to differ from the mean of another

distribution. Thus, a test for predictability can be framed

as a test of equality of means, for which the standard

procedure is analysis of variance (ANOVA).

To quantify predictability, we note that the clima-

tological variance can be partitioned into two parts:

the variance of ensemble means and the variance

about the ensemble mean. This partitioning can be ex-

pressed as

VT 5 VS 1 VN , (1)
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1
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Here, y
en

denotes the forecast corresponding to an-

tecedent condition n and the ensemble member e

for that condition and y
dd

5 1/NE�N
n51�

E
e51yen and

y
dn 51/E�E

e51yen. Here, VT ,VS, and VN are called the

total, signal, and noise variances, respectively. If the

variable is unpredictable, the forecast means do not vary

with antecedent conditions and hence have zero vari-

ance, implying V
S

’ 0. Moreover, (1) implies that the

maximum of V
S

is V
T

. These considerations suggest that

a natural measure of predictability is the signal-to-total

ratio,

STR 5
VS

VT

. (5)

The STR is a measure of predictability in the sense

that values near zero (one) indicate little or no (nearly

maximum) predictability. Specifically, testing the sig-

nificance of equality of means in ANOVA is equivalent

to testing the significance of STR, because the two have

identical information content.

In addition to measuring predictability, we also are

interested in measuring differences in predictability due

1 JULY 2012 G U O E T A L . 4745



to different initializations. An important issue is whether

the climatological variance depends on initialization. The

climatological variance is the variance over all realiza-

tions that occur on a specified calendar day. If the clima-

tological variance for LA/O and A/O differ significantly,

then we conclude that the A/O initialization effectively

creates a new climate. Unfortunately, the compari-

son of predictability when the climatological variance

changes with initialization is problematic, because

the forecast and climatological distributions change

in ways that are too complicated to be characterized

by a simple signal-to-noise ratio. Therefore, we perform

an equality of variance test between LA/O and A/O and

eliminate models whose climatological variances differ

from each other more than expected at the 5% signifi-

cance level.

Having screened out models with significantly differ-

ent variances between LA/O and A/O, we assume the

total variance for the two initializations are equal. In this

case, the ratio of STRs for LA/O and A/O reduces to the

signal-to-signal ratio (SSR) and using its logarithm we

can measure changes in predictability,

SSR 5 log10

VLA/O
S

VA/O
S

. (6)

If the predictability is the same for LA/O and A/O, then

SSR ’ 0. Thus, a test for equality of STRs reduces to

a test for equality of signal variances.

We focus here on North America, where land surface

initialization makes significant contributions to the

subseasonal forecast skill of precipitation and near-

surface air temperature (Koster et al. 2010, 2011).

Eleven forecasting systems participated in GLACE-2,

but we exclude models with incomplete output diag-

nostics or with total variances that differ significantly

between the LA/O and A/O cases over the region of our

interests (delineated by the box in Fig. 1). Four models

satisfied both criteria for acceptability: the Canadian

Centre for Climate Modeling and Analysis (CanCM3;

Scinocca et al. 2008), the Center for Ocean-Land-

Atmosphere Studies GCM V3.2 (Misra et al. 2007), the

National Aeronautics and Space Administration (NASA)

Global Modeling and Assimilation Office Goddard

Earth Observing System-5 (GEOS-5) system (Bacmeister

et al. 2000), and European Centre for Medium-Range

Weather Forecasts/Max Planck Institute Hamburg

forecast system (Roeckner et al. 2003; Raddatz et al.

2007). We conduct a multimodel analysis to reveal the

consensus characterization of predictability. Data

from these models are pooled for STR and SSR

calculations.

FIG. 1. (a),(b) The potential predictability (STR) for random

(A/O) and realistic (LA/O) land surface initialization cases for the

46–60-day-average precipitation. (c),(d) Land surface impacts on

potential predictability (SSR) for the 46–60-day-average pre-

cipitation and a proxy for soil moisture’s contribution to land sur-

face impacts on precipitation predictability. The dots show grid

cells for which the measures are significant at the 5% significance

level. Data from four of the models participating in GLACE-2 are

used for the calculation.
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3. Impacts of land surface on atmospheric
potential predictability

Figure 1 shows the potential predictability (STR) of

46–60-day-average forecasted precipitation over North

America for A/O and LA/O (top and second panels).

All forecasts are used for the calculation. The dots in-

dicate grid cells where the precipitation predictability is

significant at the 95% confidence level. Precipitation has

some predictability over the western United States and

most of Mexico in the A/O case. By design, there is no

predictability arising from land surface initialization,

so the predictability is attributable to SST boundary

forcing. The LA/O case exhibits significantly more pre-

dictability, especially over central North America. The

SSR (third panel) isolates the influence of land initiali-

zation on potential predictability and confirms that

predictability is significantly enhanced for the LA/O

case over central North America.

At least two factors could contribute to this result:

land–atmosphere coupling and soil moisture memory.

Land–atmosphere coupling refers to processes that al-

low soil moisture variations to contribute to variations in

the surface energy balance (e.g., latent and sensible heat

fluxes), which in turn can affect the development of the

atmospheric boundary layer and atmospheric variabil-

ity. It can be quantified as the product of the standard

deviation of evaporation and the correlation between

soil moisture and evaporation anomalies (Guo et al.

2006; Dirmeyer et al. 2009). Soil moisture memory,

measured by the lagged correlation of anomalies be-

tween the 1–15-day and 45–60-day forecast periods,

quantifies the persistence of soil moisture anomalies. A

proxy for soil moisture’s contribution to atmospheric

predictability is represented by the product of these two

indices (here, the standard deviation and the correla-

tions are calculated across the different years from the

15-day-average values). This proxy (bottom panel) has

a geographic pattern similar to the SSR index, indicating

that regions with strong land–atmosphere coupling and

long soil moisture memory also have a significant impact

on atmospheric predictability on the subseasonal time

scale.

The region delineated by the box in Fig. 1 is chosen

for detailed investigation of the temporal evolution of

predictability. This area is selected because the pre-

dictability indices there are large and because it has

recently experienced major droughts and floods (e.g.,

the drought of 1988 and the floods in 1993, 2008, and

2011). The areal averages of air temperature, pre-

cipitation, evaporation, and soil moisture are com-

puted from the sequential 15-day averages for each

ensemble member and start date. The top two panels

of Fig. 2 show the predictability of air temperature and

precipitation for LA/O (solid lines) and A/O (dashed

lines). Each line represents results for forecasts start-

ing at each of the 10 start dates from April through

August.

A rapid drop in predictability is observed from the 1–

15-day average to the 16–30-day average for both vari-

ables, indicating that the weather predictability from the

atmospheric initialization dissipates rapidly. Even so,

the predictability for LA/O is larger than for A/O in the

1–15-day averages, especially from June onward. This

supports the previous finding that land surface initiali-

zation is also important for weather prediction, partic-

ularly during summer.

At each verification time, there are small variations

in atmospheric predictability in the A/O case beyond

the first 15 days. Meanwhile, there is a clear contrast in

the evolution of atmospheric predictability between the

random and realistic land surface initializations. Large

dots indicate the intervals when the predictability in the

LA/O case differs from that of the A/O case at the 95%

confidence level. The differences in predictability be-

tween the A/O and LA/O cases are small during early to

mid-spring and autumn, but significant from late spring

through summer.

For the start dates in May and June, the predictability

of precipitation and air temperature decreases in the

first month and then increases sometime during the next

30–60 days; that is, the predictability rebounds in late

spring and early summer. Figure 3 plots the STR change

rates from days 16–30 to days 31–45 and from days 31–45

to days 46–60 for LA/O (open circles) and A/O (open

triangles). The positive (negative) STR change rates

indicate predictability rebound (decay). Positive STR

change rates occur in the A/O case but most are statis-

tically insignificant and are consistent with sampling

fluctuations. Variations are largely symmetric about

zero, suggesting that a spread of 60.1 approximates the

range of random noise. The dotted lines in the plots

indeed bound the central 90% of STR change rates for

the A/O case. The figure shows that the change rates for

LA/O are significantly larger than those for A/O and

moreover exhibit a well-defined seasonal cycle, with

large positive change rates occurring in May–July and

large negative change rates occurring in early spring and

late summer. In other words, the change rates for LA/O

do not look random and look very different from A/O.

The predictability rebound in the transition months

from late spring to early summer show up prominently,

as does the collapse of predictability during late summer

and fall, when the strength of land–atmosphere coupl-

ing starts to decline. There are also large declines in

early spring, because the effects of the land surface
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initialization on predictability at weather time scales

(first 15 days) dissipate during days 16–30; in early

spring, the mechanism for the rebound (see below) has

not yet come into play. Among the 20 values of STR

change rates for either variable in the LA/O case, the

five largest rebounds occur within a narrow window

during late spring and early summer. The likelihood

that these five rebounds would randomly cluster in this

confined period is less than 0.01%, and the magnitude

of each of these five largest predictability rebounds is

FIG. 2. Potential predictability (STR) of areal-average precipitation, near-surface air temperature, and soil

moisture for random land surface initialization (A/O; dashed lines) and realistic land surface initialization (LA/O;

solid lines), as well as land–atmosphere coupling strength computed as the product of the standard deviation of

evaporation and the correlation between evaporation and soil moisture anomalies.

FIG. 3. Potential predictability (STR) change rates between adjacent periods for precipitation and near-surface air

temperature in Fig. 2 with values for the first 15 days of each forecast period omitted.
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statistically significant compared to the range of A/O

examples.

4. Mechanism

The rebound in predictability is explained as a local

transfer of information from the land surface to the at-

mosphere via physical processes that control the land–

atmosphere coupling. The bottom panels of Fig. 2

showed the predictability of soil moisture and the land–

atmosphere coupling strength index. As expected,

soil moisture predictability with realistic land surface

initialization is high for all periods because of the long

persistence of soil moisture anomalies, and there is not

a strong variation over time in this quantity. However,

the coupling between the land and atmosphere exhibits

a dramatic seasonal cycle: the coupling is weak in early

spring, strengthens around mid-May, and peaks in mid-

July, after which it gradually declines. Although soil

moisture predictability remains high throughout, this

predictability cannot influence the atmosphere in early

spring because of weak land–atmosphere coupling. In

essence, information in the land memory in spring is

‘‘transferred’’ to the atmosphere when coupling is es-

tablished. Likewise, predictability declines in fall as

coupling again weakens.

These results suggest that operational forecasts of

subseasonal and seasonal rainfall and near-surface air

temperature over North America during summer could

be improved with information from antecedent soil

moisture observations during spring. This would require

monitoring of soil moisture anomalies in key regions and

real-time availability of the observations to operational

forecasting systems.
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