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ABSTRACT

An initialization strategy, tailored to the prediction of the Madden–Julian oscillation (MJO), is evaluated

using the Goddard Earth Observing System Model, version 5 (GEOS-5), coupled general circulation model

(CGCM). The approach is based on the empirical singular vectors (ESVs) of a reduced-space statistically

determined linear approximation of the full nonlinear CGCM. The initial ESV, extracted using 10 years

(1990–99) of boreal winter hindcast data, has zonal wind anomalies over the western Indian Ocean, while the

final ESV (at a forecast lead time of 10 days) reflects a propagation of the zonal wind anomalies to the east

over the Maritime Continent—an evolution that is characteristic of the MJO.

A new set of ensemble hindcasts are produced for the boreal winter season from 1990 to 1999 in which the

leading ESV provides the initial perturbations. The results are compared with those from a set of control

hindcasts generated using random perturbations. It is shown that the ESV-based predictions have a system-

atically higher bivariate correlation skill in predicting the MJO compared to those using the random per-

turbations. Furthermore, the improvement in the skill depends on the phase of the MJO. The ESV is particularly

effective in increasing the forecast skill during those phases of the MJO in which the control has low skill

(with correlations increasing by as much as 0.2 at 20–25-day lead times), as well as during those times in

which the MJO is weak.

1. Introduction

Since its discovery about three decades ago, the

Madden–Julian oscillation (MJO; Madden and Julian

1971) has been the subject of numerous studies to better

characterize its behavior and ascertain the underlying

physical mechanisms at play (e.g., see the review by Zhang

2005). Also, in recognition of the important impact of

the MJO on weather and climate variability on subsea-

sonal time scales (Yasunari 1979; Takayabu et al. 1999;

Bergman et al. 2001; Kessler 2001; Wheeler and McBride

2005), there is an increasing emphasis on efforts to assess

its predictability and develop better prediction methods.

Statistical methods have had some success in predicting

the MJO (Waliser et al. 1999; Lo and Hendon 2000;

Mo 2001; Jones et al. 2004; Webster and Hoyos 2004;

Maharaj and Wheeler 2005; Jiang et al. 2008) and pro-

vide an important benchmark for dynamically based ap-

proaches that, owing to the poor simulation of the MJO,

have generally failed to improve upon such simpler ap-

proaches (Slingo et al. 1996; Waliser et al. 2003a,b; Zhang

2005; Waliser 2006). However, recent improvements in

general circulation models (GCMs) including a better sim-

ulation of subseasonal tropical variability (Slingo 2005;

Wu et al. 2002; Seo et al. 2009a), have renewed interest

in using GCMs to predict the MJO (Vitart et al. 2007;
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Seo et al. 2005, 2009b; Kang and Kim 2010; Rashid

et al. 2011).

The skill of MJO predictions has been assessed using

various air–sea coupled models. For example, Vitart et al.

(2007) showed that the European Centre for Medium-

Range Weather Forecasts (ECMWF) coupled model is

skillful in predicting the evolution of the MJO up to about

14 days, and Seo (2009) and Seo et al (2009) showed

that the National Centers for Environmental Prediction

(NCEP)’s operational coupled Climate Forecast System

(CFS) model exhibits useful skill out to 2 and 3 pentads

when the initial MJO convection is located over the Mari-

time Continent and the Indian Ocean, respectively. In ad-

dition, Rashid et al. (2011) found that the MJO can be

predicted using the Predictive Ocean–Atmosphere Model

for Australia (POAMA) with 10 ensemble members out

to about 21 days. Kang and Kim (2010) compare the skill

of MJO predictions using both statistical models and the

Seoul National University (SNU) CGCM and concluded

that the limit of skillful predictions made with statistical

(multivariate regression) models based on the Real-Time

Multivariate Madden–Julian oscillation (RMM) index oc-

curs at days 16–17, while it occurs at about 20 days for the

GCM.

As a part of the ensemble prediction system, it is

known that the prediction skill is dependent the struc-

ture of the ensemble perturbations (Toth and Kalnay

1993). However, while there has been progress in pre-

dicting the MJO associated with model improvements,

there has been less emphasis on the issue of how to best

(from the stand point of predicting the MJO) perturb the

initial conditions of the ensemble prediction system. For

example, in several studies the predictions consist of

only a single ensemble member—mainly because of the

heavy computational burden of generating hindcasts

over a period of two decades (Kang and Kim 2010), or,

the initial perturbation is not focused on the MJO. Vitart

et al. (2007) and Vitart and Molteni (2010) used singular

vectors (an optimal perturbation method) to perturb the

extratropics (north of 308N), since their focus was on

weather forecasts. Rashid et al. (2011) performed en-

semble predictions in which the atmospheric ‘‘pertur-

bations’’ are based on the atmospheric analyses 6 h

before the start time. The method is called lagged av-

eraged forecasting (LAF; Hoffman and Kalnay 1983)

and provides an alternative to adding random pertur-

bations. It turns out that this method partly captures the

features of so-called optimal perturbations.

To extract the optimal perturbations for ensemble

MJO prediction, Liess et al. (2005) adopted a breeding

approach to generate initial perturbations suitable to

the MJO prediction within a perfect model framework.

They defined the rescaling time as the pentad at which

detection of the modes that grow fastest on the intra-

seasonal time scale is achieved, without being influenced

too strongly by higher-frequency weather instability.

Similarly, Chikamoto et al. (2007) successfully extracted

the tropical-bred vectors associated with the MJO with

a one-day rescaling interval. The extracted bred vectors

show eastward propagation, which begins over the Indian

Ocean and becomes prominent over the western Pacific.

This feature resembles the MJO, suggesting that breeding

methods are suitable for extracting optimal perturbations

for MJO prediction. However, that study did not per-

form an ensemble of MJO predictions with their pertur-

bations to fully validate the importance of optimal

perturbation for improving MJO prediction skill.

Motivated by the above facts, this study re-examines

the optimal perturbations for MJO prediction using an

empirical singular vector (ESV; Kug et al. 2010, 2011;

Ham and Kang 2010) approach, applied to an ensemble

prediction system for boreal winter season. The basic

concept of the ESV method is similar to the singular

vector method, which is widely used in weather forecasts

(Molteni and Palmer 1993; Palmer et al. 1994). The

main difference between ESV and the singular vector

method is that the ESV method does not require a lin-

earized version of a GCM. Instead, the ESV is calcu-

lated using historical prediction data—something that

is becoming more widely available for GCMs as an in-

tegral component of model evaluation and calibration.

Therefore, the ESV method is more easily applicable

to various GCMs without the need for a linearized

version of the model. In addition, unlike the breeding

method, it is relatively easy to extract optimal pertur-

bations related to the MJO without additional model

integrations during the forecasts.

This paper is organized as follows. In section 2,

the Goddard Earth Observing System Model, version 5

(GEOS-5) CGCM developed at the National Aeronautics

and Space Administration (NASA) Global Modeling and

Assimilation Office (GMAO) is briefly described, and the

initialization for the hindcasts and the empirical singular

vector method is introduced. Section 3 describes the ex-

perimental design of the hindcasts and the forecast skill

improvements associated with the use of the ESVs. The

discussion and brief summary are included in section 4.

2. Model and hindcast experiments

a. NASA/GMAO GEOS-5 coupled GCM

The model used in this study is the NASA/GMAO

GEOS-5 Coupled General Circulation Model (CGCM).

The ocean component of NASA/GMAO GEOS-5

CGCM is the Modular Ocean Model version 4 (MOM4)
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code (Griffies et al. 2004). The ocean model uses a B-grid

finite difference treatment of the primitive equations of

motion, Boussinesq and hydrostatic approximations

in spherical coordinates, and covers the global oceans

with realistic coastlines and bathymetry. The resolution

is 50 vertical levels and a 18 3 18 horizontal grid tele-

scoping to 1/38 meridional spacing near the equator. The

vertical grid spacing is a constant 10 m over the top

225 m. The K-Profile Parameterization (KPP) vertical

mixing scheme is used in this model.

The atmospheric component of the GEOS-5 model

used here has 72 vertical levels and 28 latitude by 2.58

longitude grid spacing. The dynamic core is based on

a finite-volume method (Lin 2004). The convective pa-

rameterization is the relaxed Arakawa–Schubert (RAS)

scheme (Moorthi and Suarez 1992). The large-scale con-

densation scheme is based on a PDF of total water as in

Smith (1990) or Rotstayn (1997). The free atmospheric

turbulent diffusivities are based on the gradient Richard-

son number. For the boundary layer, the Louis (1982)

scheme is implemented in stable situations with no or

only weak cooling in the planetary boundary layer

(PBL) cloud. In addition, the Lock et al. (2000) scheme

is used for unstable or cloud-topped PBLs. GEOS-5

incorporates two gravity wave drag parameterizations,

an orographic gravity wave drag formulation (McFarlane

1987), and a formulation for nonorographic waves based

on Garcia and Boville (1994). The Catchment Land

Surface Model from Koster et al. (2000) is coupled to

atmospheric model. Air–sea fluxes are exchanged at

every time step. More details about the GEOS-5 atmo-

spheric model are provided in Rienecker et al. (2007).

b. Initialization for the MJO forecasts

We perform the MJO hindcasts from 1990 to 1999 us-

ing the GEOS-5 CGCM. The atmosphere–ocean initial

conditions for this period are obtained by constraining

the atmospheric component (i.e., zonal and meridional

wind, temperature, specific humidity, and surface pres-

sure) of the CGCM with the Modern-Era Retrospec-

tive Analysis for Research and Applications (MERRA;

Rienecker et al. 2011) using an incremental analysis up-

date procedure (IAU; Bloom et al. 1996) beginning in

1979. We refer to this as a ‘‘replay’’ approach since it

makes use of an existing atmospheric analysis.1 Even

though the replay approach, directly, only constrains

the atmospheric component of the coupled model, the

upper ocean is also adjusted to the observed values via

air–sea coupling, even without the assimilation of any

subsurface ocean observations. In particular, it is found

that the subsurface tropical temperature anomalies from

the surface to 300 m in the replay simulation are quite

similar to those obtained from ocean reanalyses (e.g.,

Behringer and Xue 2004; Carton and Giese 2008) (not

shown).

With these initial conditions, we perform 30-day

MJO hindcasts every day for the period 1990–99.2 This

‘‘control (CNTL)’’ set of predictions is used to compute

the ESVs and also serves as part of the benchmark

against which to evaluate the MJO prediction skill of

hindcasts that use ESV-based perturbations (see next

section).

c. Description of the ESV

The ESV method used in this study follows the pro-

cedure described in Kug et al. (2010, 2011). The main

feature that distinguishes ESV from the conventional

singular vector approach is that the linear operator is

derived empirically from a large number of hindcasts.

Using matrix multiplication, the empirical linear oper-

ator is derived using many initial and final states as

follows:

L 5 YXT(XXT)21, (1)

where each column of X and Y contains the state vectors

of the hindcasts at the initial and final time, respectively.

In this study, the linear operator is obtained in a re-

duced space through a combined empirical orthogonal

function (CEOF) analysis using equatorially averaged

(158S–158N) 850 hPa, 200-hPa zonal wind, and 200-hPa

velocity potential initial condition and hindcast data

during boreal winter (November–April) from 1990 to

1999. The total number of hindcasts used to obtain the

linear operator is 1812. To remove the interannual var-

iability, the anomaly related to the MJO is calculated by

subtracting the seasonal cycle and the previous 120-day

mean (Wheeler and Hendon 2004; Rashid et al. 2011).

Note that the 120-day-mean value for the nth day fore-

cast is obtained by using n days of forecast output and

120-n days of observations. Then, the anomaly fields

are normalized by the square root of the longitudinally

(08–3608E) averaged variance. CEOFs are computed1 The IAU method was originally developed to be part of a data

assimilation procedure to reduce the shocks of data. The replay

approach works in the same way except that it uses an existing

analysis (in this case MERRA) to compute the increments. We

note that the IAU is different from the traditional nudging ap-

proach in that the IAU filters the analysis increments only and not

the full background state (Bloom et al. 1996).

2 This is in fact part of a larger suite of 6-month hindcasts, al-

though for the purposes of this study we focus on the first 30 days of

the hindcasts for the period 1990–99.
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from the history of initial state vectors [i.e., X in Eq. (1)],

and only the first 5 leading modes are retained. Simi-

larly, CEOFs are computed for the 10-day lead, daily-

averaged forecast data [Y in Eq. (1)], but in this case only

the two leading CEOFs are retained. Therefore, the

dimension of the linear operator (L) is 2 3 5. Finally, we

formulate a separate linear operator for each of the

initial MJO’s eight phases.

By retaining only the leading CEOFs in the linear

operator we filter out modes that tend to be noisy and

difficult to interpret, and thereby minimize statistical

sampling issues and overfitting. While this is a rather

strong filter, we note that the 5 leading CEOFs explain

about 70% of MJO variability (i.e., the variability

within the 20–90-day period). It is also not inconsistent

with Wheeler and Hendon (2004), who show that the

two dominant CEOFs explain about 60% of the total

MJO variability (Wheeler and Hendon 2004). We ac-

knowledge, however, that the number of modes that

need to be retained to best represent the linear operator

for seasonal prediction applications remains an open

question (Kug et al. 2010, 2011).

One difference in our characterization of the MJO

compared with Wheeler and Hendon (2004) is that we

use 200-hPa velocity potential as a proxy for convection

instead of outgoing longwave radiation (OLR). We do

this primarily because the velocity potential field is

more closely linked to the model’s state variables than

is OLR (since we need to initialize the state variables).

This is important because OLR is a diagnostic quantity

that is not assimilated, and so it is likely to be less ac-

curate and suffer from larger bias than quantities more

directly linked to the wind field. We also note that ve-

locity potential is a commonly predicted variable for

showing MJO propagation in many studies (Molinari

et al. 1997; Waliser et al. 2003b; Tanaka et al. 2004;

Waliser et al. 2006). The upper-level velocity potential

of course cannot fully reflect the complex pattern of

convection, especially when the convective activity re-

lated to the MJO passes over the Maritime Continent.

We do, however, allow for some additional flexibility

at the large scales (within the velocity potential repre-

sentation) by formulating the linear operator to be

a function of the phase of the MJO.

After obtaining the linear operator, we perform a

singular-value decomposition (SVD) to obtain the sin-

gular vectors. The fastest growing singular vector (i.e.,

corresponding singular values are greater than one)

is defined as the ESV mode (Kug et al. 2010, 2011). It

was found that the largest singular value is greater than

one for all initial MJO phases, indicating that the modes

will grow when they are used as the initial perturbations.

For example, the singular value is largest at MJO phase

4 with a value of 1.11 and lowest at MJO phase 2 with

a value of 1.02. Hereafter, the left (right) singular vector

with the largest singular value is denoted as the initial

(final) ESV. Sensitivity tests with different forecast

lengths (i.e., the ESV is computed using 5-, 10-, and

20-day lead forecasts) show that the singular values gen-

erally increase as the forecast lead time is increased.

Because the time periods used to calculate the ESVs

overlap with those used for the hindcasts, this method-

ology has not been fully tested as to whether it is ap-

plicable to an operational forecasting system. We have,

however, done some cross validation, primarily to assess

the stability of the ESV patterns. In particular, we have

recomputed the ESVs for subsets of the data (by re-

moving one year at a time) and found that the ESV

structures are quite stable (not shown).

Figure 1 shows the initial and final ESVs for MJO

phase 4. The initial ESV shows positive peaks in the

200-hPa zonal wind over the western Indian Ocean,

while it shows negative peaks over South America.

The initial ESV of the 850-hPa zonal wind shows a

pattern opposite to that of the 200-hPa zonal wind,

which implies a baroclinic structure for the initial ESV.

The final ESV shows a positive peak in the 200-hPa

zonal wind over the Maritime Continent and a negative

peak over the far-eastern Pacific. Similar to the initial

ESV, there is a clear baroclinic structure in the upper-

and low-level winds. It is interesting that the wind signals

of the initial ESV over the Indian Ocean appear to have

propagated to the east, and the wind signals of final

ESV are over the maritime continents. This eastward-

propagating feature of the ESV is consistent with the

characteristics of optimal initial perturbations found in

previous studies using the breeding method (Chikamoto

et al. 2007). Sensitivity tests with different forecast

output show that the ESV using a 5-day lead forecast

produces a zonal phase difference between the initial

and final ESV that is almost zero because of the short

forecast lead time. Also, the final ESV based on a 20-day

FIG. 1. The equatorially averaged (158S–158N) initial (black

lines) and final (gray lines) ESV of zonal wind at 200 hPa (U200,

solid line) and zonal wind at 850 hPa (U850, dotted line) at MJO

phase 4. Note that the values are normalized.
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lead forecast time shows a zonal wavenumber-2 struc-

ture, which is also dominant at 20-day lead forecasts in

the CNTL predictions (see CNTL in Fig. 12d).

In addition to the ESV pattern for U200, U850, and

VP200, the related patterns for all prognostic variables

are obtained using linear regression to generate initial

perturbations that are well balanced among all prog-

nostic variables. That is, we construct the regressed

patterns of other variables related to the five dominant

CEOFs, where the predictors are the associated princi-

ple components (PCs). After the ESV is obtained, the

spatial pattern of initial perturbations for other vari-

ables is calculated by multiplying each ESV mag-

nitude by the regressed patterns. Figure 2 shows the

spatial pattern of the initial ESV for the regressed zonal

winds, specific humidity, and temperature at MJO phase

4. Consistent with Fig. 1, the upper- and lower-level

zonal winds have anomalies over the equatorial Indian

Ocean and the far-eastern Pacific. In addition, there are

strong negative anomalies of the 200-hPa zonal wind

over the off-equatorial central Pacific. The ESV anom-

alies in circulation appear to be dynamically linked to

the moisture fields in that, over the far-western Indian

Ocean, there is positive moisture anomaly where there is

low-level convergence. Also, there is a positive temper-

ature anomaly over Africa possibly generated by zonal

warm advection because of the easterly wind anomalies.

These results suggest that the linear regression success-

fully captures the dynamical linkages between the vari-

ables.

Figure 3 shows the equatorially averaged (158S–158N)

ESVs of the 200 hPa zonal wind for all MJO phases. The

initial ESVs for all MJO phases show robust anomalies

over the Indian Ocean and South America, while the

ESVs at MJO phase 7 and 8 shows negative anomalies

over the Maritime Continent. This shows that the spatial

pattern of the ESVs is not sensitive to the phase of the

MJO. The location of the maximum positive values of

the upper-level wind in the final ESVs (near 1108E for

phases 3–5) is indicative of eastward propagation from

the Indian Ocean to the Maritime Continent. The lon-

gitudinal location of the negative anomalies of the final

ESVs is similar to that of initial ESVs, or shifted west-

ward slightly, indicating that the eastward propagating

signal is limited to the Indian Ocean where the MJO

appears to initiate.

After obtaining the spatial pattern of the initial

perturbations for all variables, the magnitude of the

perturbation needs to be defined. While this is some-

what arbitrary, we define the magnitude of the initial

ESV based on the 200 hPa zonal wind. In parti-

cular, the root-mean-square (RMS) magnitude of the

equatorially-averaged initial ESV over the globe is set to

FIG. 2. The spatial pattern of initial ESV of (a) 200-hPa zonal

wind (U200), (b) 850-hPa zonal wind (U850), (c) 850-hPa specific

humidity (q850), and (d) 850-hPa air temperature (T850) at MJO

phase 4. The units of zonal winds, specific humidity, and air tem-

perature are m s21, 105 g/kg, and 8C, respectively.
FIG. 3. The equatorially averaged (158S–158N) initial (shading)

and final (contour) ESV of 200-hPa zonal wind with respect to

MJO phases. Note that the values are normalized.

4936 J O U R N A L O F C L I M A T E VOLUME 25



10% of the RMS of the equatorially-averaged and fil-

tered (20–90 days) 200 hPa zonal wind anomaly over the

globe. The filter consists of a LANCZOS bandpass filter

(using 45 weights; Duchon 1979), and is applied to the

daily-mean zonal-wind anomalies at 200 hPa. The mag-

nitudes of the initial perturbations of the all variables are

obtained in the same way.

3. Results

a. Experimental design for MJO forecasts

Here we take advantage of a number of existing

GEOS-5 CGCM hindcasts to form our baseline set of

experiments. We focus in particular on a set of 30-day

hindcasts initialized for the 10 winters (November–

April) of 1990–99 with an interval of 10 days between

the predictions. That is, the model predictions are made

every 10 days from 1 November to 30 April, to produce

a total of 180 forecasts. The 10-day intervals were chosen

to minimize the impact of any correlations between the

starting dates.

Two sets of predictions were generated, denoted

hereafter by ESV and CNTL. The ESV predictions con-

sist of two ensemble members whose initial states are

obtained by adding and subtracting the ESV to the

baseline initial conditions (i.e., the initial states obtained

from the replay approach described earlier). The skill of

the ESV-based predictions is compared with the skill

of a set of CNTL predictions using random perturba-

tions. To generate random perturbations, we utilized the

regressed patterns of the various prognostic fields (de-

scribed earlier) associated with the five dominant CEOFs.

The weighting of each CEOF (the PC) is chosen to be a

random number with a uniform distribution between 21

and 1. The initial perturbations for all variables are then

obtained by multiplying these random numbers and the

regressed patterns to produce what appear to be dy-

namical balanced perturbations. Just as for the ESV, the

magnitude of the random perturbation is scaled to be

10% of the root-mean-square (RMS) magnitude of the

equatorially averaged and filtered (20–90 days) 200-hPa

zonal wind anomaly over the globe.

We note that the time-averaged equatorial-mean spread

(standard deviation) of the control predictions with ran-

dom perturbation is about 65% of the spread of ESV

predictions. That is to be expected in view of the relatively

fast-growing nature of the ESV perturbations, but it nev-

ertheless indicates that the spread of the random pertur-

bation is reasonable and that the control predictions provide

a useful benchmark for assessing the ESV predictions.

We generated seven sets of predictions with random

perturbations. These, together with the unperturbed

predictions allow for 28 combinations of two mem-

bers with which to compare the 2-member ensembles

of the ESV predictions. For the 28 possible combi-

nations of the CNTL predictions, the approximate

upper 95%, and 99% confidence levels of the corre-

lations are defined as second largest and largest values,

respectively. Similarly, the lower 95% and 99% confi-

dence levels are defined as the second lowest and lowest

values, respectively. Note that the CNTL prediction skill

is defined as the mean correlation of the 28 samples.

b. MJO forecast results

We begin by examining how well the linear operator

captures the evolution of the initial ESVs in the non-

linear integration. To do so, the final ESV that evolved

using the linear operator is compared with the 10-day

integration of the initial ESV using the CGCM. The

spatial pattern of the ESV after 10 days is calculated

by the averaged difference between the 10-day lead

forecast with a positive ESV and that without any per-

turbation using the entire hindcast sample, then the

difference is CEOF-filtered using 2 dominant modes.

Note that we also used 2 dominant CEOF modes to

obtain final ESV. Figure 4 shows the final ESV and the

CEOF-filtered 10-day forecast of the initial ESV using

the CGCM. Note that final ESV shown in this figure

is averaged over all MJO phases because the spatial

pattern of ESVs is not sensitive to the MJO phases. In

FIG. 4. (a) The MJO phase-averaged final ESV and (b) CEOF-

filtered 10-day-forecasted initial ESV for all hindcast cases. The

spatial pattern of ESV after 10-day lead forecast is calculated by

the averaged difference between the 10-day lead forecast without

any perturbation and that with positive ESV using the entire

hindcast samples. Note that the values are normalized.

15 JULY 2012 H A M E T A L . 4937



the final ESV, the positive (negative) zonal wind ano-

maly at 200 hPa over the Maritime Continent (South

America) is clearly shown. Consistent with the spatial

pattern of upper-level zonal wind, there is upper-level

convergence over the western-central Pacific. This feature

is well captured in the forecasted initial ESV using the

CGCM. For example, the forecasted initial ESV also

shows a positive (negative) zonal wind anomaly at 200 hPa

(850 hPa) over the Maritime Continent, even though the

peaks of anomalies are shifted to the west. In addition,

the positive peak of velocity potential at 200 hPa over

the western-central Pacific is also shown both in the final

ESV and the forecasted initial ESV. This indicates that the

evolution of the perturbation, calculated from the empir-

ical linear operator, captures to some extent the evolution

of the initial perturbation in the nonlinear model.

To evaluate the impact of the ESV on the MJO fore-

cast skill, the skill is compared with that of the CNTL

predictions. Figure 5 shows the correlation skill of the

unfiltered equatorial zonal wind at 200 hPa from the

CNTL and ESV predictions. Note that the mean cor-

relation of the 28 samples of the CNTL predictions is

shown as CNTL prediction. In the CNTL predictions,

the correlation skill of the unfiltered zonal wind at

200 hPa drops below 0.5 after 12 days. After 20 days, the

correlation skill drops below 0.2 over most regions. For

the ESV predictions, the correlation skill show some

significant improvements compared with the CNTL af-

ter 10-day lead times over the central-eastern Pacific.

We next turn to the forecast skill of the dominant

CEOF-related fields. In this case (before computing the

correlations), both the predicted and observed zonal

wind anomalies at 200 hPa are spatially filtered to retain

only the contributions from the five dominant observed

CEOFs. Figure 6 shows the correlation skill of the

CEOF-filtered equatorial zonal wind at 200 hPa. In the

CNTL predictions, the correlation skill drops below 0.5

after 15 days. In particular, the correlation skill over the

eastern Pacific reaches 0.3 after 8 days, which indicates

that the correlation skill over the eastern Pacific is a local

minimum compared to the other regions. On the other

hand, for the ESV predictions, the correlation skill over

the eastern Pacific does not reach 0.3 until about 12 days.

Also, the correlation skill over the Maritime Continent

falls to 0.3 after 20 days in the ESV prediction, while in

the CNTL prediction the correlations is already below

0.2 at that forecast lead time. The difference in the

correlation skill (Fig. 6c) shows that the correlation

improvement is largest over the eastern Pacific and

Maritime Continent with 99% confidence level.

Figure 7 shows the correlation skill of a bivariate in-

dex (Kang and Kim 2010; Rashid et al. 2011) along with

confidence levels computed from the 28 different con-

trol predictions. The value of bivariate correlation skill

for the CNTL prediction drops to 0.5 at 16 days. Note

that this prediction skill is higher than the autoregressive

model introduced in Rashid et al. (2011), and it is similar

to the prediction skill of the POAMA model with single

FIG. 5. The correlation skill of the equatorially averaged (158S–158N) 200-hPa zonal wind in the (a) CNTL and (b) ESV prediction. (c)

The difference in the correlation skill between the ESV predictions and the CNTL predictions with 99% confidence level are shown. Note

that the mean correlation of 28 samples of CNTL predictions is shown as CNTL prediction.
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ensemble member. In the ESV prediction, it is clear that

there is systematic improvement in predicting the bi-

variate index, showing that the bivariate correlation in

ESV prediction is above 0.5 out to a lead time of 17 days.

The improvement in the correlation at 15 days is 0.05

with a 99% confidence level, implying that the en-

semble prediction with the ESV is beneficial to MJO

prediction.

The correlation skill of the RMM1 and RMM2 indices

is shown in Fig. 8. It is found that the skill improve-

ment of the RMM2 index is slightly larger than that of

RMM1 index. The correlation coefficient of the RMM2

index in the ESV prediction is about 0.5 at 20 days,

while the correlation of RMM2 index is 0.5 at 14 days.

On the other hand, the correlation skill of the RMM1

index in both the ESV and CNTL predictions reaches

0.5 at day 17.

A number of studies have examined the sensitivity of

MJO forecast skill to the MJO amplitude (Jiang et al.

2008; Kang and Kim 2010; Rashid et al. 2011). Figure 9

shows, for example, the correlation skill of the bivariate

index with respect to the initial MJO amplitude. Here,

that the MJO amplitude is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1(0)2

1 a2(0)2
q

,

where, a1 (0) and a2 (0) are the observed (i.e., MERRA)

RMM1 and RMM2 at the initial time. We divided the

total cases into two groups, one consists of the strong

MJO cases when the initial MJO amplitude is larger

than one, and the other consists of the weak MJO cases,

when the initial MJO amplitude is smaller than one. In

the CNTL prediction, the correlation skill of the bi-

variate index for the strong MJO case is higher than that

for the weak MJO case during the early period of the

forecast. For example, the correlation skill for the strong

MJO case is more than 0.8, while that for the weak MJO

cases it is less than 0.7 at 5-day lead time. However, the

correlation skill with respect to the MJO amplitude

becomes similar after 15 days in the CNTL predictions.

In the ESV predictions, the correlation at 15 days for

the weak and strong MJO cases is about 0.55 and 0.5,

respectively.

FIG. 6. As in Fig. 5, but the anomaly is CEOF filtered. Note that five dominant CEOFs are used.

FIG. 7. (a) The bivariate correlation skill of the CNTL (gray line)

and ESV (black line) predictions for all hindcast cases. The thin

gray line denotes 95%, and 99% confidence level using samples of

CNTL prediction results with different combination of random and

no perturbations.
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The correlation skill improvement in the ESV pre-

dictions is much higher for the weak MJO case than that for

the strong MJO case. For the strong MJO case, the forecast

lead day at which point the correlation skill drops to 0.5 is

about the same for the CNTL and ESV predictions, while

for the weak MJO case, it is about 4 days longer in the ESV

prediction. This shows that the ESV is especially beneficial

in the weak MJO cases and suggests that the fast-growing

perturbations are more effective for the less predictable

periods when the forecast skill is sensitive to the uncer-

tainty in the initial conditions. This is consistent with

previous results based on fast-growing perturbations

determined from both breeding and the singular-vector

approach (Chen et al. 1997; Xue et al. 1997a,b; Cai et al.

2003; Ham et al. 2009; Kug et al. 2010).

Figure 10 shows the bivariate correlation skill in

the CNTL and ESV predictions as a function of the phase

of the MJO. In the CNTL prediction, the correlation skill

is highest during MJO phases 5–8. For example, the cor-

relation skill drops to 0.5 by about day 12 during phases 1–

4, while during phases 5–8, the correlation remains above

0.5 until day 17. At forecast lead times longer than 20 days,

the CNTL correlation skill is lowest in MJO phases 3–7,

while for the ESV predictions, the correlation skill shows

significant improvements for those phases. The im-

provement of the correlation skill is largest for the MJO

phase 4, exceeding 0.25 between lead times between 20

and 25 days.

The spatial distribution of the skill improvements are

highlighted in Fig. 11 in terms of the RMS error (RMSE)

between the CEOF-filtered equatorial velocity potential

at 200 hPa in the prediction experiments and the ob-

servations for the cases when the initial MJO phase is 4.

In the CNTL predictions, the RMSE is relatively high

over the Indian Ocean, western Pacific, and Atlantic

Ocean beyond a forecast lead of 10 days. The RMSE grows

FIG. 8. The correlation skill of (a) RMM1 and (b) RMM2 index in the CNTL (gray) and ESV (black) predictions

for all hindcast cases are shown. The thin gray line denotes 95%, and 99% confidence level using samples of CNTL

prediction results with different combination of random and no perturbations.

FIG. 9. The bivariate correlation skill of the CNTL (dotted line)

and ESV (solid line) predictions for the strong (gray) and weak

(black) MJO cases are shown. The MJO amplitude is defined as the

square root of the RMM1 plus RMM2 variance at the initial time.

The strong (weak) MJO case when initial MJO amplitude is larger

(smaller) than one. The thin line denotes 95% and 99% confidence

level using samples of CNTL prediction results with different

combination of random and no perturbations.
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to a value of about 1.4 over these regions in the CNTL

prediction, indicating a climatological forecast (Rashid

et al. 2011). However, compared to the CNTL prediction,

there is systematic reduction of the RMSE in the ESV

prediction. For example, the RMSE in the ESV pre-

dictions during lead times of 5–15 days is less than 0.6 over

the Atlantic Ocean, while that in the CNTL prediction is

more than 0.7. In addition, the RMSE over the Indian

Ocean is less than 1.4 during the entire forecast period with

the ESV, indicating that the MJO forecast skill of the

ESV-based predictions is better than a climatological

forecast out to 30 days. Note that the RMSE reduction

beyond 15-day lead times is primarily over those regions

where the RMSE is a local maximum. For example, the

reduction of the RMSE is greater than 0.4 during 20–

25-day forecast lead times over the Indian ocean.

To investigate the time evolution of MJO fields in the

prediction experiments, Fig. 12 shows the composite of the

CEOF-filtered 200-hPa velocity potential anomaly—

again for the case where the MJO is initially in phase 4.

In the observations (i.e., MERRA reanalysis), the neg-

ative (positive) 200-hPa velocity potential anomaly is ro-

bust over the Indo-Maritime Continent (far-eastern Pacific)

during 1–5-day lead times. The observed divergence signal

moves to the east, and the negative value of upper-level

velocity potential (i.e., upper-level divergence) anomaly

propagates from the Maritime Continent at lead times

of 1–5 days to the far-eastern Pacific at lead times of 21–

25 days. As the signal moves to the east, the magnitude

of MJO-related anomaly gradually weakens.

During the early phase of the forecast, the spatial

pattern of the MJO-related anomaly is similar to the

observed in both prediction experiments. However, in

the CNTL prediction, the eastward propagation of the

velocity potential anomaly is too weak, while the ob-

served peak propagates to the east. In addition, zonal

FIG. 10. The bivariate correlation skill of (a) CNTL and (b) ESV prediction with respect to the initial MJO phases. (c) The difference of

the correlation skill in the ESV prediction from that in the CNTL prediction is shown. The x axis (y axis) denotes the MJO phases (forecast

lead day). Note that the improvement over the 99% confidence level is only shaded in (c).
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wavenumber-1 structure is damped out too quickly. For

example, during 11–15-day lead forecast in CNTL pre-

diction, there are two positive and negative peaks of the

velocity potential over the equatorial regions. On the

other hand, in the ESV prediction, the wavenumber-1

structure is somewhat dominant until days 16–20. Being

consistent with Fig. 11, the positive (negative) velocity

potential anomaly over the Indian Ocean (far eastern

Pacific) after an 11-day lead forecast is also simulated

better in the ESV prediction.

4. Summary and discussions

This study investigated the impact on forecast skill of

optimal initial perturbations based on empirical singular

vectors (ESVs), with a focus on the MJO during the boreal

winter season. The ESV approach employs a reduced-

space, linear approximation to the full nonlinear GEOS-5

CGCM, computed from the statistics of a 10-yr (1990–99)

hindcast dataset. It was found that the eastward evolution

(over the Maritime Continent) of the ESV over the first

10 days of the forecasts resembles aspects of the MJO and

replicates the evolution produced in the fully nonlinear

model integrations.

ESV-based predictions were carried out with two

ensemble members (6 the ESV perturbation) for boreal

winter season from 1990 to 1999. The forecast skill was

compared to that of a control (CNTL) set of predictions

in which the two-member ensemble means are based

on predictions with random perturbations. It was shown

that the prediction experiment with the ESV has a sys-

tematically higher bivariate correlation skill compared

to that with the random perturbations. In particular,

the improvement of the correlation skill in the ESV

prediction is greatest during the MJO phases 4–8, charac-

terized by enhanced convective activity over the Mari-

time Continent or western Pacific. During these phases

the correlation skill in the CNTL prediction is lower

than during the other MJO phases, indicating that the

ESV perturbation approach is most effective during

periods of low skill. Also, the improvement of bivariate

correlation skill with the ESV is largest for weak MJO

cases, when the skill improvement is considerably lower

than for strong MJO cases.

While the approach used here provides information

about the spatial pattern of the optimal initial pertur-

bation, the magnitude of the initial perturbation is not

well constrained. In fact, the selection of the amplitude

of the ESV is somewhat arbitrary and is analogous to the

need to select a norm magnitude in the breeding ap-

proach (Toth and Kalnay 1993; Ham et al. 2012). In this

study, the magnitude of the ESV is determined as some

fraction of the natural variability, however, further work

is needed to determine whether there is an optimal

magnitude for the initial perturbations.

Even though we focused here on the single fastest-

growing ESV, the number of available ESV modes is

equal to the number of state vectors, so that in general,

one can obtain multiple ESV perturbations. This is

unlike the breeding approach, which is designed to

FIG. 11. The RMSE of the 200-hPa velocity potential at initial MJO phase 4 in the (a) CNTL and (b) ESV prediction. (c) The difference of

the RMSE in the CNTL prediction from that in the ESV prediction is shown in panel.

4942 J O U R N A L O F C L I M A T E VOLUME 25



generate a single fastest-growing perturbation. Further

work is needed, however, to investigate the benefits of

additional ESV perturbations.

There is little question that an ensemble approach is

essential to producing skillful predictions of the MJO

with dynamical models. Progress in identifying opti-

mal perturbations for subseasonal time scales has been

slow at least in part because of the expense of running

CGCMs with a large number of different initial condi-

tions. This study shows that the ESV approach is a viable

option for generating initial perturbations that reduce

uncertainty in MJO predictions with a relatively small

number of ensemble members. However, it is very likely

that major advances in dynamically based predictions

of the MJO will require a dual approach that addresses

both perturbation strategies and model deficiencies in

simulating the MJO.
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