
Evaluation of the Snow Simulations from the Community Land Model, Version 4
(CLM4)

ALLY M. TOURE,*,1 MATTHEW RODELL,* ZONG-LIANG YANG,# HIROKO BEAUDOING,*,@

EDWARD KIM,* YONGFEI ZHANG,# AND YONGHWAN KWON
#

*Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
1Universities Space Research Association, Columbia, Maryland

#Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
@Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

(Manuscript received 8 September 2014, in final form 17 August 2015)

ABSTRACT

This paper evaluates the simulation of snow by the Community Land Model, version 4 (CLM4), the land

model component of the Community Earth System Model, version 1.0.4 (CESM1.0.4). CLM4 was run in an

offline mode forced with the corrected land-only replay of the Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA-Land) and the output was evaluated for the period from January 2001 to

January 2011 over the Northern Hemisphere poleward of 308N. Simulated snow-cover fraction (SCF), snow

depth, and snowwater equivalent (SWE)were compared against a set of observations including theModerate

Resolution Imaging Spectroradiometer (MODIS) SCF, the Interactive Multisensor Snow and Ice Mapping

System (IMS) snow cover, the Canadian Meteorological Centre (CMC) daily snow analysis products, snow

depth from theNationalWeather Service CooperativeObserver (COOP) program, and SnowpackTelemetry

(SNOTEL) SWE observations. CLM4 SCF was converted into snow-cover extent (SCE) to compare with

MODIS SCE. It showed good agreement, with a correlation coefficient of 0.91 and an average bias of21.543
102 km2. Overall, CLM4 agreed well with IMS snow cover, with the percentage of correctly modeled snow–no

snow being 94%. CLM4 snow depth and SWE agreed reasonably well with the CMC product, with the

average bias (RMSE) of snow depth and SWE being 0.044m (0.19m) and 20.010m (0.04m), respectively.

CLM4 underestimated SNOTEL SWE and COOP snow depth. This study demonstrates the need to improve

the CLM4 snow estimates and constitutes a benchmark against which improvement of themodel through data

assimilation can be measured.

1. Introduction

Seasonal snow plays an important role in the earth’s

climate system and hydrological processes (Dewey 1977;

Kukla 1981; Cohen and Rind 1991; Cohen 1994). About

98% of the seasonal snow is located in the Northern

Hemisphere (NH), and about 42% of the land in the NH

is covered by snow for a significant duration (Dingman

2002). On such a large scale, snow influences the surface

energy and water balances (Karl et al. 1993; Bamzai and

Shukla 1999). On the regional scale, the snow variability

in space and time affects weather patterns (Cohen and

Entekhabi 1999; Chapin et al. 2005; Turner and Slingo

2011). Snow also constitutes a valuable water resource

for hundreds of millions of people. Accurate estimation

of snow-cover states is crucial for improving initial

conditions for numerical weather forecasts, climate

prediction model simulation, water resources manage-

ment, flood preparedness, and mitigation. It is also an

important part of the investigation of snow albedo

feedbacks and climate change.

Clearly, it is essential that models used to simulate

global climate and hydrological processes accurately de-

scribe the evolution of seasonal snowpack. Increasingly

complex climate models incorporate sophisticated snow

schemes to improve the simulation of interactions be-

tween the land and the atmosphere. The Community

Earth System Model (CESM; Vertenstein et al. 2012;

Gent et al. 2011), developed at the National Center

for Atmospheric Research (NCAR), is a prominent

example. CESM consists of five separate models, which
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simultaneously simulate the earth’s atmosphere, ocean,

land, land ice, and sea ice. A central coupler coordinates

the models and allows information and fluxes to be ex-

changed between them.

Land surface models (LSMs) suffer from one of or a

combination of the following: 1) errors in forcing data,

2) improper model parameters, 3) simplified physical

processes, and 4) simplified numerical solutions or

methods. The performance of the snow scheme in the

Community Land Model, version 4 (CLM4), which is

the land component of CESM, is unknown because

there has not been a comprehensive validation against

observations. A few studies have investigated some

aspects of the CLM4 snow model, including the snow-

cover fraction (SCF) estimates, the snow albedo pa-

rameterizations, and the water budget. Swenson and

Lawrence (2012) demonstrated that the parameteriza-

tion used to determine SCF-based snow depth in CLM4

exhibits a bias toward early melt when compared to

satellite-observed SCF, and they proposed a new SCF

parameterization as a function of snow water equivalent

(SWE) instead. The results showed an improvement of

the surface energy budget in snow-covered areas.

Thackeray et al. (2014) recently showed that the weak

simulated snow albedo feedback over the boreal forest

was attributable to a poor parameterization of the CLM4

mechanism of snow removal from the forest canopy.

CLM4was also assessed against its older version (CLM3.5)

(Lawrence et al. 2011). Improvements in soil water storage,

evapotranspiration, surface albedo, permafrost, and land

air temperature were observed. Li et al. (2011) evaluated

the performance of CLM4 runoff simulation at the catch-

ment scale and found the temporal variability of modeled

runoff to be abnormally large. They proposed increasing

the spatial resolution and adjustments to the model pa-

rameter values. While it is possible to resolve some of the

model’s problems by increasing the resolution and com-

plexity, assimilation of multiple datasets can be a more

optimal way to improve model prediction.

The purpose of this study is to evaluate CLM4 snow

output in preparation for a subsequent study on merging

snow-related observations from multiple satellite sensors

within CLM4 using data assimilation. We developed and

implemented a technique for optimally merging snow-

related observations from multiple observing systems,

based onmultivariate data assimilation within the CLM4.

The Moderate Resolution Imaging Spectroradiometer

(MODIS) SCF, the Advanced Microwave Scanning Ra-

diometer for Earth Observing System (AMSR-E) radi-

ance, and the Gravity Recovery and Climate Experiment

(GRACE) terrestrial water storage changes observations

will be assimilated simultaneously to generate spatially

and temporally continuous offline global SWE fields, at

resolutions as high as 1/88. Each satellite observation will

be assimilated where it is more likely to have the best

impact in improving CLM4.

We ran CLM4 in an offline (uncoupled to the atmo-

sphere) mode at ;0.58 resolution forced by the meteoro-

logical data from the land-only replay of the Modern-Era

Retrospective Analysis for Research and Applications

(MERRA-Land; Reichle et al. 2011; Reichle 2012) from

January 2001 to January 2011 over the NH poleward of

308N. We assessed the model SCF, snow depth, and SWE

using various observational data, including the MODIS

snow cover (Hall et al. 2002), theCanadianMeteorological

Centre (CMC) daily snow analysis products (Brasnett

1999; Brown et al. 2003; Brown and Brasnett 2010), the

Interactive Multisensor Snow and Ice Mapping System

(IMS) snow-cover product (Ramsay 1998; Helfrich et al.

2007), snow depth from the National Weather Service

(NWS) Cooperative Observer (COOP) program, and the

Snowpack Telemetry (SNOTEL) snow depth and SWE.

Our analysis will serve as a benchmark for evaluating

multisensor data assimilation results, and it will identify

locations where data assimilationmay potentially improve

modeled snow.

The paper is organized as follows. Section 2a describes

CLM4, section 2b explains the experimental design, and

section 2c describes the validation datasets. Section 3

presents the results and the analysis, and section 4 is

dedicated to the major conclusions and discussion for

future studies.

2. Data and methods

a. Model description

CLM4 describes the physical, chemical, biological,

and hydrological processes by which terrestrial ecosys-

tems interact with climate across a variety of spatial and

temporal scales. Subgrid heterogeneity is represented by

fractional covers of glacier, lake, wetland, urban, and

vegetated land. The vegetated portion of a grid cell is

further subdivided into a mosaic of plant functional

types (pfts), each with its own leaf and stem area index

and canopy height.Modeled hydrological processes include

canopy interception; throughfall; stemflow; evapotranspi-

ration; infiltration; runoff; and soil moisture, groundwater,

and snowpack evolution (Oleson et al. 2008). CLM4 has a

one-dimensional vertical, multilayer snowmodel (Dai et al.

2003; Kluzek 2012) based on the parameterizations de-

veloped by Anderson (1976), Jordan (1991), and Dai and

Zeng (1997). Using grid-averaged atmospheric forcing,

CLM4 simulates processes such as snow accumulation,

depletion, densification, metamorphism, and percola-

tion and refreezing of water (Lawrence and Slater 2010).
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The number of snow layers can reach five depending on

the depth of the snowpack. Each layer is characterized

by its thickness, ice mass, liquid water content, tem-

perature, and effective grain radius. Snow can also exist

in the model without being represented by explicit

snow layers, which occurs when the snow depth is less

than 0.01m. A snow layer is initialized when the snow

depth is greater than or equal to 0.01m and, depending

on whether there is accumulation or depletion of snow,

snow layers are combined or subdivided. Liquid water

from rain or snowmelt remains within a snow layer

until the layer’s water holding capacity is reached and

the excess water is allowed to percolate to the un-

derlying layer. The percolating water at the base of the

snowpack becomes runoff or infiltration depending on

the permeability of the soil (see Beven and Kirkby

1979; Niu et al. 2005; Niu and Yang 2006). Snow den-

sification is a result of processes including destructive

and constructive metamorphism, such as overburden

pressure (see Flanner and Zender 2006) and melt–

freeze cycle due to the presence of liquid water in the

snow (see Brun 1989). One of the major new capabil-

ities of the snow model is the representation of the

evolution of snow microphysical structure (effective

grain size) as a function of temperature, layer tem-

perature gradient, density, and initial size distribution

(see Flanner and Zender 2006). Snow effective grain

size is critical for determining snow albedo, the depth

of radiative penetration, and the influence of impuri-

ties, such as black carbon and mineral dust on the al-

bedo. Snow albedo is calculated as a function of snow

aging, effective grain size, solar angle, and pollution

(Warren and Wiscombe 1980; Flanner and Zender

2005, 2006; Flanner et al. 2007). SCF is calculated as a

function of snow density and snow depth as follows

(Niu and Yang 2007):

f
sno

5 tanh

(
Z

sno

2:5Z
0m,g

[min(r
sno

, 800)/r
new

]m

)
, (1)

where Zsno is the depth of snow (meters), Z0m,g 5 0:01 is

the momentum roughness length for soil (meters),

rnew 5 100 kgm23 is the density of new snow, andm5 1

is used for global applications. Snow density is calcu-

lated as follows:

r
sno

5W
sno

/Z
sno

, (2)

where Wsno is the SWE (kgm22).

b. Experimental design

The CLM4 simulation was forced with atmospheric

data from MERRA-Land (Reichle et al. 2011; Reichle

2012). To create the initial conditions, we ran CLM4 for

600 years driven by repeating 25-yr (1979–2004) MERRA

meteorological forcing, with the satellite-based plant

phenology, land use, aerosol and nitrogen deposition,

and the CO2 level for year 2000 conditions as a refer-

ence case created at NCAR. The resulting restart file

was then used in the subsequent 1979–2012 simulation

using the same initial atmospheric and satellite-derived

phenological composition set as for the spinup process.

c. Validation datasets

Table 1 is a summary of the models and datasets used

in this study.

1) MODIS SNOW-COVER OBSERVATIONS

To assess the CLM4 SCF output, we used the 0.058
Terra MODIS climate-modeling grid (CMG) level-3

snow-cover products (MOD10C1; Hall et al. 2006a,b).

The MOD10C1 data are created by assembling daily

tiles of 500-m resolution (MOD10A1) and binning them

TABLE 1. Summary of the datasets and land surface models used in the study.

Dataset Description Resolution Domain Parameters

CLM4 Snow model with up to five layers 0.58 3 0.678 converted into CMC

resolution for comparison

NH SCF, snow depth, and

SWE

MODIS Terra MODIS CMG level-3 snow-cover

products (MOD10C1)

0.058 3 0.058 aggregated into

0.58 3 0.678
NH SCF

IMS Binary snow product based on satellite

observations

;0.258 3 0.258 NH SCF

CMC Snow depth reanalysis SWE estimates

based on Sturm et al. (2010)

parameterization

;0.258 3 0.258 NH Snow depth and SWE

MERRA-Land Three-layer snow model 0.58 3 0.678 converted into CMC

resolution for comparison

NH SCF, snow depth, and

SWE

SNOTEL Point-scale in situ SWE, most at 2000–

3000m altitude

702 stations data used United States SWE

COOP Point-scale in situ snow depth most at low

altitude

1797 stations data used United States Snow depth
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into a CMG cell. The MOD10A1 tile snow-cover data

are based on a snow-mapping algorithm using the Nor-

malized Difference Snow Index (NDSI) and other cri-

teria tests (see Hall et al. 2006a). The CMG product

includes a daily confidence index (CI) field, which is

defined as the percentage of clear-sky land observed for

the day. TheMOD10C1 snow-cover products have been

evaluated extensively against independent satellite and

ground-based datasets for a wide variety of landscapes

and have shown good agreement with the in situ ob-

servations (Bitner et al. 2002; Klein and Barnett 2003;

Maurer et al. 2003; Rango et al. 2003; Brubaker et al.

2005; Hall and Riggs 2007; Riggs and Hall 2012). The

products are available from 24 February 2000 to present

via the National Snow and Ice Data Center (NSIDC)

website. In this study, we used the data poleward of 308N
from 2001 to 2010 (10 years). We aggregatedMOD10C1

to coincide with 0.58 3 0.678 (latitude 3 longitude)

CLM4 grid resolution, taking into account only CMG

cells with a daily percentage of snow greater than 0 and

CI greater than 20%. The daily SCF are then averaged

into monthly SCF in order to minimize the cloud-cover

effect while accommodating data gaps.

2) CMC DAILY SNOW ANALYSIS PRODUCT

CMC snow analysis consists of the NH snow depth

data (Brasnett 1999; Brown et al. 2010). The snow depth

is generated based on a 6-hourly optimal interpolation

of an extensive in situ snow depth report from theWorld

Meteorological Organization (WMO) information sys-

tem. The first-guess field is obtained through a simple

snowmodel driven with 6-hourly meteorological forcing

from the Canadian forecast model (Brasnett 1999). CMC

data have a horizontal resolution of approximately 24-km

in a polar stereographic grid. The grid closely approxi-

mates what is used by NOAA for the 24-km daily IMS

snow product (see description below). The observations

are available via NSIDC from 1998 through 2014. In this

study, we used daily data for the period from 1 January

2001 to 31 December 2010. The CMC snow depth data

were converted to SWE estimates (see Forman et al.

2012) using Sturm et al. (2010) snow densities. Consid-

ered to be the best available snow observations for the

NH, CMC snow depth and SWE data are frequently

relied upon to evaluate modeled snow (e.g., Su et al.

2010; Reichle et al. 2011; Forman et al. 2012).

3) IMS SNOW-COVER PRODUCT

The IMS is a binary snow (snow–no snow) product of

NOAA’s National Environmental Satellite, Data, and

Information Service (NESDIS; Ramsay 1998; Helfrich

et al. 2007). IMS provides estimates of daily NH snow

cover at an approximate 24-km resolution in a polar

stereographic projection. The IMS snow product uses a

temporally variable and complementary array of data

such as 1) satellite imagery including the Polar Opera-

tional Environmental Satellites (POES), the Advanced

Very High Resolution Radiometer (AVHRR), the Geo-

stationary Operational Environmental Satellite (GOES),

the Special Sensor Microwave Imager (SSM/I), the

Geostationary Meteorological Satellite (GMS), and the

European Weather Satellite (Meteosat); 2) derived

snow products generated from the Advanced Micro-

wave SoundingUnit (AMSU), theAMSR-E, the SSM/I,

the National Centers for Environmental Prediction

(NCEP) models, and the United States Air Force Snow

and Ice Analysis; and 3) in situ observations. These data

are subject to extensive quality control during the gen-

eration of IMS product though intercomparison of these

multiple sources of data. A quality-control module in

the data processing algorithm is aimed at reducing un-

certainties due to the limitations of satellite data collec-

tion such as the dense cloud cover, thick forest canopy, or

the difficulties of discriminating snow cover from other

similar-looking features such as cloud. MODIS is also

used, but was not part of the original satellite observation

used as input source data for IMS. MODIS is used as

auxiliary data to enhance IMS starting in February 2004,

and its use only involved theMODIS channel 1, while the

MOD10C1 snow-cover retrieval is based on the NDSI,

which uses channels 4 and 6 of MODIS observations.

Hence, IMS and MODIS SCF are considered as in-

dependent in this study. IMS is used operationally as in-

put data in numerical weather forecast models run by the

NWS as well as several other governmental agencies. The

data are available via the NSIDC website from 1997 to

present. In this study, we used the data from 1 January

2001 to 31 December 2010.

4) IN SITU DATA

(i) SNOTEL data

The SNOTEL (Serreze et al. 1999) data are point-

scale in situ snow depth and SWE observations collected

by the Natural Resources Conservation Service (NRCS)

from a network of about 813 automated snow stations in

13 states in the western United States, including Alaska.

Most sites are located in 2000–3000-m elevation regions.

All SNOTEL sitesmeasure SWEusing a pressure-sensing

snow pillow and report on a daily basis at 0800 UTC.

The data are available from the NSIDC website. For a

detailed description of the stations and the data, see

Serreze et al. (1999). Although there are scale and spa-

tial sampling issues with SNOTEL network data, their

data remain the only reliable in situ SWE observations

available for model validations. SNOTEL has been
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successfully used for regional-scale SWE analysis

(Simpson et al. 1998; Serreze et al. 1999; Peterson et al.

2000; Moser et al. 2011) and validation of LSMs (Pan

et al. 2003; Clow et al. 2012). In this study, a total number

of 702 stations were screened and used over the 10-yr

study period.

(ii) COOP

The COOP weather- and climate-monitoring network

consists of more than 10000 stations across every state

and territory in the United States and provides mea-

surements made by volunteers over a wide range of

landscapes, including national parks, coastal, mountain-

ous, and agricultural areas, as well as urban and suburban

areas. At nearly 8000 of those sites, daily surface tem-

perature, precipitation, snowfall, and snow depth are

measured. The data are subject to comprehensive

quality-control methods (see Durre et al. 2010) to ensure

consistency between snow and other meteorological ob-

servations. The data are available via NOAA’s National

Centers for Environmental Information (NCEI) website

(http://www1.ncdc.noaa.gov). The data were screened (as

described in section 2d) and a total of 1808 stations for the

10-yr period of 2001–10 were used in this study.

5) LAND SURFACE DATA PRODUCT OF MERRA-
LAND

The MERRA (Rienecker et al. 2011) forcing data are

generated by the NASA Global Modeling and Assimila-

tionOffice (GMAO) using the Goddard Earth Observing

System, version 5 (GEOS-5), and it is associated with

the Data Assimilation System (DAS), version 5.2.0

(Rienecker et al. 2008). The forcing fields are available

hourly at horizontal resolution of 0.58 3 0.678 (latitude3
longitude) and 72 vertical levels from the surface to

0.01hPa (Rienecker et al. 2011) and include precipitation,

solar radiation, pressure, specific humidity, air tempera-

ture, and wind speed. The MERRA precipitation field

used in this study is corrected with the NOAA Climate

Prediction Center Unified (CPCU) daily precipitation

product, which was obtained from the MERRA-Land

dataset [for more details, see Reichle (2012)].

MERRA-Land uses the latest version of Catchment

land surface model (Koster et al. 2000; Ducharne et al.

2000). The Catchment model includes a three-layer

snow module that incorporates snow physics including

densification, snowmelt, and refreeze (Stieglitz et al.

2001). When snowfall occurs on bare soil, the snow is

initially spread out over a fraction of the catchment so

that at any given point the SWE is equal to a constant

value known as minimum water equivalent (WEMIN).

In the MERRA-Land GEOS, version 5.7.2 (GEOS-

5.7.2), WEMIN was changed from 13 to 26mm. Other

parameters also changed [see Reichle et al. (2011), their

Table 2], including the capacity of canopy interception

reservoir, the areal fraction of canopy leaves onto which

large-scale precipitation falls, the areal fraction of canopy

leaves onto which convective precipitation falls, and the

maximum depth of the uppermost snow layer. Detailed

explanations on the improvements are found in Reichle

et al. (2011). The data are available online through the

Goddard Earth Sciences (GES) Data and Information

ServicesCenter (DISC) (http://disc.sci.gsfc.nasa.gov/mdisc)

from 1 January 1980 to present. In this study, we used daily

averages of snow outputs (snow depth and SWE) at a

resolution of 0.58 3 0.678 (latitude 3 longitude) from

1 January 2001 to 31 December 2010.

d. Validation metrics

We computed several metrics to assess CLM4 snow

outputs using the data from independent observations

described above. We excluded the summer months

(July–September) from the computation of the metrics

and required a minimum 200 days across the 10-yr daily

time series (;5%). Standard statistical techniques in-

cluding mean bias, regular and normalized root-mean-

square error (RMSE), Pearson correlation coefficientR,

and Nash–Sutcliffe model efficiency (NSCE) were used

to evaluate the CLM4SCEagainstMODIS observations.

To assess CLM4 snow depth and SWE using CMC,

SNOTEL, and COOP data, we computed the mean bias,

RMSE, and climatological seasonal cycles over the 10-yr

period. Anomaly time series were also calculated by

subtracting from each time series its mean seasonal cycle.

We then computed the anomaly correlation between the

model anomaly time series and corresponding observa-

tion anomaly time series. Correlation betweenMERRA-

Land and CMC was also computed and statistical

significance of the difference between them was com-

puted using the Fisher r-to-z transformation test. The

standard probabilistic verification scores (Wilks 2006)

were used to compare IMS SCF against the model.

Because IMS snow cover is a binary (snow–no snow)

type product, the model fractional snow cover was

first converted into binary snow cover. Frequency bias

B, probability of detection (POD), false alarm rate

(FA), and proportion correct (PC) were calculated

using the contingency table elements (a, b, c, and d)

defined in Table 2.

The frequency bias estimates compare the frequency

of themodel estimates of presence or absence of snow to

the observation and do not measure the model’s accu-

racy. The proportion correct provides information about

the accuracy of binary estimate. It ranges from 0% to

100%, with a value equal to 100% representing the

perfect score. The probability of detection represents a

JANUARY 2016 TOURE ET AL . 157

http://www1.ncdc.noaa.gov
http://disc.sci.gsfc.nasa.gov/mdisc


ratio of snow presence prediction to the total number of

snow observation. As in PC, POD ranges from 0% to

100%, with 100% being the perfect score:

B5 (a1 b)/(a1 c) , (3)

POD5 a/(a1 c) , (4)

FA5 b/(b1 d), and (5)

PC5 (a1 d)/(a1 b1 c1 d) . (6)

3. Results

a. Comparison against MODIS product

Figure 1 shows the time series of CLM4 and MODIS

SCE observations for the entire Northern Hemisphere.

Table 3 summarizes the statistical comparison between

CLM4 and MODIS SCE for the entire NH and selected

regions with complex topography where CLM4 tends to

underestimate SCE. The values are averaged over the

10-yr study period (2001–11). CLM4 SCE exhibits rel-

ative bias [relative bias5 (CLM4SCE/MODISSCE)2 1]

of 20.07 and normalized RMSE (NRMSE 5 RMSE/

range of SCE) of 0.60. CLM4 SCE correlates well with

MODIS SCE with R of 0.91 and NSCE of 0.93. The low

values of bias and NRMSE combined with the high

values ofR and NSCE, and skill score.0.5 suggests that

overall the model is able to quantify SCE accurately.

During the snow accumulation period, themodel closely

resembles the MODIS observations with a slight un-

derestimation. Overall, other than during the months of

December and January when SCE is overestimated,

CLM4 underestimates SCE, particularly during the

melting season (Figs. 1b, 2b) because of early snowmelt.

The mean seasonal cycles of CLM4 and MODIS SCE

(Fig. 2) are almost identical with peak SCE occurring in

February. ThemaximumSCEvalue is about 383 106km2,

which is smaller than what has been reported in Clifford

(2010) for MODIS. An explanation could be that MODIS

grid cells with confidence index less than 20 were not

taken into consideration for the computation of SCF.

This filtering was done to avoid cases where the re-

trieval algorithm could be mistaking cloud cover for

snow or vice versa. We computed the metrics for areas

where the model tends to underperform (Table 3) and

found that the continental United States has the largest

relative bias (20.58), while the smallest relative bias

was in western Siberia (20.13). Time series of relative

bias (figure not shown here) indicate that in areas char-

acterized by complex topography, the model consistently

TABLE 2. Contingency table of observations vs model showing

the count of snow–no snow events pairs, where a represents the

hits, b represents the false alarms, c represents the misses, and

d represents the correct negative or negative hits.

MODIS observations

Snow No snow

Model Snow a b

No snow c d

FIG. 1. Time series of monthly estimates of simulated CLM4 and observed MODIS snow

area extent (106 km2) for the NH poleward of 308N. (a) The blue solid line is the MODIS

estimate, and the dashed magenta line is the model estimate. (b) The blue line represents the

difference between CLM4 and MODIS SCE.
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underestimates SCE during the ablation season. Relative

bias averaged over the entire NH tends to oscillate be-

tween positive and negative, with negative relative bias

occurring during the melting season.

To further the understanding of the spatial distribu-

tion of the CLM4 error against MODIS SCF and the

model behavior during the snow buildup, the maximum

snow accumulation, and the depletion phase (Fig. 3), we

computed the difference between CLM4 and MODIS

maximum snow-cover extent for October–December

(OND), January–March (JFM), and April–June (AMJ).

During the snow buildup phase (OND), SCF is posi-

tively biased in high latitudes in the eastern United

States, the northern part of the Rocky Mountains, the

southern edge of the snow line in Eurasia, and the Ti-

betan Plateau (TP), while the southern part of the

Rocky Mountains and the Great Plains are dominated

by negative bias. During the period of maximum snow

cover (JFM), the snow cover in theArctic is at 100% and

unbiased. Positive biases persist in the areas with rela-

tively high topographic variability (the Rocky Moun-

tains and southeastern Siberia). During the melting

season (AMJ), negative biases dominate the snow cover

except for eastern Europe and the Rocky Mountains.

Overall, in the fall the model tends to overestimate SCF

while in the spring the model underestimates SCF.

Swenson and Lawrence (2012) investigated this model

behavior and found a problem in the parameterization

of the model SCF. The CMC snow analysis data used to

establish Eq. (1) tend tomelt early compared toMODIS

observations. Furthermore, the parameterization of

SCF was derived from the AVHRR observations and

the CMC snow depth analysis, both at 18 3 18 spatial
resolution and monthly temporal resolution. A 1-month

time period is too short compared to a typical snow ac-

cumulation period and too long to accurately describe

the snowmelt. The accumulation phase of snow is longer

(from the beginning of fall to late January in many

areas) than the ablation period, which lasts only for a

few weeks (from April to May). The same parameteri-

zation used for accumulation is also used for the ablation

even though it does not reflect the hysteresis in SCF for

a given snow depth between accumulation and melt

phases. All of these factors contribute to CLM4 SCF over-

estimating snow amount in fall and underestimating it in

the spring. The discrepancies between MODIS and model

SCF could in part come from the averaging of model

gridcell SCF used in the comparison. The averaging does

not capture the subgrid spatial variability of the SCF.

Subgrid distribution of snow is difficult to model accurately.

Forest regions tend to bemore error prone in satellite-

derived snow products (Arsenault et al. 2014). Thus, we

used global forest-cover fraction (ff) data derived from

MODIS observations as a mask, and computed relative

bias, NRMSE, and R between CLM4 and MODIS SCE

for areas with different forest-cover fractions. In areas

where ff , 0.25, the relative bias (NRMSE) and R are

20.23 (1.34) and 0.76, respectively. Forest-cover increase

(0.25, ff, 0.5) leads to increase in relative bias (NRMSE)

to 20.30 (1.36) and decrease in R to 0.68. For ff . 0.75, R

decreases to just 0.57with a relative bias of20.36.However,

it is not necessarily evident that the performance of CLM4

TABLE 3. Comparison of MODIS and CLM4 SCE for the entire NH and selected regions of the globe.

Bias

(103 km2)

Relative

bias

RMSE

(103 km2)

NRMSE

(to data range) NSCE

Skill

score R

NH 21.54 20.07 15.62 0.60 0.83 0.60 0.91

CONUS 22.89 20.54 10.63 1.46 0.29 0.19 0.55

Midwestern United States 21.71 20.51 7.43 1.68 0.29 0.20 0.63

RockyMountains, United States 24.95 20.58 13.08 1.44 0.13 0.08 0.50

Western Siberia 20.61 20.13 8.68 0.82 20.10 0.06 0.53

FIG. 2. For the NH poleward of 308N (a) average SCE (106 km2)

from CLM4 and MODIS (2001–10) and (b) SCE difference

(CLM4 2 MODIS; 106 km2). The red solid line in (b) indicates

CLM 2 MODIS 5 0.
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worsens when ff increases. While it is possible that the

MODIS snow-cover fraction is not always reliable in

areas with dense forest cover, the extent and nature of

this error is not known quantitatively.

b. Comparison against IMS product

Because cloud cover affects MODIS daily snow-cover

observations, it is very rare to have a dailyMODIS snow

mapwith a complete global coverage. IMS snow product

constitutes an alternative that has the advantage of

globally complete coverage. To compare IMS with

CLM4 SCF, a threshold of 25%SCFwas used to convert

CLM4 SFC into binary data. The choice of the threshold

was arbitrary. The value was varied between 50% and

25% and the changes did not significantly affect the re-

sult of the conversion. We applied Eqs. (3)–(6) to

compute frequency bias, POD, FA, and PC of IMS

versus CLM4 SCF. The computed statistics are pre-

sented in Fig. 4. The mean frequency bias (Fig. 4a) of

85% indicates that the model underestimates the NH

snow cover compared to IMS. As for the temporal dis-

tribution of frequency bias, the model overestimates

snow cover in October, agrees well from November to

January, and underestimates from February to September.

The PC (see Fig. 4b) shows high accuracy of CLM4 pre-

diction with a seasonal mean of 94%. The higher values are

found in the summer because of inclusion of hit negative

(d in Table 2) in the computation of PC. Unlike PC, POD

(Fig. 4c) does not include d in the calculation [Eq. (4)]. In

general, there is a strong agreement between CLM4 and

IMS (a seasonal average of 76%). The POD is stronger

(.0.80) during the winter and weaker during the spring.

FA has a negative orientation where FA5 0% represents

a perfect score. Figure 4d shows that the FA is very low (a

seasonal average of 3%); it increases during the accumu-

lation phase, reaches the maximum in February at ;6%,

and decreases during the depletion phase. The temporal

evolution of FA is consistent with that of PC, with the

lower value of FA corresponding to the higher value of

PC. The low values of FA are an indication of the fact

that the model underestimates IMS.

Figures 5a–h are examples of the spatial distribution

pattern of hit, FA, hit negative, and misses of the model

estimates compared to IMS snow cover for the snow

season 2006/07. They represent the snow difference on

the first day of the month of October (Fig. 5a), No-

vember (Fig. 5b), December (Fig. 5c), January (Fig. 5d),

and February–May (Figs. 5e–h). Overall, the model

agrees reasonably well with IMS. During the snow ac-

cumulation phase, FA (error of commission) tends to

dominate andmisses (error of omission) tend to occur in

the Rocky Mountains, in parts of the U.S. Great Plains,

and over the TP (Figs. 5a–c). FromDecember to the end

of the snow season (Figs. 5c–h), FA tends to dominate.

This is because the model snow line moves earlier com-

pared to IMS, which could be an indication of model ten-

dency toward early snowmelt. IMS product was also found

to detect snow when MODIS does not, especially during

the melting season (Frei and Lee 2010). The misses in

Figs. 5e–h could be in part explained by the bias in IMS

SCF. In fact, Frei and Lee (2010) found that in June IMS

detects 40% more snow than MODIS, especially in north-

ernCanada (Nunavut andNorthwest Territories). Themost

pronounced discrepancies among CLM and MODIS, IMS,

and CMC occur in AMJ during the ablation season. The

results are consistent with Frei and Lee (2010) when they

FIG. 3. Spatial distribution of the difference (CLM4 2 MODIS) for SCF in percentage for OND, JFM, and AMJ

from 2001 to 2010.
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compared IMS to MODIS and CMC snow cover during

AMJ over North America. The results were also con-

firmed by Brown et al. (2010) in a pan-Arctic study of

the SCE involving IMS, MODIS, and CMC. They

showed that the largest SCE in May was given by IMS,

followed by MODIS and then CMC. The use of CMC

monthly snow depth in the parameterization of CLM4

SCF makes the model also susceptible to the same

kind of error as in CMC, as discussed in section 3a.

COMPARISON AGAINST CMC PRODUCT

We assessed CLM4 snow depth and SWE against the

CMC snow products. Figure 6 represents the station

distribution of bias, RMSE, and anomaly correlation.

Positive high biases are found in the high latitudes and in

the Rocky Mountains. Relatively deep snow cover and

long cold winters characterize these areas. The model

snow depth estimates agree reasonably well with the

CMC reanalysis data in the southern part of the Cana-

dian Prairies as well as in the U.S. Great Plains, western

Europe, and southern Russia. Large negative biases

are found in the TP. The area-weighted-average bias

is 20.044m. The same pattern also can be seen for

RMSE (Fig. 6b) with an averageRMSEof 0.19 (Table 4).

The average anomaly correlation of snow depth is

0.47. Areas of northern Canada, Siberia, and the TP

have very low skill (R , 0.1) as shown in Fig. 6c. Many

factors could explain these discrepancies, among them

the scarcity of observations used in the production of

CPCU precipitation. Also, the quality of the CMC

product depends on the availability of in situ snow

stations used in the CMC snow depth analysis where

there are fewer snow stations (mostly located at air-

ports) at higher latitudes. The model agrees well with

CMC in areas such as the United States, southern

Canada, and western Europe, where a dense network of

WMO stations is used to condition the CMC data (see

Reichle et al. 2011). The statistics are computed for

subsets of the NH domain (see Table 4). The Canadian

province of Quebec is known to have a strong north–

south gradient in snow depth (Brown 2010) and the

vegetation changes northward from mixed forest to

boreal forest and taiga–tundra. The computed statistics

(Table 4) show a rapid increase of positive bias (RMSE)

relative to CMC from south to north. The southern part

with dense broadleaf vegetation has the highest anomaly

correlation of 0.68, followed by the boreal region with

0.52 and the taiga–tundra area with just 0.30. Because of

the presence of a dense network of snow and precipitation

measurement stations in the south, the agreement between

the model and CMC is high despite the presence of dense

vegetation in the south.

Areas with complex terrain were also analyzed fur-

ther, including Alaska, the Rocky Mountains, western

Siberia, and the TP. There is a low positive bias in

Alaska, the Rocky Mountains, and western Siberia. The

TP has a large negative bias and the anomaly correlation

is close to zero. The low correlation in these areas can be

FIG. 4. Comparison ofCLM4binary SCF estimates (snow–no snow) and IMS for theNHpoleward of 308N (2001–10):
(a) frequency bias, (b) PC, (c) POD, and (d) FA.
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attributed in part to the imperfect parameterization of

the snow cover and the snowmelt model (Swenson and

Lawrence 2012), but also to the atmospheric forcing being

too coarse to resolve subgrid topographical effects. Further,

CLM4 computes snow depth on the assumption that the

snow is evenly spread across the grid cell, which often re-

sults in unrealistically thin snow depths where SCF is less

than 1, when in reality snow may be distributed in patches.

FIG. 6. Computed statistics of simulated snow depth relative to CMC snow product for the NH (2001–10): (a) bias,

(b) RMSE, and (c) anomaly R.

FIG. 5. Spatial distribution of hit, FA, hit negative, and misses of the model estimates compared to IMS snow cover for the snow season

2006/07. They represent the snow difference on the first day of the month of (a) October, (b) November, (c) December, (d) January, and

(e)–(h) February–May.
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Areas with ephemeral snow, such as the northern part

of the Canadian Prairies, also have low skill, as doNunavut,

the Northwest Territories, and the Mackenzie River basin

(Fig. 6, Table 4). These areas have limited in situ observa-

tions available for correcting forcing data as well as for

conditioning the CMC reanalysis product (Reichle et al.

2011). In these areas, CMC data are considered un-

reliable. Another source of uncertainty could bemodel

underestimation of snow sublimation. At high lati-

tudes, snow sublimation can be a significant component

of snow ablation. Snow sublimation from on-ground

and canopy-intercepted snow is a complex process that

is not yet fully understood.

c. Comparison against in situ data

Because of the lack of reliable spatial and temporal

large-scale SWE observations, point-scale SNOTEL

SWEdata were the only available data for the validation

of CLM4 SWE. In this section, we compared CLM4

SWE and snow depth against SNOTEL SWE and COOP

snow depth, respectively. A summary of the statistics

is presented in Table 5.

1) CLM4 VERSUS SNOTEL SWE

The mean seasonal cycles of CLM4 SWE and those

averaged over 702 SNOTEL stations were calculated for

the 2001–10 study period. Figure 7 shows a large nega-

tive bias in simulated SWE. The mean SNOTEL SWE

was approximately 6 times greater than that of CLM4.

The mean bias and RMSE (Table 5) were 20.22 and

0.23m, respectively. The large bias is not surprising be-

cause of the inherent variability of SWE within a grid

cell of 0.58 resolution. The average elevation of the 702

stations used for the study was 2120m. To evaluate the

model’s ability to simulate temporal variability of SWE,

which is often more important than its absolute magni-

tude, the anomaly correlation was computed after sub-

tracting the study period’s mean seasonal cycle from

each time series. The resulting anomaly correlation of

0.45 was close to the correlation between CLM4 and

gridded CMC data (0.43). It is notable that while

SNOTEL stations are located in the mountains, they are

all placed on flat surfaces where deeper snow accumu-

lation is likely, such that the spatial average may have a

high bias.

TABLE 5. Summary of the metrics of CLM4 vs SNOTEL SWE at

702 stations andCLM4 snow depth vs COOP at 1797 stations (from

January 2001 to January 2011).

Bias (m) RMSE (m) R

SNOTEL SWE 20.22 0.23 0.45

COOP snow depth 20.034 0.10 0.52
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2) CLM4 VERSUS COOP SNOW DEPTH

COOP is an extensive climate-monitoring network of

more than 11 000 volunteers and institutions across the

United States, collecting and reporting daily hydrome-

teorological data including snow depth. After pre-

processing and screening as described in section 2d, a

total of 1797 COOP stations were considered in this

analysis. Figure 8 depicts the evolution of CLM4 and

COOP snow climatology. While the seasonal variability

of CLM4 snow depth resembles that of COOP, the av-

erage climatology of CLM4 snow depth is ;36% lower

than that of COOP observations. Similar bias and

RMSE characteristics seen with SNOTEL data are also

evident. CLM4 underestimates with a bias of 20.034m

and an RMSE of 0.10m, with the larger bias occurring

during the month of March. The scale issue of grid

versus point is the only obvious explanation for the

discrepancies between SNOTEL and CLM4. The bias

is lower compared to the case with SNOTEL, pre-

sumably because COOP stations are mostly located

at lower altitudes. The anomaly correlation of 0.52 is

higher than in both cases with CMC and SNOTEL,

but is significantly close to the anomaly correlation of

CLM4 versus CMC when mountainous areas (the

Rocky Mountains and the TP) are excluded from the

analysis.

d. Comparison against MERRA-Land

We used MERRA-Land meteorological fields to force

CLM4. This provides an opportunity for an intercompar-

ison of CLM4 with the Catchment LSM. MERRA-Land

snow depth and SWE were compared to CMC; the

summary of the statistics is presented in Table 4. The

NH area-weighted-average bias of MERRA-Land

snow depth is lower at20.001 compared to20.044m

of CLM4, while RMSEs were 0.18 and 0.19m,

respectively. The correlation coefficient for MERRA-

Land snow depth is lower at 0.38 compared to 0.47 for

CLM4. The Fisher’s r-to-z transformation test of the two

correlation coefficients yielded a z value of 24.83 (with

probability P5 0.00). Since the P value is less than 0.05,

we concluded that the two correlation coefficients are

significantly different from each other. One explanation

of the lower skill of MERRA-Land compared to CLM4

could be that in the MERRA LSM, when snowfall oc-

curs on bare soil, snow is initially spread out over a

fraction of the catchment so that at any given point

the SWE is equal to a constant value (WEMIN 5
26mm). As a consequence, the model tends to pile up

the first snowfall vertically before spreading the snow

horizontally in the catchment. Further, before the max-

imum SCF is reached, the model output snow depth

is the depth of the snow within the snow-covered

gridcell area.

The difference between CLM4 and MERRA-Land

RMSE and square of correlation coefficient R2 against

FIG. 7. Mean seasonal cycle of SWE (2001–10); black is the SNOTEL observations and red is

the CLM4 estimates.

FIG. 8. CLM4 and COOP station-average snow depth climatol-

ogy (average of 1797 stations). The black line represents the COOP

stations signal, and the red line represents the CLM4 simulation.
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CMC are presented in Fig. 9. CLM4 has higher biases in

Northern Canada, Quebec, northern Eurasia, and the

TP compared to MERRA-Land. Lower biases are

found in southern Eurasia, the United States, and the

Canadian Prairies (Fig. 9a). The models show similar

spatial distribution of R2 in areas over western Siberia,

the TP, and northwestern Canada (Fig. 9b). In high al-

titudes, including the TP, there is a limited number of

snow depth observations used to condition the CMC

product. These areas correspond to areas where limited

numbers of radiosonde observations are available for

correction of MERRA forcing data [see Reichle et al.

(2011), their Fig. 9c]; therefore, both MERRA-Land

and CLM4 appear to perform worse in areas where

observations of snow depth are scarce (Table 4). SWE

also exhibits a similar spatial pattern (not shown), but

MERRA-LandR2 is significantly higher (0.53) than that

of CLM4 (0.43). WhenMERRA forcing without CPCU

correction is used to run CLM4,R2 of CLM4 snow depth

increases from 0.53 to 0.56 and that of SWE increases

from 0.43 to 0.49. A possible explanation for this in-

creasing skill could be that CPCU overcorrects the

precipitation field, especially at high altitudes where

fewer observation stations are available to condition the

forcing data.

Figure 10 represents the annual cycle (2001/02 sea-

son) of fraction of land covered by snow (LCF) based

on CLM4, and snow density of CLM4, MERRA, and

CMC. The CMC snow density is estimated using an

empirical model developed by Sturm et al. (2010),

based on data from the United States, Canada, and

Switzerland. The bulk of snow density is calculated as a

function of snow depth hi and the day of year (DOY) as

follows:

r
hi ,DOYi

5 (r
max

2 r
0
)[12 exp(2k

1
h
1
2 k

2
DOY

i
)]1 r

0
,

(7)

where 0, r0 , rmax , 1 g cm23. The variables k1 and k2

are the densification parameters for the depth and

DOY, rmax is the maximum bulk density, and r0 is the

initial density of the individual snow layer. Values of

these parameters as a function of the snow classes are

found in Sturm et al. (2010).

We calculated CLM4 and MERRA-Land snow

density for each snow class as defined in Sturm et al.

(1995). Figures 10a–f represent the densities of tundra,

taiga, maritime, ephemeral, prairie, and alpine snow

climate classes compared to CMC snow density. The

time series show that the CMC agrees reasonably well

with CLM4 and MERRA-Land for all snow climate

classes with the exception of ephemeral (Fig. 10d) and

prairie (Fig. 10e). Tundra, taiga, maritime, and alpine

snow climate classes all have high winter LCF (.70).

Ephemeral and prairie classes are characterized by

shallow snow and low winter LCF. Figure 11 shows the

correlation coefficients between CLM4 or MERRA-

Land and CMC. There is a strong correlation be-

tween simulated and observed density over all classes

except for ephemeral and prairie. The poor perfor-

mance of both CLM4 and MERRA in the Great

Plains and in the southern part of the United States

where snow is predominantly classified as ephemeral

is due to the snow densities used in the models. In

FIG. 9. Difference of (a) RMSE and (b) skill (R2) of CLM4 and MERRA-Land compared to

CMC snow depth.
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fact, Sturm et al. (2010) explicitly cautions against

the use of simple parameterizations to determine

density in areas with ephemeral and shallow snow

because of the lack of historic climatological and

snow density data and the complex nature of snow

metamorphism in these areas. The CMC snow density

in these areas also may be unreliable. Discrep-

ancies in snow density between CLM4 andMERRA-

Land could in part be explained by the difference

in the value of new snow density, which is set to

100 and 150 kgm23 for CLM4 and MERRA-Land,

respectively.

4. Discussion and conclusions

We ran CLM4 in offline mode with the MERRA-

Land atmospheric forcing data. The snowmodel outputs

were compared with a set of observation data including

MODIS SCF, IMS snow-cover data, SNOTEL SWE,

and COOP snow depth. The performance of CLM4

against CMC data was also compared to that of the

MERRA-Land snow model.

CLM4 snow outputs agree reasonably well with

MODIS SCF, IMS, and CMC observations but not with

point-scale in situ SNOTEL and COOP data. The largest

departure from the validation data appears in areas with

complex topography.

Comparisons with MODIS and IMS show that CLM4

underestimates SCF in the U.S. Prairies and southern

Russia in part because of the fast model snow ablation

resulting in the snow linemoving northward faster than the

observation. Many processes affect the snow spatial dis-

tribution at the subgrid level, including snow interception

by canopy, heterogeneous snow redistribution by wind

blowing (Liston 2004), and spatially heterogeneous pro-

cesses such as snowfall distribution and melting rate.

Equation (1) used to compute CLM4 SCFwas derived

from AVHRR observations and the CMC snow depth

analysis, both at 18 3 18 spatial resolution and atmonthly

temporal resolution.

This is problematic in that 1) the spatial resolution of

the data used is too coarse to resolve subgrid SCF

heterogeneity, 2) it has been demonstrated that CMC

data tend to melt earlier compared to satellite obser-

vation such as MODIS, 3) the time period of monthly

averaging is generally shorter than the accumulation

period (which can be a fewmonths) and longer than the

snowmelt period (which may last only a few weeks),

and 4) the model does not reflect the hysteresis in SCF

for a given snow depth between accumulation and

melt phases.

FIG. 10. Time series of LCF based on CLM4, and snow density

of CLM4, MERRA-Land, and CMC for each snow class as de-

fined in Sturm et al. (1995): (a)–(f) the densities of tundra, taiga,

maritime, ephemeral, prairie, and alpine snow climate classes,

respectively.

FIG. 11. Correlation coefficient of CLM4 and MERRA-Land

snow density against CMC for each snow climate class as defined in

Sturm et al. (1995): 1, tundra; 2, taiga; 3, maritime; 4, ephemeral; 5,

prairie; and 6, alpine.
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Snowmelt is controlled by meteorological conditions

such as radiation and wind and topographical features of

the terrain such as the slope and aspect. In CLM4,

emitted longwave radiation, sensible heat, latent heat,

and ground heat flux are all calculated based on the

assumption of uniform snow cover, whereas in reality

snow cover is more patchy. This could contribute to

simulated snow melting too fast in the spring, as the

model does not represent the deeper accumulations,

which are often shaded and protected by local topog-

raphy, allowing them to persist much longer into the

warm season. In the fall, the uniformity of simulated

snow cover increases the albedo, reducing net radiation

and thus surface temperature, allowing snow to accu-

mulate faster than it does in the real world. These issues

were investigated by Swenson and Lawrence (2012), and

they proposed two new parameterizations of SCF, one

for the accumulation phase of the snow and the other for

the depletion period. Testing the new parameterizations

against our dataset would be of interest, but it is beyond

the scope of this paper.

Even though the CLM4 binary snow cover compared

very well with IMS data, the map of snow cover reveals

misses in the southern United States and southern

Russia, confirming the findings from comparisons of the

CLMwithMODIS SCF that themodel has a bias toward

early snowmelt. It is impossible to evaluate exactly how

well CLM4 performs against IMS as IMS was found to

systematically overestimate SCF when compared against

MODIS observations.

SNOTEL represents the best available in situ SWE

data in the United States; however, it is not represen-

tative of the snow distribution in the average CLM4 grid

cell within which the SNOTEL station is located be-

cause of the complex nature of the terrain, which leads

to high variability in snow deposition. One may argue

that these data are not suitable for gridded model vali-

dation. We sought to investigate the temporal varia-

tions, as they are the most important in model-based

application. To evaluate the temporal variations, we

computed time series of anomalies for the model and

SNOTEL by subtracting their climatological mean sea-

sonal cycles before calculating the correlation. The

anomaly correlation (0.45) is relatively skillful, given

that of CLM4 and CMC is 0.43, and these relationships

can be applied for bias correction of the SNOTEL data

for a wide range of subsequent applications.

Both CLM4 and MERRA-Land show good agree-

ment with CMC in the midlatitudes and weak skills in

high latitudes such as Siberia, the TP, Alaska, and the

western coast of North America (Fig. 9b). In a multi-

model intercomparison, Brown and Mote (2009) found

similar results in those areas when CMC data were

compared to model outputs. ERA-Interim, a reanalysis

product of the European Centre for Medium-Range

Weather Forecasts (Simmons et al. 2007), also showed a

similar distribution of error compared to CMC, and

Reichle et al. (2011) reported that the MERRA-Land

and ERA-Interim models perform the best in areas

where in situ data are used to condition the forcing data.

The maximum snow depth in CMC was set to 120 cm.

This may explain the disagreement with CLM4 in areas

where the snow depth is more likely to surpass the

threshold.

CLM4 snow depth is computed on the assumption

that precipitation events uniformly distribute snowfall

across the grid cell. For SCF less than 1, this results in a

thinner snowpack than would be calculated if the snow

was spread in patches. This parameterization of snow

depth modifies the heat flux through the snowpack and

therefore influences the metamorphism of the snow,

which is responsible for the compaction of the snow and

evolution of the snow density.

Because of the scarcity of snow depth observations at

high latitudes and in China, CMC snow depth analysis is

generated entirely by the background field, but it is

considered to be unreliable (Brown et al. 2010). In areas

of shallow snow, CMC analysis has a tendency to un-

derestimate snow depth because most of the snow depth

observations used are from stations located in clearings

at low altitudes. This also causes CMC data to have

an early snowmelt in the spring (Brown et al. 2010);

therefore, it is impossible to tell which of the models

and CMC are most accurate in those areas. Errors in

the modeled snow depth result in part from imperfect

precipitation forcing. The density of precipitation

gauges in high latitudes and in some mountainous

regions is not high enough to reproduce the spatial

variability of the precipitation (Adler et al. 2003).

Another problem is precipitation undercatch due to

wind-induced turbulence at the gauge orifice, wetting

losses on the internal walls of the gauge, and evaporation

losses in precipitation measurements (Groisman and

Legates 1994). Bias corrections are usually applied to

account for the undercatch, but these are imperfect and

can lead to errors in the precipitation forcing (e.g.,

Swenson 2010). Uncertainty in the snow density param-

eterizations is another possible source of error contrib-

uting to the model’s disagreement with CMC.

Because of the limited number of in situ snow density

observations, the Sturm et al. (2010) density parame-

terization was used to convert CMC snow depth to

SWE. The parameterization is based on the Sturm et al.

(1995) seasonal snow classification (alpine, maritime,

prairie, tundra, and taiga), snow depth, and the day of

the year. It computes snow bulk density using a linear
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density–time relation to approximate the snow densi-

fication rate. The parameterization is empirical and

neglects interannual variability in densification rates.

Furthermore, because the parameterization was not

designed for a daily time step, it does not capture the

changes in the microphysics of snow that lead to local

variability in snow density. Thus, it may not be suitable

to convert time series of snow depth into SWE, espe-

cially in areas with shallow and ephemeral snow.

Finally, CLM4 mass conservation is computed using

the following equation:

imbalance5 (P2ET2Q)Dt2 (Dcan1DSWE

1DSM1DWA), (8)

where P is precipitation (rainfall plus snowfall), ET is

evapotranspiration, and Q is runoff (all in mmday21).

ET is a sum of vegetation transpiration, canopy evapo-

ration, and soil evaporation and snow sublimation, and

Q is composed of surface and subsurface runoff over

land and surface runoff at glaciers, wetlands, and lake.

The latter terms in Eq. (8) refer to the storage changes,

where D denotes changes in canopy-intercepted water

(can), SWE, soil moisture (SM), and aquifer water

storage (WA). The modeled water budget is balanced,

that is, there is no significant residual whereas there is

likely to be a residual in an assimilation model water

budget. We will reserve this discussion in the follow-on

paper on data assimilation.

These findings lay a foundation for a follow-up study

on using data assimilation to improve the simulation of

snow. MODIS data only indicate the presence or ab-

sence of snow and cannot provide information on snow

mass. The data can be used to improve the model

prediction in areas with shallow snow (,5 cm). Model

prediction in areas with moderate snow depth (,1m)

can be improved through a radiance assimilation

scheme using the brightness temperature measured by

AMSR-E on board the Aqua satellite. GRACE data

can be used to improve SWE prediction in areas with

deep snow, mountainous terrain, and dense vegetation

cover.
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