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Abstract. In this paper, we present a two-stage hybrid model physics, and initial conditions. A number of methods
Kalman filter to estimate both observation and forecast biasare available for this purpose, of which the most commonly
in hydrologic models, in addition to state variables. The bi- used are Newtonian nudgingtauffer and Seamai 990,
ases are estimated using the discrete Kalman filter, and ththe extended Kalman filtetelch and Bishopl995, the en-
state variables using the ensemble Kalman filter. A key issuesemble Kalman filterEvensen1994), variational assimila-
in this multi-component assimilation scheme is the exact partion (Rabier et al.2000, and the particle filterGordon et al.
titioning of the difference between observation and forecastsl993. These methods have been applied for the assimilation
into state, forecast bias and observation bias updates. Heref various variables. Examples of these variables and stud-
the error covariances of the forecast bias and the unbiasei@s that focus on their assimilation are surface soil moisture
states are calculated as constant fractions of the biased statalues Crow and van den Ber@010, surface temperatures
error covariance, and the observation bias error covariancéMeng et al, 2009, brightness temperatureSduffert et al.
is a function of the observation prediction error covariance.2004), radar backscatter valueslgeben and Trogh2000),
In a series of synthetic experiments, focusing on the assimsnow water equivalenDe Lannoy et al.2012), snow cover
ilation of discharge into a rainfall-runoff model, it is shown fraction Su et al, 2010, piezometric head dat&ten and
that both static and dynamic observation and forecast biaseghang 2006, chemical tracer datdNg et al, 2009, and dis-
can be successfully estimated. The results indicate a strongharge valuesRauwels and De Lannp2009.
improvement in the estimation of the state variables and re- In many studies, observations are used that contain both
sulting discharge as opposed to the use of a bias-unawamandom error and significant biasdfres et al.2012. Fur-
ensemble Kalman filter. Furthermore, minimal code modi-thermore, hydrologic model results do not only contain ran-
fication in existing data assimilation software is needed todom errors, but in many cases are also prone to Bialsfaq
implement the method. The results suggest that a better peet al, 2010. Typically, the above mentioned methods only
formance of data assimilation methods should be possible ifunction optimally when the assimilated data and the model
both forecast and observation biases are taken into accountare free of bias. In order to bypass this inconsistency, a
number of studies have focused on the removal of sys-
tematic differences between the assimilated data and the
model through rescaling the data to the model climatology
1 Introduction (Reichle and Koster2004 Slater and Clark2006 De Lan-

noy et al, 2012. Other studies have focused on the esti-
During the last decade, data assimilation has been frequently,ation of the forecast bias in addition to the model state
applied for the correction of errors in hydrologic model re- \4rigples, using the discretéglman 1960 and the ensem-

sults. These errors originate from uncertainties in meteoroye Kalman filter for both linear and nonlinear systems, in a
logical forcing data, model parameters, formulation of the
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wide range of applications ranging from groundwater mod-real-world example. The performance of the new methodol-
eling to soil moisture and temperature assimilatibe€ and  ogy is then analyzed in detail, and the possibilities for joint
Da Silvg 1998 Dee and Todling200Q De Lannoy et al.  observation and forecast bias and model state estimation are
2007 Drécourt et al.2006 Bosilovich et al, 2007 Reichle  assessed.

et al, 2010. Dee (2009 further explains how forecast bias
can be taken into account in a data assimilation system usin
the Kalman filter or variational assimilation as assimilation
algorithm. The estimation of observation biases through dat
assimilation has been investigated as welkkrber and Wu
(1998 present a simple observation bias estimation schem&pe equations for the simultaneous estimation of system
for the assimilation of radiance data into an atmospheriCsates and both forecast and observation biases will first
model. Auligne et al.(2007) and Dee and Uppsalé2009  pe derived for a linear system. The application of the ana-
used a variational approach to estimate satellite data b'aseR/ticaI expressions in an ensemble framework will then be
while Montzka et al(2013 used the particle filter for the re- explained.

trieval of remotely sensed soil moisture biases. Another ap- |, the pias-aware Kalman filter, the state of the system is

proach, as opposed to state updating and online bias eStimﬁ'ropagated from time steip— 1 to time stefk:
tion, is to update model parameters in addition to state vari-

ables, under the assumption that all forecast bias is caused B, = Ax_1Xr—1 + Br—1 fr—1 + wi_1. Q)

the model parameterMpradkhani et al.2005. o . _ _
There have been two major practical approaches for foreX« 1S the biased state vector, anf—, is the vector with
model inputs (for example the meteorologic input data).

cast bias estimation with a Kalman filter: state augmenta- h R -
tion (Drécourt et al. 2008 Kollat et al, 2011 and separate  Wk-1 IS the model error, which is a random error term with
state and bias estimatiofriedland 1969. Drécourt et al. ~ covananceQ_1. Ax—1 andBy_, are model matrices propa-
(200§ compared both approaches using a linear groundwad2ting states and forcings at time step 1 to states at time.
ter model, and concluded that both methodologies outperk: FOr the remainder of the paper, variables indicated with
formed the Kalman Filter without bias estimation. Two-stagea [] rgfer to biased var.|ables. The dn‘ference_between th_|s
state and bias estimation, referred to as bias-aware KalmafRduation and the equation used .|n the denvathn of the dis-
filtering by Drécourt et al(2008, is an attractive approach Ccréte Kalman filterKalman 1960 is that, here, biased state
where the state and the forecast bias are estimated individZ2iables are used instead of unbiased variables.

ually. Although it is clearly demonstrated that, in the pres- 1€ unbiased state vectog is defined as

ence of forecast bias, this methodology outperforms the Sy, — ¥, — b @)
timation of the model state alon®iecourt et al. 2006

De Lannoy et a].2007), observations are assumed to be un- ;" is the forecast bias. The system is observed as follows:
biased in these studies. Furthermore, we are not aware of as-

similation approaches in hydrological studies that estimate?* = Hi¥x + vk + b. @)
both observation and forecast bias, in addition to state vari-

L . X v is the vector with the biased observationg.is the zero
ables. The objective of this paper is therefore to develop gy,o4n (unbiased) observation error with covariaRgeH; is

methodology, based on the ensemble Kalman filter (EnKF)ne opservation matrix, ank is the observation bias. This
to estimate observation and forecast biases, as well as mOdghuation differs from the equation used in the bias-free dis-
state variables. More specifically, the methodologybe®e  rete Kalman filter through the observation bias term. The

and Da Silvg1998), in which two Kalman filters are applied, npiased observations can be calculated as follows:
is expanded to include observation biases as well. The major

assumption of the proposed methodology, as opposed to statg. = yi — by. 4)
augmentation, is that the observation and forecast bias errors )

are independent of each other and of the errors in the unbil N€ bias vectors are propagated as follows:

ased model state variables. This assumption needs to be ma%q,m —b

% Derivation for a linear system

31 System description

m
in order to enable the derivation of a separate state and bia bﬁi _ b’é_l : ®)
update equation. In this paper, we will demonstrate that, de- k k=1
spite this assumption, reasonable results can be obtained. THéese equations imply that, if no data are assimilated into the
equations for the estimation of the biases and the state varimodel, the bias at the next time step is simply assumed to be
ables are derived for a linear system, after which the applicathe same as in the previous time step.
tion for nonlinear systems in an ensemble framework is ex- In the derivation of the two-stage state and bias update
plained. The method is then applied to a very simple rainfall-equations, it is important to remark that the errors in the
runoff model, into which discharge values are assimilated,observation and forecast biases are assumed independent of

first in a well-controlled synthetic experiment, and then in a each other and of the error in the unbiased state of the system.
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2.2 Propagation of the states and biases 2.4 Definition of the error covariances

In a simulation framework, an estimate of the system state idn order to derive an expression for the Kalman gains, a num-
used in the model. For the remainder of this paper, estimatetder of error covariances need to be defined. The error covari-
variables are denoted with 4n. [.]~ indicates an a priori  ances of the unbiased states, forecast biases and observation
estimate (forecast, before the update), eiidan a posteriori  biases can be written as

estimate (analysis, after the update). The a posteriori stat

. T
estimate at time step— 1 is propagated to time stépas Py =E|(xk — %) (¥ — &) ]
follows: - - T
) A Prt = | (b - bp*) (b — ) } . (11)
Xp =Ar1X; ) + Broafeoa (6)

Pt = [(op -7 (b - ") |

Similarly, the error covariance of the biased states can be

The system is observed as follows:

Yo = Hixp + b7 (7)  written as
. . ) B . T
The bias estimates are also propagated: Plj_ —E [(ik _ i,‘j) (ik _ ilj) } _ (12)
I;Zl_ = I;anl i i ;
Bo— — pot - (8) 2.5 The equations for a bias-aware linear system
k= %1

AppendixB provides the details of the derivation of the equa-
tions for the application of the bias-aware Kalman filter. Fig-
The observations are used as follows to update the states ar%jcﬁe |1 Zhov;/]s a schem:tlgg of the eqqatlons that nebed.tc_)-ble
biases: applied. The state and bias vectors in step 1 can be initial-
’ ized with any appropriate prior guess, i.e., typically a spun

gzﬂ+ — ;;;{n— + K (;k _ i,z— — Hyg (fck— _ l?;f‘)) up biased state estimate ﬁ),tl, and zero estimates for the

2.3 Update of the states and biases

. . . 2 A biases. In other words, the model can be applied repeatedly
o+ __ po— oz _ po— _ == _ pm— . o .

b = Ifk +AK’< (y" by 1_"‘ <xk b} ) - ) using the same forcings for one or a number of years, until

o=x -0+ K (S’k —by" — Hy (i; - bZ’*)) the state variables of the first time step converge to a specific

value.
K¢, Ky, andK; are the Kalman gains for the forecast bias,
the observation bias, and the system states, respectively. ThH&6 Interpretation of the expressions for the Kalman
filter thus works in two steps. First, the a priori bias and state gains
estimates are used to update the observation and forecast bias o )
estimates. The update is performed using the unbiased estpteP 3 and step 5 in Fid. list the expressions for the three
mates: the observation bias is subtracted from the observd$@lman gains. These expressions can be compared to the ex-
tions, and the observation matrix is applied to the unbiased’ression for the Kalman gain for a linear, bias-unaware (or

state vector. The a posteriori forecast bias estinb4te is unbiased) system:

then used to calculate the a priori unbiased state estimate,l o o 1
which is defined as Ky = P Hi [Hk P, Hy + Rk] - (13)
X, = fc; - IA;Z”F. (10)  Inthe above derived expressions, firstly the observation bias

error covariance appears. For the bias estimation, the a pri-
This definition, in combination with the a posteriori obser- ori bias error covariances are used, while for the state update
vation bias estimates, is used to update the unbiased statealman gain the a posteriori error covariance is needed. This
estimates. It should be noted that the biased state is fed badk a logical consequence of Eq){ where the a priori ob-
into the model. In other words, EqL@ is an output equa- servation bias is subtracted from the biased observations in
tion, providing the unbiased state estimates, and is no part ofhe innovations (the difference between the unbiased obser-
the model integration. An analytical expression for the threevations and simulations), while the a posteriori bias estima-
Kalman gains is thus needed. It is relatively straightforwardtion is used in the state update.
to prove that the last update in E§) (eads to unbiased state Further, for the bias Kalman gains (step 3 in Fijj.both
estimates (AppendiR). He Py~ H,{ andH; |5k‘ H,{ appear in the denominator, while

for the state Kalman gain (step 5 in Fi).the denominator

containsHy P,/ HZ. This can again be explained by the up-

date equations (E§). For the bias updatelsl. (fck‘ — izl‘)
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1) Propagation of the state and bias estimates biased state is larger than the unbiased state. A similar re-
mark can be made regarding the observation bias. Assume
X, = ApaX 4+ Bpafi a model with positive forecast and observation biases. Fur-
{ b = b ther, assume a positive observation system (in other words,
b~ = bl all nonzero entries i, are positive). This means that an
. increase in the state variables will lead to an increase in the
2) Propagation of the error covariances observation. Assume also that the unbiased observation pre-
P, — AP Al +P' 4 Qo dictions are smaller than the actual unbiased observations
{ P = P (meaning that the expression between brackets in §ds (
P = P/, positive). This may imply that either the biased system state
is underestimated, or the forecast bias is overestimated, or
3) Calculation of the bias Kalman gains the observation bias is underestimated, or a combination of
- — these possibilities. The possible overestimation of the fore-
Ki = Py [Hk (PE + PZ"’) Hi + Py + Rk] cast bias explains the minus in the expression for the forecast
K = _PZHHE [Hk (13; + P’;CVL7> HE +Po + Rk} ! bias Kalman gain.

4) Updating of the bias error covariances 2.7 Interpretation of the method

Pt = [I-KY Py The objective of this method is to separate the mismatch be-
{ PPt = [I+KpPH) Py~ tween the observations and the model results into forecast
and observation bias, and random model and observation er-

5) Calculation of the state Kalman gain ror. This is an additional difficulty as compared to the bias-

unaware KF, where this mismatch is separated into random

K, = P H] [P H] + P + R | _ _
‘ » = P Hy [HyP Hy + P} d model and observation error. The Kalman gain (E8).can

6) Updating of the state error covariance be interpreted as the fraction of this mismatch that is assigned
to the model noise, and maps this mismatch from observa-
‘P* = [I - KeHy ] Py ‘ tion space onto state-space through the observation opera-

tor Hy. A similar reasoning can be made for the bias-aware
KF. The Kalman gain«}’, Ky (step 3 in Fig.1), andKy
{ brt = B 4 KD (ka- — b —H, (X; _ anf» (step 5 in Fig.1) indicate the fraction of the mismatch that

7) Updating of the bias estimates

can be attributed to the forecast bias, the observation bias,
and the random forecast error, respectively. For the forecast
bias and state estimates, these Kalman gains remap the dif-
ference between the unbiased observations and the unbiased
simulations thereof to state-space.

Step 2 in Fig.1 also shows that the propagation of the
_ _ _ _ prior unbiased state error covariance contains an extra term
Fig. 1. Schematic of the methodology for a discrete Kalman filter. 54 compared to the propagation for a bias-unaware (or unbi-
ased) linear system:

byt = by K (7 — by — Hy (30— b))

8) Updating of the state estimates

X =% — b+ Ky (yk — bt - H, <x; - Bg*))

A N - -+ T
is substracted from the observation$. — b}'~ is defined as Pr = AkaP g Aoy + Qe (14)

the_a priont es_t Imate Offrle unb@sed state, with an error “OMore specifically, the a posteriori forecast bias error covari-
variance matrix equal t8,. — P;'~. Both of these error co-

variances are used in the Kalman gain. For the system sta tta%nce needs to be added to the forecast error covariance (the
. + . . .
update x, appears in the innovation, and the unbiased error, m P? ). This can be expla!ned by the update.equauons.
ke T S Essentially, Eq.X) shows that in the system the biased state
covarianceP; s thus used (step 5 in F'g)', vector is propagated. The propagation of the biased state er-
As a summary, the Kalman gain takes into account the Unyqr covariance thus appears in step 2 in RigHowever, in
certainty of all the terms in the update equation, which €X-q caiculation of the unbiased state, the forecast bias is sub-
plains the different terms in the denominator for the thrée,cteq. This implies that the unbiased state error will consist
Kalmgn gain expressions. ) . of the error in the biased state and the forecast bias, which
A final remark is the minus that appears in the expressiongyp|ains the extra term in step 2 in Fity. The definition of
for the forecast bias Kalman gain. This is a direct result fromy, o \nbiased state forecast (or prior state) in E@) éxplains

the derivation shown in Append®. This can be explained \,y the posterior estimate of the forecast bias error covari-
by the definition of the forecast bias (E2). and the obser- ;.0 is used in step 2 in Fit.

vation bias (Eq4). A positive forecast bias means that the
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V. R. N. Pauwels et al.: Simultaneous bias estimations using a two-stage hybrid Kalman filter 3503

3 Application to nonlinear systems the cross-covariance between the system states and the ob-
servation simulations needs to be calculated, and a similar
3.1 General approach reasoning can be made. Another advantage is that, if a model

already contains a bias-unaware EnKF, the bias-aware filter
The equations in Sec2.5 can easily be modified for an ap- equations show that minimal code modification is needed to
plication in a nonlinear system. In this respect, a distinctioninclude the bias estimates.
must be made between the system model and the bias mod- The separate bias and state estimation is possible through
els. In Eq. b) persistent (and thus linear) bias models arethe assumption of uncorrelated state and bias errors. State
used, while the system matri;_1 is replaced by a nonlin- augmentation could take these correlations into account, but
ear model. One logical way to apply the bias-aware Kalmanis computationally more expensive through the calculation of
filter is thus to have a mix between an EnKF for the systemthe cross-covariance between the system states and the obser-
state, and a discrete KF for the biases. vation simulations.
The use of a persistent bias model is by itself an argument
for separate bias-estimation with a discrete KF. Because 0B.3 Estimation of the error covariances
the persistent nature of the bias model, an initial spread in o )
the ensemble of biases would remain unaltered during foreStep 3 and step 5 in Fid.show that a numbeJrrof error covari-
cast periods. This can be explained by the fact that during th@nces are needet’, P’ P, P;™, andP;™. These error
forecast step no observations are used to update the biasé@variances determine the partitioning of the difference be-
which do not change between time steps. Furthermore, thg/veen' the observations and forecggts into thg different error
spread in the bias ensemble would decrease at each analy§@8d bias components. However, it is not straightforward to
step. This is a typical property of the EnKF: the analysis Stepopnm_ally estimate each _of these error covariances. Here_, we
causes the state variables (and also the biases) to merge td§Scribe some assumptions made for this paper. The biased
specific value. Because of the different forcings and modelState error covariance is given by
parameters, the state variables will then again evolve to difp— _ p— _ pm— (15)
ferent values. However, since a persistent bias model is usedf k k
this evolution will not occur for the biases. This would cause In order to estimate the forecast bias error covariance, one
filter divergence, unless some artificial inflation would be ap-thus needs to know the unbiased and the biased state error
plied, would likely lead to inconsistencies between the statecovariances. In this paper, we assume that the unbiased state
and bias estimates. Here, we will leverage off the ensemblerror covariance is a specified fraction of the biased state er-
state error covariance to approximate the bias error covariror covariance. This is an approach that is used in many pa-
ance estimate for the discrete KF. pers focusing on the estimation of biases through data assim-
It should be noted that the mixed approach (an EnKFilation, includingDee and Da Silvg1998, Drécourt et al.
for the system states and a discrete KF for the biases) ha@006, andDe Lannoy et al(2007). Calculating the biased
been applied in several studies focusing on bias estimatiostate error covariance using the ensemble results, we can thus
(De Lannoy et a].2007). This approach is thus extended here write
for the inclusion of observation biases. _ =
Po =rP
3.2 Two-stage state and bias estimation versus state { P~ =1-y)P;
augmentation

(16)

y is a filter parameter, between zero and one, which can be

A two-stage filter has a number of advantages over state aug)btained through calibration. A value of zero indicates that
mentation. Firstly, the dimensions of the state vector do nothe entire model error is assumed to be caused by bias, while
increase. For a small number of state variables this may no@ value of one indicates that noise is the only cause of errors
be important, but for large systems this can be a considerabl the model resuits. _
advantage. The calculation of the forecast error covariance The observation bias error covariances can be estimated
requires:? - ne calculations (withs the number of state vari- u!’ld.er t_he assumption that a more uncertain observ§t|on pre-
ables ande the number of ensemble members). If the biasesdlctlor) is accompanleq by a more uncertain observation bias.
are added to the state vector, the calculatioRofwvould re-  For this reason, we estima®™ as a function of the error co-
quire (2ns + no)? - ne calculations (withi, the number of ~ varance of the observation predictions:

obse_rvations). The increase ip the required r_1umber.of calpz— — «H, Fsk— H/? (17)
culations thus evolves approximately quadratically with the

number of state variables, which can be a significant draw« is a filter parameter and can be estimated through calibra-
back for large systems. It should be noted that in the application. Determining a typical value for this parameter is not
tion of the EnKF the forecast error covariance does not needtraightforward, as it will depend on the magnitude of the
to be calculated explicitlyReichle et al.2002. However, different state variables and observations.

www.hydrol-earth-syst-sci.net/17/3499/2013/ Hydrol. Earth Syst. Sci., 17, 343521 2013
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y andx can thus be calibrated in order to optimize the Using the calculated Kalman gains and observation bias er-
filter performance. If the biases are correctly estimated, theor covariance, the state variables and the biases can then be
innovations in the update equation (step 8 in Higshould  updated:
consist of white noise since the bias is removed from both
the observations and the simulations. This means that the aufb/"* = b~ + K7’ (yk — by — I (friﬁ - 13;3*)1.71 N)
tocorrelation length of these zero-mean innovations should
be zero. Both parameters can thus be tuned in order to reacpb{™ = b~ + K¢ (S’k — by — hy (:?2‘ - 52")’__1 N) -(21)
this zero value. If the system and observations are unbiased, . . N .
zero values for both these parameters should be obtained. Tot" =¥ — 80" + Ki (3t — 67" — me (¥ - B) + i)
summarize, the values for andx are modified until the au-
tocorrelation length of the innovations is equal to zero. An
example of this filter parameter tuning is demonstrated in
Sect.7.2

hi(.) is a nonlinear function, relating the state variables to
the observations. Note that the two bias update equations are
deterministic, while the third state update equation is per-
formed for each individual ensemble memheis the en-

3.4 Summary semble member, anig ():cj(_ — I3Z1‘) y indicates the
1=

I summarv. the bias.aware EnKE can be anplied as follows2YE"29€ simulated observations, calculated across the ensem-
Y. bp ble. v; is a random realization of the observation error, and

]'{:"S; tth?' stat(tas a'md biases are propagated from time St6Q oo qed in order to ensure a sufficient ensemble spread
— 1 to time ste: (Burgers et a.1999.

X = fir (JQC}il, w;{,l)
by = b . (18) 4 Evaluation of the methodology
by = byt The derived equations are tested through a synthetic study.

A very simple rainfall-runoff model is first calibrated for
frk-1(.) is @ nonlinear operator representing the model inthe Zwalm catchment in Belgium. The obtained parameters
state-space, including the model parameters and the meteorare then used to generate discharge and storage values. The
logical forcings: is the ensemble member number, arjd;,  synthetically true storages are obtained by adding a prede-
is a realization of the model error, which can be obtained by &ined bias to the modeled storage values (which is consistent
perturbation of the model parameters, state variables, and/akith Eq. 2). The synthetic discharge observations are then

meteorological forcings. . obtained by adding a predefined observation bias to the dis-
The next step is then the calculation®f using the en-  charge, obtained with these biased storages. Furthermore, a

semble results: random-error term with a predefined standard deviation is
pk— _ NJ;l D DY f';\dded to the sy_nthetic discharge obsgrvations as well. This

is consistent with Eq.3). The synthetic observations are
Dy = |¥1 — X, ..., X~ — )%;] 19 then assimilated into the model, and the retrieved storages
A N : 19 and discharges can then be compared to the synthetic truth
X, = % X in order to evaluate the performance of the data assimilation
i=1 algorithm.

N is the number of ensemble membeR;. and P’~ are

then calculated using Eq1€), and P~ is calculated us- 5 Site and data description

ing Eq. L7). The three Kalman gains are then calculated in ) ) ) )
step 3 and step 5 in Fid. Following Reichle et al(2002), The study is performed in the Zwalm catchme_nt_ln Belglu_m.
P H! can be calculated as the covariance between the unIfoch et al.(1993 provide a complete description of this
biased state and the measurement predictionstamj H/Z test site; only a very short overview is given here. The to-

as the covariance of the unbiased measurement predictioni2! drainage area of the catchment is 114.3land the total
Analogously,lsk_ Hkr andH, |5k— HkT can be calculated using length of the perennial channels is 177 km. The maximum

the biased model results. This implies tﬁ‘gtandlz’k‘ do not elevz_mon dlffer_ence is 150m. The average annual tempera-
- ture is 10°C, with January the coldest month (mean temper-
need to be calculated explicitly.

Before calculating the state Kalman gaf;” needs to be ature 3C) and July the warmest month (mean temperature

dated "+ si his | ded in th . 18°C). The average annual rainfall is 775mm and is dis-
up gte t K §|ncet is is needed in the expression (step 5tributed evenly throughout the year. The annual actual evap-
in Fig. 1). This is performed by

otranspiration is approximately 450 mm.
pz+ =P [| — Ki]- (20) Meteorological forcing data with a one-day time step
from 1994 through 2002 were used in this study. The

Hydrol. Earth Syst. Sci., 17, 34993521, 2013 www.hydrol-earth-syst-sci.net/17/3499/2013/
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precipitation and all the variables needed to calculate the po-

i
tential evapotranspiration using the Penman—Monteith equa- ETR
tion were measured by the Belgium meteorological station in
Kruishoutem. Discharge was measured continuously at the

catchment outlet in Nederzwalm. Reff=Rtot-Rin Ri

6 Model description
The Hydrologiska Byans Vattenbalansavdelning (HBV)
model, of which Fig.2 shows a schematic, was originally

developed byLinstrom et al.(1997). In this paper, the ver-
sion of Matgen et al(2006 is applied. The model uses ob-
served precipitation Kiot(¢)) and potential evapotranspira-
tion (ETP¢)) as input, both in msL. ¢ is the time in seconds.
The catchment is divided into a soil reservoir, a fast reservoir,
and a slow reservoir. There are thus three state variables: the

-

R D

n
S
2
R1
\ !
amount of water in the soil reservof (), m), the slow reser- 52 S1
voir (S1(z), m), and the fast reservois{(z), m).
A number of fluxes are calculated, which depend on the 1 q
2

state variables of the system. The actual evapotranspiration

ETR() (m®s 1) is first determined: — 7™
1 Qtot
ETR0) = £ 29 eTR0). 22) t
)\‘ Smax P —

A is adimensionless parameter, dfagix is the storage capac- Fig. 2. Schematic of the HBV model.
ity of the soil reservoir (m). The infiltratioRj, (1) (ms‘l) is
calculated as follows:
s\’ S2 max IS the storage capacity of the fast reservoir (m), and
Rin(t) = <1 - ) Riot(?). (23) k2 (m*s™1) andy (-) are model parameters. After this, the
Smax storage in the fast reservoir at the end of the time step can be
b is a dimensionless parameter. After this, the effective pre-calculated as
cipitation Reft(r) (ms™1) is determined:

Sa(t + Ar) = Sa2(1) + (Ra2(t) — Q2(1)) At. (29)
Refi(t) = Riot(f) — Rin(1). (24)
The calculation of the percolatio®(r) (ms2) is then  The input. in the slow reservoiy(r) (ms™) is then
performed: computed:
D(t) = Pe<1 — e—ﬂsii’;x), @25)  Ru(®) = Refi(t) — Ro(1). (30)

Pe is a percolation parameter (M} andg a dimensionless ~ The outflow from this reservoif1(+) (m®s™*) can be calcu-
parameter. After this, the storage in the soil reservoir at thdated as
end of the time step can be calculated as follows:

01(1) = k151(2). (31)

S(t + At) = S(t) + (Rin(t) — ETR(z) — Perdr)) At. (26)
«1 is a model parameter (hs1). Finally, the storage in the

At is the time step in secondS(s + A) is always positive slow reservoir at the end of the time step is calculated:

after model calibration.

The input in the fast reservoR,(r) (ms™1) is then S1(t + A1) = S1(1) + (R1(r) — 01(t) + Perar)) At. (32)
S(1)
Ro(t) = « S Ret(1). (27) " The total discharge(r) is simply the sum ofQ1(r) and

Q2(1). A triangular unit hydrograph is used for runoff rout-
ing. Since in this paper daily time steps are used, and the con-
centration time of the catchment is only 14fetket et al.
So(1) )‘/’ 2008, no routing needs to be performed for this study.

« is a dimensionless parameter. The outflow from this reser
voir Q2(t) (m¥s1) is then determined:

(28) In summary, the model contains ten time-invariant param-

02(t) = k2 <
eters {, Smax b, @, Pe, B, ¥, S2,max k2 andxi), and three

Sz,max
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Table 1. Properties of the observation and forecast bias in the synthetic experiments.

Experiment Experiment  Forecast bias Forecast bias Observation  Observation

set average (mm) amplitude (mm) bias average bias amplitude
S S S S S5 S mds™l)  mds D

1 1 0 O 0 0 O 0 0.5 0

1 2 20 04 0.2 0 O 0 0.5 0

1 3 20 04 0.2 0 O 0 0 0

2 1 0 O 0 10 02 01 0.5 0.25

2 2 20 04 0.2 10 0.2 0.1 0.5 0.25

2 3 20 04 0.2 10 0.2 0.1 0 0.25

state variables per time step (the stora§és, Si1(z), and  Table 2. Parameter values used by the hydrologic model.
Sa(1)).

The model was calibrated using particle swarm optimiza- Parameter Value Units
tion (Kennedy and Eberhart995, using the data from 1994

through 1997. Table 2 lists the obtained parameter values, gmax éggg m
and Fig.3 shows the comparison of the modeled to the ob- b 1.219 -
served discharge for the entire simulation period. Based on o 1.512 -
these results, the rainfall-runoff dynamics of the model are Pe 1.077x 1078 ms!
deemed to be sufficiently accurate to be used in a data assim- B 1.326 -
ilation study. 4 1.049 -

S2 max 1.726x 102 m

K2 1.369x 107 ms?!
7 Results K1 6.916x 107 st

7.1 Ensemble generation

In order to thoroughly evaluate the performance of the filter,0.1 n? s~1 is added to the synthetically true discharge, which
three experiments are performed. Table 1 shows an overviews again obtained by adding a predefined bias to the storage
of these experiments. The first experiment considers only obvalues.

servation bias and noise, and no forecast bias. In order to In order to investigate the possibility to estimate a tem-
generate the synthetic truth, no bias is added to the storagepprally varying observation and forecast bias, the three ex-
and a bias of 0.5 s~ and a random error with a standard periments are repeated, but with a sinus wave added to the
deviation of 0.1 Ms ! are added to the synthetically true mean biases. The period of this wave is equal to one year and
discharge. These synthetic observations are then assimilatebe amplitude equal to 0.25%8~1 for the observation bias,

into the model with an assimilation interval of 7 days. and 10, 0.2, and 0.1 mm for the surface, slow reservoir, and
The second experiment considers observation bias anthst reservoir storages, respectively.
noise as well as forecast bias. Again, a bias of #5m and The experiments are applied with an ensemble of 32 mem-

a random error with a standard deviation of 03gn! are  bers. The ensemble is generated by adding a Gaussian dis-
added to the synthetically true discharge. However, in ordetributed random number with zero mean to each parameter
to generate the synthetic truth, bias is added to the storagesalue. The standard deviation of this random number is set to
Forecast bias is generated this way, in a manner consistemat fraction of the original parameter value. It was ensured that
with the filter theory, so that one can assess to what extenthe parameter values did not exceed physical limits. At each
the bias-aware EnKF will correctly estimate the true storagetime step, a random error is added to the observed precipi-
and discharge values. The value of the bias added to the stotation and potential evapotranspiration. Again, the standard
ages is obtained by examining the standard deviation in theleviation of the random error is set to a fraction of the orig-
modeled storages, obtained using the calibrated model panal observed value. The fractions to calculate the standard
rameters. The bias was then assumed to be 10 % of this stadeviations are calibrated for each experiment to ensure an ad-
dard deviation. This resulted in a bias of 20, 0.4, and 0.2 mmequate ensemble spread, followibg Lannoy et al(20086.
for the surface, slow reservoir, and fast reservoir storages, reensemble sizes of 256, 128, 64, 32, and 16 members were
spectively (see Sed). analyzed, and it was found that for sizes larger than 32 the en-
The third experiment considers only observation noise andsemble statistics no longer varied significantly. For this rea-
forecast bias. A random error with a standard deviation ofson, 32 members were used for the remainder of the analysis.
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Fig. 3. Evaluation of the modeled discharge. The thick solid lines are the observed discharge, and the thin lines are the model results.
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Fig. 5. Ensemble average of the autocorrelation function of the in-
novations in step 8 of Fid. for each ensemble member, for the case
of sinusoidal observation and forecast biaseskaadual to 100.

0 500 10 e o 0% gy PO 3000 to stable observation bias estimates. The results of the filter
< have been found to be less sensitive to the valye éfvalue

024 ‘ ‘ ‘ ‘ ‘ T of 0.1 for this parameter has been found to lead to stable esti-

1 mates of the forecast bias. As explained in Sé&.the auto-

correlation length of the innovations in step 8 in Fighould

be zero with a zero mean. Figuseshows the ensemble aver-

] age of the autocorrelation functions for each ensemble mem-

0.14E 1 ber for the case of sinusoidal observation and forecast bi-

0 500 1000 1500 2000 2500 3000

Time step (doys since Jan. 1, 1994) ases. Clearly, for all lags larger than 0, the autocorrelations

. . ) . ~___approach zero, which indicates thathas been adequately
Fig. 4. Evolution of the estimated biases (the type of bias is indi- estimated.
cated at the top of each plot) for experiment 2 using a multiplica-

tion factor ) of 10 (solid lines) and 100 (dotted lines) to calcu- . . . .
late the observation bias error covariance. The top panel indicated-3 ~State and bias estimation for a constant observation

0.22F

0.20 f= -

Bias (mm)

0.18F

0.16 F

the observation bias, and the second, third, and bottom panels indi- and forecast bias
cate the bias in the soil, groundwater, and surface runoff storages,
respectively. Figure6 shows the estimated storages for each of the exper-

iments described above, using a constant observation bias.

Figure 7 shows the analysis of the modeled discharges and
7.2 Filter parameter estimation the evolution of the estimated observation bias. For each of

the three experiments, the estimated unbiased storages and
Another issue in the application of the bias-aware EnKF isdischarges are compared to the storages obtained using a
the estimation of the parameters(used in Eqg.16 to esti- bias-unaware EnKF in which only states are estimated and
mateP,” andP}'”) and« (used in Eq17). The objective of  biases are not taken into account. FigBrghows the time
the determination of these parameters is to obtain stable biaseries of the true discharge, the results of the baseline run,
estimates, meaning that the estimates do not continue to dexnd the results of the bias-aware EnKF for a selected period
crease or increase as the simulation procegds.clearly a  in the simulation period.
value between zero and one, while an indicative value fer Examining the results of experiment 1 (only observation
more difficult to determine. It has been found that a too low bias), the advantage of the bias estimation is evident. The
value forx leads to observation bias estimates that divergebias-unaware EnKF leads to relatively large errors in the stor-
from the true value during the simulation. Figuteshows  ages, which practically disappear when bias is taken into ac-
this for experiment 2 (a constant observation bias). The obcount. Figure7 shows that taking into account the observa-
servation bias and the biases foand S; evolve to clearly  tion bias also leads to an almost perfect estimate of the dis-
unrealistic values. A value of 100 far can be seen to lead charge. The observation bias shows fluctuations around the
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Fig. 6. Comparison of the estimated storages obtained using the bias-aware and a bias-unaware EnKF for the constant observation bia:
experiment. The dashed lines are the regression lines; the solid lines the 1: line. Synthetic true values®i® Estimations iry axis.

The top, middle, and bottom two rows show the results of experiments 1, 2, and 3, respectively. The first, second, and third column show the
results forS, S1, andS», respectively.
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mean value, but the true value of 0.8 s71 is retrieved with ~ Table 3. Relative RMSE values of the analyzed results from the
reasonable accuracy. bias-unaware and the bias-aware EnKF.

Similar conclusions, but to a lesser extent, can be drawn
for the results of experiment 2 (both observation and forecast ~ Experiment  Variable — Bias-unaware  Bias-aware
bias). Figure6 shows that the estimation for the three stor- EnkF EnkF
ages is better for the bias-aware EnKF as compared to the Constant observation and forecast bias
bias-unaware EnKF. Fat, andS, an almost perfect estimate

is obtained, while foss the bias is reduced but not eliminated. i gl ggj'zg :31'22
However, asS does not directly influence the discharge (see 1 S5 —65:77 _95:41
the equations in Sec6), this should not lead to errors in 1 0 _2336 _92.75
the discharge estimation. Figureshows that indeed the dis- 2 s 68.42 071
charge is almost perfectly estimated, and that the estimated Sy 257.35 _39.42
bias fluctuates around the correct value. 2 A _64.62 _9211
Regarding experiment 3 (only forecast bias), the results 2 0 ~173 _85.43
from the bias-aware EnKF are better than for the bias- 3 s 281 0.69
unaware EnKF. Figuré shows that forS the improvement 3 S _20.35 -39.29
is marginal, but forS; andS, a reduction in the RMSE (root 3 S, —89.4 —92.11
mean square error) can be observed, while the bias inthe es- 3 0 —0.49 -32.15
timates is almost unaltered. Figufshows that the discharge Sinusoidal observation and forecast bias
is almost perfectly estimated, and that the estimation of the
observation bias again fluctuates around the correct value. In 1 N 96.31 —15.93
experiments 2 and 3, remains biased due to an observabil- 1 51 298.96 —52.93
ity issue: the observed (assimilated) discharge is not directly 1 S2 —80.7 —88.31
related toS, and hence this information cannot be efficiently 1 Q —40.36 —78.02
used to update the bias estimate. 2 N 52.95 2.27
Further examination of Fig$ and 7 shows that the es- 2 51 219.74  —25.42
timated storages and discharges obtained using the bias- 2 S2 —79.17 —86.26
aware EnKF are almost identical for experiment 2 and exper- 2 0 —34.01 —74.03
iment 3. This can be explained by the relatively accurate esti- 3 S —9.77 2.24
mation of the observation bias. Since the bias-unaware EnKF 3 51 35.67 —25.2
does not take this into account, the results for experiment 3 g ‘;2 _Z‘;g :gg'ig

(where no observation bias is present) are significantly better
than the results for experiment 2 for the bias-unaware EnKF.
Table 3 shows the relative RMSE increase for both the

bias-aware and the bias-unaware EnKF. This relative increase ) o _
is defined as 7.4 State and bias estimation for a temporally variable

observation and forecast bias

RMSE, — RMS
Rl = 100 B B (33)

RMSE, Figure 9 shows the comparison of the modeled storages to
Rl is the relative increase (%), RMSEhe RMSE of the as- the synthetic truth for the three experiments with a sinu-
similation run, and RMSE the RMSE of the baseline run soidally evolving observation and forecast bias. This sinu-
(the run in which no data are assimilated). The RMSE values$s0idal bias was chosen since discharge observations tend to
are calculated both for the state variables and the discharge§NoW a seasonal cycle. The sinusoidal bias may be an exag-
A positive value indicates an increase in RMSE as compared€rated simplification of the true bias, but it is still more re-
to the baseline run, a negative value a decrease. If observatigi{iStic than a constant bias. Figuté shows the comparison
and forecast bias are not taken into account, the analyzed di&f the modeled discharge to the synthetic truth and the evo-
charge tends to be better estimated than for the baseline ruffition of the observation bias. The same conclusions can be
but this does not necessarily mean that the storages are beffawn for the experiments with a constant observation bias.
ter estimated. In other words, better discharge forecasts di? @l cases the observation bias and the discharge are better
not necessarily lead to better estimates of state variables. Ofstimated with a bias-aware EnKF, as compared to when a
the other hand, when biases are taken into account, the stafd@s-unaware EnKF is used. The estimation of the storages
variables are better estimated as compared to the baseline r@g0 Strongly improves when a bias-aware EnKF is used, as
(except forS). This also leads to better discharge estimatesOPPOsed to the use of the bias-unaware EnKF. The only ex-

as compared to the results of a bias-unaware EnKF. ception is the estimation of for experiment 3, where the
bias and the RMSE slightly worsen. However, this storage
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Fig. 7. Comparison of the estimated discharges obtained using the bias-aware and a bias-unaware EnKF, and the evolution of the observatiol
bias throughout the simulation — both for the constant observation bias experiment. The dashed lines are the regression lines; the solid line:
the 1:1 line. For the bias estimation, the dotted lines refer to the true bias.

does not directly influence the discharge, which explains thento account the biases again leads to better state estimates
almost perfect estimation of the discharge. (except for the storags).
Similar for a constant observation bias, the results from
experiment 2 and experiment 3 are almost identical when &.5 Benefit of dual observation-forecast bias estimation
bias-aware EnKF is used, but not when a bias-unaware EnKF
is used. This can be explained by the relatively accurate estiin order to demonstrate the benefit of the estimation of both
mation of the observation bias. forecast and observation biases, as opposed to the estima-
Table 3 shows that, for the comparison of the results totion of forecast biases alon®¢e and Da Silval998 Dee
the results of the baseline run, the same conclusions can bend Todling 200Q Drécourt et al.2006 De Lannoy et al.
drawn for temporally constant observation and forecast bi-2007 Bosilovich et al, 2007 Reichle et al.2010, the ex-
ases. If biases are not taken into account, slightly better disperiments described above were repeated, but the estimation
charge estimates than the baseline run are obtained, with naff the observation bias was turned off. Under these condi-
necessarily better state estimates (except for experiment ons, the state and forecast bias estimation reduces to the
where the discharge estimates are also worsened). Takingiethodology described ibe Lannoy et al(2007). Table 4
shows the results of the comparison of the analyzed storages
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L B A A between these ensemble spreads and the simulated discharge.
The surface storage is only slightly correlated to the total
discharge, while the spread in the surface and groundwater
- Truth. ] reservoir storages is more strongly correlated to the total dis-
””” fg;ﬁﬁ“ﬁjﬂii%m charge. As can be expected, the standard deviation of the ob-
servation bias is strongly correlated to the total discharge.

7.7 Observability of the biases

An important aspect in the application of the Kalman fil-
ter is the observability of the system. This can be examined
through the observability matrix, of which the rank needs to
be equal to the number of state variables. This observability
matrix can be written as

Hi
N Hy Ax

| Ok = | a2 ..

Discharge (m’s™)

(34)

| ] He At

n is the number of state variables, aAd is the Jacobian
matrix, resulting from the linearization g% x—1 in Eq. (18).
Since we are using persistent bias models, with less observa-
tions than the number of state variables, the rank of the ob-
servability matrix for the bias vectors will always be smaller
o0 P 500 820 T8e0 than the number of state variables. In other words, the use
Doys since don- 1, 1994 of persistent bias models will always lead to an unobserv-

Fig. 8. Comparison of the estimated discharge from the baseline2PI€ System. However, this observability issue is bypassed

run and the assimilation run with the bias-aware EnKF to the truePY the use of the parameteysand« in Eq. (16) and« in
discharge for a selected part of the simulation period. Eq. (17). What these parameters essentially perform is first

separate the biased background error covariance into an error

covariance of the unbiased states and an error covariance of
and discharges to the synthetic truth. These statistics can be forecast bias and then relate the biased background error
compared to the statistics in Fig%.7, 9, and10in order to  covariance to the observation bias error covariance. If these
assess whether the estimation of both forecast and observawo parameters are well chosen by examining the correla-
tion biases leads to better results than the estimation of foretion length of the innovations, one should expect an adequate
cast bias alone. partitioning of the mismatch between observations and sim-

In all cases, as expected, the incorporation of an observadlations into biases and state variables. This is demonstrated

tion bias estimation leads to a better estimate of the states artgly the results mentioned in the sections above. The develop-
discharges. This is expressed by the lower bias and RMSknent of realistic bias models is under investigation, but this
values in Figs6, 7, 9, and10than in Table 4. These results subject falls outside the scope of this paper.

thus clearly show the benefit of a dual state and observation
and forecast bias estimation. 7.8 Assimilation of in situ discharge data

7.6 Analysis of the ensemble spread In order to demonstrate the applicability of the dual bias esti-
mation in real-world situations, in situ observed discharge
A very important aspect of the application of the Kalman rates are assimilated instead of synthetically true values.
filter is to ensure an adequate ensemble spread. Fifire Again, an observation error standard deviation of 035
shows the square root of the diagonal elements of the biaselas been assumed, and an assimilation interval of 7 days has
a priori error covariance matrix (thus the ensemble spreadpeen used. Persistent bias models are again used. Higure
and the observation error covariance for the case with a sishows the results of this experiment. A seasonal cycle in the
nusoidal observation and forecast bias. From these plots thebservation bias can be seen. This is very realistic, because
conclusions can be drawn that the ensemble spread is stdéhere is a relatively large scatter in the discharge-water level
ble throughout the simulation and that ensemble collapseelationship that is used to invert the water level observa-
or instability do not occur. For the other experiments, sim-tions into discharge values (W. Defloor, Department of Oper-
ilar results were obtained. Figule shows the relationship ational Water Management, Flemish Environmental Agency,
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Fig. 9. Comparison of the estimated storages obtained using the bias-aware and a bias-unaware EnKF for the sinusoidal observation bias
experiment. The dashed lines are the regression lines; the solid lines the 1:1 line. Synthetic true valuesvdge @stimations iry axis.

The top, middle, and bottom two rows show the results of experiments 1, 2, and 3, respectively. The first, second, and third column show the
results forS, S1, andS», respectively.
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Fig. 10.Comparison of the estimated discharges obtained using the bias-aware and a bias-unaware EnKF, and the evolution of the observatiol
bias throughout the simulation — both for the sinusoidal observation bias experiment. The dashed lines are the regression lines; the solid lines
the 1:1 line. For the bias estimation, the dotted lines refer to the true bias.

personal communication, 2011). Since the water levels ar@ Discussion and conclusions
usually low in the summer and high in the winter, this could
lead to a seasonal signal in the observation bias. The biak this paper, we presented a two-stage hybrid Kalman filter
in the storages evolves to realistic values. The unbiased digor the simultaneous estimation of forecast and observation
charge estimates and observations also show a slightly bebiases and model state variables using the EnKF. The filter
ter match than the biased values, which increases confidenajuations were first derived for a linear system. A first step
in the obtained results. This real-world application shows, atconsists of the updating of the forecast and observation bi-
least for this relatively simple model, that the methodology ases, which are then used to update the unbiased state esti-
can also be used in realistic situations. Further investigatiormates. The Kalman gains for the forecast bias, the observa-
using more complicated models in more challenging environ-tion bias, and the model state variables can be interpreted
ments (for example the presence of snow and frozen soilsas the fraction of the mismatch between the observations
is needed. However, this is outside the scope of the papeand the corresponding model simulations, which can be at-
which focuses on the development of the theoretical frametributed to forecast bias, observation bias, and random fore-
work and the initial assessment using a simple model. cast and observation error, respectively, remapping this mis-
match onto state-space for the model state and bias estimates.
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Table 4. Statistics of the linear regression between the true states and disch#@jgarsd(the values obtained using an observation bias-
unaware EnKFX).

Experiment Variable  Units Meak MeanY Slope Intercept R RMSE

Constant observation and forecast bias

1 s mm 08.350 95.461 0.985 —1.464 0.998 3.795
1 S1 mm 11.147  13.679 0.991 2.626 0.985 2.603
1 Sy mm 0.859 1.136 1.006 0.270 0.997  0.292
1 0 m3s1 1.573 2.065 0.986 0.513 0.997 0501
2 S mm 117.838  96.360 0.984 —19.625 0.997 21.671
2 S1 mm 11519 13.961 0.980 2.672 0979 2543
2 S, mm 0.917 1.108 1.030 0.163 0.997 0.217
2 0 m3s1 1.575 2.067 0.981 0.520 0.997 0.502
3 s mm 117.838 97.719 0.989 —18.916 0.996 20.374
3 S1 mm 11519  11.747 0.994 0.293 0986 0.621
3 Sy mm 0.917 0.861 1.041 -0.093 0.997 0.129
3 0 m3s1 1.575 1.626  0.990 0.066 0.997 0.117

Sinusoidal observation and forecast bias

1 s mm 96.975 90.925 0.988 —4.897 0.982 9.547
1 S1 mm 11.291  13.822 0.990 2.633 0941 2.835
1 Sy mm 0.833 1.120 1.062 0.235 0.993 0.336
1 0 m3s1 1.557 2.061 1.023 0.468 0.991 0.536
2 s mm 116.468  86.113 0.983 —28.457 0.976 31.533

2 S1 mm 11.674 13.530 0.976 2128 0.934 2.280
2 S, mm 0.885 1.132 1.076 0.178 0.994  0.303
2 0 m3s1 1.559 2.057 1.011 0.480 0.990 0.534
3 S mm 116.468  98.404 0.996 —17.613 0.975 20.048

3 51 mm 11.674  13.705 1.006 1.957 0.896 2.690
3 Sy mm 0.885 0.820 1.108 -0.162 0.992 0.235

3 0 m3s1 1.559 1.762 1.027 0.160 0.990 0.283

The equations were then modified for nonlinear processesbias error covariances. has been estimated by examining
and observation systems in an ensemble framework. We folthe temporal evolution of the forecast bias. For low values
lowed the same approach as [re Lannoy et al.(2007). of «, a continuous absolute growth of the forecast and ob-
More specifically, a hybrid approach between an EnKF andservation bias was observed. The results were found to be
a discrete KF is suggested, in which the state vector is esless sensitive to the values for It can be argued that these
timated using the EnKF, and the biases are estimated usingarameters should be made temporally variable, thus that a
the discrete KF. The unbiased forecast error covariance anthodel for these two parameters would have to be developed.
the forecast bias error covariance are calculated as fraction& more realistic model for the evolution of the biases could
of the biased forecast error covariance. The observation biaalso be developed. Although this could certainly be the sub-
error covariance is calculated as a multiplication of the ob-ject of further investigations, this falls outside the scope of
servation prediction error covariance. In order to apply thethis paper.
algorithm to existing data assimilation codes, minimal code A next step in the development of the two-stage hybrid fil-
modification is needed. ter will be the assimilation of remotely sensed data such as

The developed methodology was then applied to a rainfall-soil moisture values into a spatially distributed, physically-
runoff model in situations with either only observation bias, based land surface model. The reliability of the method can
both observation and forecast bias, or only forecast bias. Thée assessed by examining the modeled discharge. It is well
bias-aware EnKF with both observation and forecast bias esknown that a good estimation of surface soil moisture val-
timation outperformed the bias-unaware EnKF as well as thaues will not necessarily lead to a good estimation of mod-
bias-aware EnKF with forecast bias estimation only. eled discharge and vice verdar( et al, 1994. As a con-

The filter depends on two parametepsand«, which are  sequence, the use of discharge data for the calibration of
assumed constant in time and which are used to estimate theydrologic models will probably lead to biased surface soll
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state error covariance (top three panels) and the a priori observa- . .

tion bias error covariance (bottom panel) for the experiment with |t iS relatively straightforward to prove that the last update

sinusoidal observation and forecast biases. in Eg. Q) leads to unbiased state estimates. We can calculate
the temporal average of the state estimate error:

moisture estimates. The reliability of the newly developed <fZ *Xk> = <§E — = B K (3= By - H (R - 132’*))>- (A1)
method can thus be examined by examining the modeled di

Sthe following definitions of the a priori estimate errors are
charge values.

’ - . . used:
This paper presents an initial step towards dealing with the -
complex problem of joint observation and forecast bias and| €, =X, — X«
state estimation. The overall conclusion, based on the result ; = x; — %«

that have been described, is that there is potential to improv e = iZ" —bp (A2)

data assimilation results if both observation and forecast biaq o— — 5i— — b

are taken into account, as opposed to the use of bias-unaware = o o
Kalman Filters. A similar definition is used for the a posteriori estimate error.

In Eg. (A1) we add and subtradt; to the right-hand side
term, and use the previous definition:

<ek+> _ <é,; — e+ K (3 — b — e (37 - bk+))> (A3)
Through substitution of Eq3f we can write

<e,f> = <E; - 2T+ + Ky (Hkxk + v + bZ - B;Jr — Hy (J%; - E;:l+))> (A4)
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Fig. 13.Results of the assimilation of in situ observed discharge rates. Left panels: the bias estimates. The top plot shows the results for the
observation bias. The following three plots show the bia$,ifl; andS,. Right panels: the discharges.

Substitution of Eqs.A2) and @) leads to

<e;> = <é,; — e K (Mo (8= B) + o — e — Hi (37 - 13’;’*))>. (A5)

Rearrangement and again substituting E®)(result in the

following expression:

<e,j> = <é; — e+ Ky (—Hiey + v —el" + Hkék’”+)>. (A6)

Comparison to Eq.2) shows that by definition the estimate
error average needs to be zero. The temporal average of the
a posteriori estimate error is thus equal to zero, which means

that the system estimates an unbiased state.

Appendix B

The derivation for a linear system

By definition, each individual error component on the right-
hand side is equal to zero. For example, for the state vectoB1 Calculation of the observation bias Kalman gain

we can write

X = Xk —bkm.

We add and subtraef and substitute this once by E@\2).
(A8)

Xk =5€k—ek_+ik_ —.fk—bzn.
This reduces to

Xy =X, —e — b}

www.hydrol-earth-syst-sci.net/17/3499/2013/

(A7)

(A9)

First the expression for the Kalman gain for the observation
bias will be derived. For this purpose, the a posteriori error
covariance of the observation bia%ﬂ) needs to be mini-

mized. Substitution of Eq9j by Eq. (L1) leads to

Tl kg (e P by = b))
Pt
‘ . (bg — by — K¢ (yk — Hixy + Hieb) ™ — 132”))

.| @D
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Expansion of this product, placing the Kalman gains and N
observation matrices outside the expected value expressior%'c" =E

(they are constant over a time step), using B).for the
substitution ofy,, and knowing that the unbiased states, the

biases and the random error are independent of each other,

leads to
et =k [( ) (0 - ) | e [ (- i) (o0 -)' |
—E [(bk ) (v - 13;*)1 KT + K Hy
F[ (e 50) (- ) Jrrer
Ko - ) (ot -7 "
FKIHE [(bk —b) (o - 13;’*)T] HEKET + K2 [mof K¢ (B2)

Substitution of Egs.12) and @2) results in the following
expression:

PYT =P — K{P — P+ KH (P +P7)
HE KT + K9P KT + KYRe KT, (B3)

The minimization oiP"kJr means that the first derivative with
respect t&{ is equal to zero. Calculation of this first deriva-
tive and equalizing this to zero lead to

[He (e + PP ) HE + P KET + Ry = P, (B4)
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[CETSICErSY

+KPHE [(bkm — ) (e - BQ—)T]

+E [(b;:‘ - i;km—) (bg - b,@‘)T] HI KnT
+KPHLE [(xk — %) (% - :%,;)T] HI KT
LKPE [(bk —by) (v - i,;*)T] KT

K] HE [(bk —bp) (o - ig—)T] HI KT
+KYE [oeof | KpT. (B7)

Substitution of Egs.X1) and (2) results in the following

equation:

PIt = PP+ KPP H P + PR HE KT
K} H P HT KT + KPRy
HKY HE PP HE KT + KPR KT (B8)

Derivation of this expression with respectid’ and equal-
ization to zero leads to

He (P + PP ) HT + P [ KPT + Ry KT = —Hi P~ (B9)
[ ) ]

Rearrangement finally leads to the analytical expression for

After rearrangement, the Kalman gain for the observationthe Kalman gain for the forecast bias:

bias can be written as

- -1
Ky =P [He (Pe +PP7)HT + P +R] . (B9)
B2 Calculation of the Kalman gain of the forecast bias

Similarly as in the derivation of the expression for the obser-
vation bias Kalman gain, the a posteriori error covariance o
the forecast biasR' ") needs to be minimized. Substitution
of Eq. ©) by Eqg. (L1) leads to

Again, expanding this product, placing the Kalman gains an

(b — B — K (3 — kg + Heby™ — b))
(b b — K (3 e by - b))

} . (B6)

observation matrices outside the expected value expression

using Eq. 8) for the substitution ofy;, and knowing that the
unbiased states, the biases, and the random error are indep
dent of each other, results in the following expression:
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f

- -1
Ky = =Py~ H{ [Hi (P +PP7) HE + P+ Re] . (B10)
B3 Calculation of the Kalman gain of the states

The objective is to estimate the unbiased state vector as accu-
rately as possible. For this purpose, similarly as in the deriva-
tion of the expression for the biases Kalman gain, the unbi-
ased a posteriori error covariance of the model sta&®g$ (
needs to be minimized. Substitution of EQ) by Eqg. 1)
leads to

P:=E|:

(xk — J%; + B::Hr — Kk (jlk — Hk)%‘,: + H/(EZer — i);:+))
~ ~ ~ A~ a T
(v =3By = K (56 = Hed + Heb = b))

] (B11)

dSimilarly as in the derivation of the Kalman gains for the bi-

ases, this product is expanded, placing the Kalman gains and
observation matrices outside the expected value expressions.

Equation B) is used for the substitution gf;, knowing that

Ptﬂ_e unbiased states, the biases, and the random error are in-

dependent of each other, results in the following expression:
PE = E [ (o — %) (o — #0) ] = KiHe E [ (e = £7) (o — 2) ]
—E [(xk — &) (e — f;)T] HIKT + Ky Hy
E (e = %) (e = 5) " HIKT +Ke
E |:(b;§ i) (v - z;;+ﬂ KT+ Ky E [oo] | KT (B12)
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Substitution of Egs.1(1) and (L2) leads to Expansion of the product, knowing that the errors in the un-
Pt P KuHP- — P-HTKT 4 Ko He P~ HT KT biased state estimates, the bia_se;, and the noise.are indepen-
T =Py HiPy  Hi K + KeHe P H Ky dent of each other, and substituting the expressions for the

+Kpg PZ* K,f + K R K,{. (B13) error covariances, leads to:

Calculation of the first derivative with respect K and Py = A 1Py (Al + PP + Qe
equalization to zero results in the following expression: R R T
—Ar-1E [( k-1~ bkmjl) (b’/Z’ - bZH) }

_E [(b;" - 13g+) ( mo_ 13;@1)1 Al .. (B20)

We know thatb!" is equal tob]" , and thath!"~ is equal to

[HePeHE + P KT+ RiK] = HeP (B14)

After rearrangement, the Kalman gain for the unbiased states
can be written as

Ky = Py HY [Hk PLHT +POF Rk]_l. (B15) 132”_+1. Thisis Wrij[ten in the system description (E§snd8).
We can thus write the following:
B4 Updating of the error covariances E [ o 13m+> (b’” - I3m+)T]
k=1~ Pk—1) \ %% k

In the application of the Kalman filter, the error covariances . .
need to be updated. This is performed using the previously = E [( 1~ bZ") (bf - b
derived expressions for the a posteriori error covariances

; . . A N R T
(Egs.B3, B8 andB13). These equations can be rewritten as +K7 (yk —Hix, +Hebl' ™ — bZ‘)) i| . (B21)
P{ =Pp — KeHePr — P HT KT + Ky [HeP HE + POF + R KT L . .
PL* = By — KEPL B KYT 4 Ky [He (B + Pr) HE 4P+ R KT (B16) Substitution of the observation equation (E).and rear-
PIF =PI KPHPY™ + PR HT KT + Ky [Hu (P + PP ) HT 4 P 4+ Re] K7 rangement lead to

Substitution of the Kalman gains (step 3 in Fij.and leav- E (bm _ I;rn-i—) (bm _ ,;m+)T
ing out the factors that cancel each other lead to k=1 Tkl Tk Tk

— -~ + ~
PF =[l — KeHi] P, =P+ E [( o1~ bf{",l) (HeXx — Hi by
POt =1 — Ko P2~ ) (B17) . . T

The minus in the expression for the forecast bias KalmanwWe know that the forecast bias is independent of the observa-

gain explains the plus in the propagation of the forecast biasion bias and of the observation noise. This expression thus

error covariance. The fact that a remapping of the systenreduces to

state and the forecast bias to observation space is needed . N\T

explains theH, factor in the equations for the system state £ [ by, — bZ_JE) <bZ1 - bZ’Jr) ]

and forecast bias error covariances, while this factor does not .

appear in the observation bias error covariance propagation = P;'"; + E [(bk’"fl - bf_*l) (He*x — Hidy!

equation. . A T
_ _ —He &g + Hib ™) ] KT, (B23)

B5 Propagation of the state error covariance

o . This can be rewritten as
The a posteriori error covariances need to be propagated from

time stepk — 1 to time stefk. First, we will propagate the un- g [( mo_ I;m+> (bzn _ I;m+)T] _pr-
biased state error covariance. Substituting the definition for = k=1 k k=1
the forecast bias (E@) by Eq. (L1) leads to s [( m o lA)Zj}) (Hkxk . kac,:)T] Kka' (B24)

Pi=E [(xk — by — %+ 5’;*) (fck — b -k + 13;”)7]- (B18)  We know that the unbiased state errors are independent of
the bias errors, so the last term reduces to zero. We can thus
Substitution of the system equation (Hg, again substitut-  write the propagation equation as
ing Eq. @) for simplification, results in -
) P, = APl AL+ PP+ Qi (B25)
Pk— =z |:<Ak_1 <)~(k—l - i‘/—:—l) — bZ’ + bZH— + wk_l)

. N r |. (B19) The use of a persistent bias model will lead to a propagation
(Ak—l (ik—l - i,f_l) — b+ BT+ wk—l)

of the bias error covariances to the next time step without
transformation:
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