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Abstract. In this paper, we present a two-stage hybrid
Kalman filter to estimate both observation and forecast bias
in hydrologic models, in addition to state variables. The bi-
ases are estimated using the discrete Kalman filter, and the
state variables using the ensemble Kalman filter. A key issue
in this multi-component assimilation scheme is the exact par-
titioning of the difference between observation and forecasts
into state, forecast bias and observation bias updates. Here,
the error covariances of the forecast bias and the unbiased
states are calculated as constant fractions of the biased state
error covariance, and the observation bias error covariance
is a function of the observation prediction error covariance.
In a series of synthetic experiments, focusing on the assim-
ilation of discharge into a rainfall-runoff model, it is shown
that both static and dynamic observation and forecast biases
can be successfully estimated. The results indicate a strong
improvement in the estimation of the state variables and re-
sulting discharge as opposed to the use of a bias-unaware
ensemble Kalman filter. Furthermore, minimal code modi-
fication in existing data assimilation software is needed to
implement the method. The results suggest that a better per-
formance of data assimilation methods should be possible if
both forecast and observation biases are taken into account.

1 Introduction

During the last decade, data assimilation has been frequently
applied for the correction of errors in hydrologic model re-
sults. These errors originate from uncertainties in meteoro-
logical forcing data, model parameters, formulation of the

model physics, and initial conditions. A number of methods
are available for this purpose, of which the most commonly
used are Newtonian nudging (Stauffer and Seaman, 1990),
the extended Kalman filter (Welch and Bishop, 1995), the en-
semble Kalman filter (Evensen, 1994), variational assimila-
tion (Rabier et al., 2000), and the particle filter (Gordon et al.,
1993). These methods have been applied for the assimilation
of various variables. Examples of these variables and stud-
ies that focus on their assimilation are surface soil moisture
values (Crow and van den Berg, 2010), surface temperatures
(Meng et al., 2009), brightness temperatures (Seuffert et al.,
2004), radar backscatter values (Hoeben and Troch, 2000),
snow water equivalent (De Lannoy et al., 2012), snow cover
fraction (Su et al., 2010), piezometric head data (Chen and
Zhang, 2006), chemical tracer data (Ng et al., 2009), and dis-
charge values (Pauwels and De Lannoy, 2009).

In many studies, observations are used that contain both
random error and significant bias (Torres et al., 2012). Fur-
thermore, hydrologic model results do not only contain ran-
dom errors, but in many cases are also prone to bias (Ashfaq
et al., 2010). Typically, the above mentioned methods only
function optimally when the assimilated data and the model
are free of bias. In order to bypass this inconsistency, a
number of studies have focused on the removal of sys-
tematic differences between the assimilated data and the
model through rescaling the data to the model climatology
(Reichle and Koster, 2004; Slater and Clark, 2006; De Lan-
noy et al., 2012). Other studies have focused on the esti-
mation of the forecast bias in addition to the model state
variables, using the discrete (Kalman, 1960) and the ensem-
ble Kalman filter for both linear and nonlinear systems, in a
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wide range of applications ranging from groundwater mod-
eling to soil moisture and temperature assimilation (Dee and
Da Silva, 1998; Dee and Todling, 2000; De Lannoy et al.,
2007; Drécourt et al., 2006; Bosilovich et al., 2007; Reichle
et al., 2010). Dee(2005) further explains how forecast bias
can be taken into account in a data assimilation system using
the Kalman filter or variational assimilation as assimilation
algorithm. The estimation of observation biases through data
assimilation has been investigated as well.Derber and Wu
(1998) present a simple observation bias estimation scheme
for the assimilation of radiance data into an atmospheric
model.Auligné et al.(2007) and Dee and Uppsala(2009)
used a variational approach to estimate satellite data biases,
while Montzka et al.(2013) used the particle filter for the re-
trieval of remotely sensed soil moisture biases. Another ap-
proach, as opposed to state updating and online bias estima-
tion, is to update model parameters in addition to state vari-
ables, under the assumption that all forecast bias is caused by
the model parameters (Moradkhani et al., 2005).

There have been two major practical approaches for fore-
cast bias estimation with a Kalman filter: state augmenta-
tion (Drécourt et al., 2006; Kollat et al., 2011) and separate
state and bias estimation (Friedland, 1969). Drécourt et al.
(2006) compared both approaches using a linear groundwa-
ter model, and concluded that both methodologies outper-
formed the Kalman Filter without bias estimation. Two-stage
state and bias estimation, referred to as bias-aware Kalman
filtering by Drécourt et al.(2006), is an attractive approach
where the state and the forecast bias are estimated individ-
ually. Although it is clearly demonstrated that, in the pres-
ence of forecast bias, this methodology outperforms the es-
timation of the model state alone (Drécourt et al., 2006;
De Lannoy et al., 2007), observations are assumed to be un-
biased in these studies. Furthermore, we are not aware of as-
similation approaches in hydrological studies that estimate
both observation and forecast bias, in addition to state vari-
ables. The objective of this paper is therefore to develop a
methodology, based on the ensemble Kalman filter (EnKF),
to estimate observation and forecast biases, as well as model
state variables. More specifically, the methodology ofDee
and Da Silva(1998), in which two Kalman filters are applied,
is expanded to include observation biases as well. The major
assumption of the proposed methodology, as opposed to state
augmentation, is that the observation and forecast bias errors
are independent of each other and of the errors in the unbi-
ased model state variables. This assumption needs to be made
in order to enable the derivation of a separate state and bias
update equation. In this paper, we will demonstrate that, de-
spite this assumption, reasonable results can be obtained. The
equations for the estimation of the biases and the state vari-
ables are derived for a linear system, after which the applica-
tion for nonlinear systems in an ensemble framework is ex-
plained. The method is then applied to a very simple rainfall-
runoff model, into which discharge values are assimilated,
first in a well-controlled synthetic experiment, and then in a

real-world example. The performance of the new methodol-
ogy is then analyzed in detail, and the possibilities for joint
observation and forecast bias and model state estimation are
assessed.

2 Derivation for a linear system

2.1 System description

The equations for the simultaneous estimation of system
states and both forecast and observation biases will first
be derived for a linear system. The application of the ana-
lytical expressions in an ensemble framework will then be
explained.

In the bias-aware Kalman filter, the state of the system is
propagated from time stepk− 1 to time stepk:

x̃k = Ak−1 x̃k−1 + Bk−1f k−1 + wk−1. (1)

x̃k is the biased state vector, andf k−1 is the vector with
model inputs (for example the meteorologic input data).
wk−1 is the model error, which is a random error term with
covarianceQk−1. Ak−1 andBk−1 are model matrices propa-
gating states and forcings at time stepk− 1 to states at time
k. For the remainder of the paper, variables indicated with
a ˜[.] refer to biased variables. The difference between this
equation and the equation used in the derivation of the dis-
crete Kalman filter (Kalman, 1960) is that, here, biased state
variables are used instead of unbiased variables.

The unbiased state vectorxk is defined as

xk = x̃k − bmk . (2)

bmk is the forecast bias. The system is observed as follows:

ỹk = Hk xk + vk + bok . (3)

ỹk is the vector with the biased observations.vk is the zero
mean (unbiased) observation error with covarianceRk. Hk is
the observation matrix, andbok is the observation bias. This
equation differs from the equation used in the bias-free dis-
crete Kalman filter through the observation bias term. The
unbiased observations can be calculated as follows:

yk = ỹk − bok . (4)

The bias vectors are propagated as follows:{
bmk = bmk−1
bok = bok−1

. (5)

These equations imply that, if no data are assimilated into the
model, the bias at the next time step is simply assumed to be
the same as in the previous time step.

In the derivation of the two-stage state and bias update
equations, it is important to remark that the errors in the
observation and forecast biases are assumed independent of
each other and of the error in the unbiased state of the system.
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2.2 Propagation of the states and biases

In a simulation framework, an estimate of the system state is
used in the model. For the remainder of this paper, estimated
variables are denoted with an̂[.]. ˆ[.]− indicates an a priori
estimate (forecast, before the update), andˆ[.]+ an a posteriori
estimate (analysis, after the update). The a posteriori state
estimate at time stepk− 1 is propagated to time stepk as
follows:

ˆ̃x−

k = Ak−1 ˆ̃x+

k−1 + Bk−1 fk−1. (6)

The system is observed as follows:

ˆ̃y−

k = Hk x̂
−

k + b̂o−k . (7)

The bias estimates are also propagated:{
b̂m−

k = b̂m+

k−1
b̂o−k = b̂o+k−1

. (8)

2.3 Update of the states and biases

The observations are used as follows to update the states and
biases:

b̂m+

k = b̂m−

k + Km
k

(
ỹk − b̂o−k − Hk

(
ˆ̃x−

k − b̂m−

k

))
b̂o+k = b̂o−k + Ko

k

(
ỹk − b̂o−k − Hk

(
ˆ̃x−

k − b̂m−

k

))
x̂+

k = ˆ̃x−

k − b̂m+

k + K k

(
ỹk − b̂o+k − Hk

(
ˆ̃x−

k − b̂m+

k

)) . (9)

Km
k , Ko

k , andK k are the Kalman gains for the forecast bias,
the observation bias, and the system states, respectively. The
filter thus works in two steps. First, the a priori bias and state
estimates are used to update the observation and forecast bias
estimates. The update is performed using the unbiased esti-
mates: the observation bias is subtracted from the observa-
tions, and the observation matrix is applied to the unbiased
state vector. The a posteriori forecast bias estimateb̂m+

k is
then used to calculate the a priori unbiased state estimate,
which is defined as

x̂−

k = ˆ̃x−

k − b̂m+

k . (10)

This definition, in combination with the a posteriori obser-
vation bias estimates, is used to update the unbiased state
estimates. It should be noted that the biased state is fed back
into the model. In other words, Eq. (10) is an output equa-
tion, providing the unbiased state estimates, and is no part of
the model integration. An analytical expression for the three
Kalman gains is thus needed. It is relatively straightforward
to prove that the last update in Eq. (9) leads to unbiased state
estimates (AppendixA).

2.4 Definition of the error covariances

In order to derive an expression for the Kalman gains, a num-
ber of error covariances need to be defined. The error covari-
ances of the unbiased states, forecast biases and observation
biases can be written as

P+

k = E
[(

xk − x̂+

k

) (
xk − x̂+

k

)T ]
Pm+

k = E

[(
bmk − b̂m+

k

) (
bmk − b̂m+

k

)T ]
Po+k = E

[(
bok − b̂o+k

) (
bok − b̂o+k

)T ] . (11)

Similarly, the error covariance of the biased states can be
written as

P̃+

k = E

[(
x̃k − ˆ̃x+

k

) (
x̃k − ˆ̃x+

k

)T ]
. (12)

2.5 The equations for a bias-aware linear system

AppendixB provides the details of the derivation of the equa-
tions for the application of the bias-aware Kalman filter. Fig-
ure 1 shows a schematic of the equations that need to be
applied. The state and bias vectors in step 1 can be initial-
ized with any appropriate prior guess, i.e., typically a spun
up biased state estimate forˆ̃x+

k−1, and zero estimates for the
biases. In other words, the model can be applied repeatedly
using the same forcings for one or a number of years, until
the state variables of the first time step converge to a specific
value.

2.6 Interpretation of the expressions for the Kalman
gains

Step 3 and step 5 in Fig.1 list the expressions for the three
Kalman gains. These expressions can be compared to the ex-
pression for the Kalman gain for a linear, bias-unaware (or
unbiased) system:

K l
k = P−

k HT
k

[
HkP−

k HT
k + Rk

]−1
. (13)

In the above derived expressions, firstly the observation bias
error covariance appears. For the bias estimation, the a pri-
ori bias error covariances are used, while for the state update
Kalman gain the a posteriori error covariance is needed. This
is a logical consequence of Eq. (9), where the a priori ob-
servation bias is subtracted from the biased observations in
the innovations (the difference between the unbiased obser-
vations and simulations), while the a posteriori bias estima-
tion is used in the state update.

Further, for the bias Kalman gains (step 3 in Fig.1), both
HkPm−

k HT
k andHk P̃−

k HT
k appear in the denominator, while

for the state Kalman gain (step 5 in Fig.1) the denominator
containsHkP−

k HT
k . This can again be explained by the up-

date equations (Eq.9). For the bias updates,Hk

(
ˆ̃x−

k − b̂m−

k

)
www.hydrol-earth-syst-sci.net/17/3499/2013/ Hydrol. Earth Syst. Sci., 17, 3499–3521, 2013
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1) Propagation of the state and bias estimates

⎧⎨
⎩

ˆ̃x−
k = Ak−1

ˆ̃x+
k−1 +Bk−1fk−1

b̂m−
k = b̂m+

k−1

b̂o−
k = b̂o+

k−1

2) Propagation of the error covariances

⎧⎨
⎩

P−
k = Ak−1P̃

+
k−1A

T
k−1 +Pm+

k +Qk−1

Po−
k = Po+

k−1

Pm−
k = Pm+

k−1

3) Calculation of the bias Kalman gains

⎧⎨
⎩

Ko
k = Po−

k

[
Hk

(
P̃−

k +Pm−
k

)
HT

k +Po−
k +Rk

]−1

Km
k = −Pm−

k HT
k

[
Hk

(
P̃−

k +Pm−
k

)
HT

k +Po−
k +Rk

]−1

4) Updating of the bias error covariances

{
Po+

k = [I−Ko
k]P

o−
k

Pm+
k = [I+Km

k Hk]P
m−
k

5) Calculation of the state Kalman gain

Kk = P−
k H

T
k

[
HkP

−
k H

T
k +Po+

k +Rk

]−1

6) Updating of the state error covariance

P+
k = [I−KkHk]P

−
k

7) Updating of the bias estimates

⎧⎨
⎩

b̂m+
k = b̂m−

k +Km
k

(
ỹk − b̂o−

k −Hk

(
ˆ̃x−
k − b̂m−

k

))
b̂o+
k = b̂o−

k +Ko
k

(
ỹk − b̂o−

k −Hk

(
ˆ̃x−
k − b̂m−

k

))

8) Updating of the state estimates

x̂+
k = ˆ̃x−

k − b̂m+
k +Kk

(
ỹk − b̂o+

k −Hk

(
ˆ̃x−
k − b̂m+

k

))

Fig. 1.Schematic of the methodology for a discrete Kalman filter.

is substracted from the observations.ˆ̃x−

k − b̂m−

k is defined as
the a priori estimate of the unbiased state, with an error co-
variance matrix equal tõP−

k − Pm−

k . Both of these error co-
variances are used in the Kalman gain. For the system state
update,x̂−

k appears in the innovation, and the unbiased error
covarianceP−

k is thus used (step 5 in Fig.1).
As a summary, the Kalman gain takes into account the un-

certainty of all the terms in the update equation, which ex-
plains the different terms in the denominator for the three
Kalman gain expressions.

A final remark is the minus that appears in the expression
for the forecast bias Kalman gain. This is a direct result from
the derivation shown in AppendixB. This can be explained
by the definition of the forecast bias (Eq.2) and the obser-
vation bias (Eq.4). A positive forecast bias means that the

biased state is larger than the unbiased state. A similar re-
mark can be made regarding the observation bias. Assume
a model with positive forecast and observation biases. Fur-
ther, assume a positive observation system (in other words,
all nonzero entries inHk are positive). This means that an
increase in the state variables will lead to an increase in the
observation. Assume also that the unbiased observation pre-
dictions are smaller than the actual unbiased observations
(meaning that the expression between brackets in Eq. (9) is
positive). This may imply that either the biased system state
is underestimated, or the forecast bias is overestimated, or
the observation bias is underestimated, or a combination of
these possibilities. The possible overestimation of the fore-
cast bias explains the minus in the expression for the forecast
bias Kalman gain.

2.7 Interpretation of the method

The objective of this method is to separate the mismatch be-
tween the observations and the model results into forecast
and observation bias, and random model and observation er-
ror. This is an additional difficulty as compared to the bias-
unaware KF, where this mismatch is separated into random
model and observation error. The Kalman gain (Eq.13) can
be interpreted as the fraction of this mismatch that is assigned
to the model noise, and maps this mismatch from observa-
tion space onto state-space through the observation opera-
tor Hk. A similar reasoning can be made for the bias-aware
KF. The Kalman gainsKm

k , Ko
k (step 3 in Fig.1), andK k

(step 5 in Fig.1) indicate the fraction of the mismatch that
can be attributed to the forecast bias, the observation bias,
and the random forecast error, respectively. For the forecast
bias and state estimates, these Kalman gains remap the dif-
ference between the unbiased observations and the unbiased
simulations thereof to state-space.

Step 2 in Fig.1 also shows that the propagation of the
prior unbiased state error covariance contains an extra term
as compared to the propagation for a bias-unaware (or unbi-
ased) linear system:

P−

k = Ak−1P+

k−1ATk−1 + Qk−1. (14)

More specifically, the a posteriori forecast bias error covari-
ance needs to be added to the forecast error covariance (the
term Pm+

k ). This can be explained by the update equations.
Essentially, Eq. (1) shows that in the system the biased state
vector is propagated. The propagation of the biased state er-
ror covariance thus appears in step 2 in Fig.1. However, in
the calculation of the unbiased state, the forecast bias is sub-
tracted. This implies that the unbiased state error will consist
of the error in the biased state and the forecast bias, which
explains the extra term in step 2 in Fig.1. The definition of
the unbiased state forecast (or prior state) in Eq. (10) explains
why the posterior estimate of the forecast bias error covari-
ance is used in step 2 in Fig.1.

Hydrol. Earth Syst. Sci., 17, 3499–3521, 2013 www.hydrol-earth-syst-sci.net/17/3499/2013/
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3 Application to nonlinear systems

3.1 General approach

The equations in Sect.2.5 can easily be modified for an ap-
plication in a nonlinear system. In this respect, a distinction
must be made between the system model and the bias mod-
els. In Eq. (5) persistent (and thus linear) bias models are
used, while the system matrixAk−1 is replaced by a nonlin-
ear model. One logical way to apply the bias-aware Kalman
filter is thus to have a mix between an EnKF for the system
state, and a discrete KF for the biases.

The use of a persistent bias model is by itself an argument
for separate bias-estimation with a discrete KF. Because of
the persistent nature of the bias model, an initial spread in
the ensemble of biases would remain unaltered during fore-
cast periods. This can be explained by the fact that during the
forecast step no observations are used to update the biases,
which do not change between time steps. Furthermore, the
spread in the bias ensemble would decrease at each analysis
step. This is a typical property of the EnKF: the analysis step
causes the state variables (and also the biases) to merge to a
specific value. Because of the different forcings and model
parameters, the state variables will then again evolve to dif-
ferent values. However, since a persistent bias model is used,
this evolution will not occur for the biases. This would cause
filter divergence, unless some artificial inflation would be ap-
plied, would likely lead to inconsistencies between the state
and bias estimates. Here, we will leverage off the ensemble
state error covariance to approximate the bias error covari-
ance estimate for the discrete KF.

It should be noted that the mixed approach (an EnKF
for the system states and a discrete KF for the biases) has
been applied in several studies focusing on bias estimation
(De Lannoy et al., 2007). This approach is thus extended here
for the inclusion of observation biases.

3.2 Two-stage state and bias estimation versus state
augmentation

A two-stage filter has a number of advantages over state aug-
mentation. Firstly, the dimensions of the state vector do not
increase. For a small number of state variables this may not
be important, but for large systems this can be a considerable
advantage. The calculation of the forecast error covariance
requiresn2

s ·ne calculations (withns the number of state vari-
ables andne the number of ensemble members). If the biases
are added to the state vector, the calculation ofP−

k would re-
quire (2ns + no)

2
· ne calculations (withno the number of

observations). The increase in the required number of cal-
culations thus evolves approximately quadratically with the
number of state variables, which can be a significant draw-
back for large systems. It should be noted that in the applica-
tion of the EnKF the forecast error covariance does not need
to be calculated explicitly (Reichle et al., 2002). However,

the cross-covariance between the system states and the ob-
servation simulations needs to be calculated, and a similar
reasoning can be made. Another advantage is that, if a model
already contains a bias-unaware EnKF, the bias-aware filter
equations show that minimal code modification is needed to
include the bias estimates.

The separate bias and state estimation is possible through
the assumption of uncorrelated state and bias errors. State
augmentation could take these correlations into account, but
is computationally more expensive through the calculation of
the cross-covariance between the system states and the obser-
vation simulations.

3.3 Estimation of the error covariances

Step 3 and step 5 in Fig.1 show that a number of error covari-
ances are needed:P̃−

k , P−

k , Pm−

k , Po−k , andPo+k . These error
covariances determine the partitioning of the difference be-
tween the observations and forecasts into the different error
and bias components. However, it is not straightforward to
optimally estimate each of these error covariances. Here, we
describe some assumptions made for this paper. The biased
state error covariance is given by

P̃−

k = P−

k − Pm−

k . (15)

In order to estimate the forecast bias error covariance, one
thus needs to know the unbiased and the biased state error
covariances. In this paper, we assume that the unbiased state
error covariance is a specified fraction of the biased state er-
ror covariance. This is an approach that is used in many pa-
pers focusing on the estimation of biases through data assim-
ilation, includingDee and Da Silva(1998), Drécourt et al.
(2006), andDe Lannoy et al.(2007). Calculating the biased
state error covariance using the ensemble results, we can thus
write{

P−

k = γ P̃−

k

Pm−

k = (1 − γ ) P̃−

k

. (16)

γ is a filter parameter, between zero and one, which can be
obtained through calibration. A value of zero indicates that
the entire model error is assumed to be caused by bias, while
a value of one indicates that noise is the only cause of errors
in the model results.

The observation bias error covariances can be estimated
under the assumption that a more uncertain observation pre-
diction is accompanied by a more uncertain observation bias.
For this reason, we estimatePo−k as a function of the error co-
variance of the observation predictions:

Po−k = κHk P̃−

k HT
k . (17)

κ is a filter parameter and can be estimated through calibra-
tion. Determining a typical value for this parameter is not
straightforward, as it will depend on the magnitude of the
different state variables and observations.

www.hydrol-earth-syst-sci.net/17/3499/2013/ Hydrol. Earth Syst. Sci., 17, 3499–3521, 2013
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γ and κ can thus be calibrated in order to optimize the
filter performance. If the biases are correctly estimated, the
innovations in the update equation (step 8 in Fig.1) should
consist of white noise since the bias is removed from both
the observations and the simulations. This means that the au-
tocorrelation length of these zero-mean innovations should
be zero. Both parameters can thus be tuned in order to reach
this zero value. If the system and observations are unbiased,
zero values for both these parameters should be obtained. To
summarize, the values forγ andκ are modified until the au-
tocorrelation length of the innovations is equal to zero. An
example of this filter parameter tuning is demonstrated in
Sect.7.2.

3.4 Summary

In summary, the bias-aware EnKF can be applied as follows.
First, the states and biases are propagated from time step
k− 1 to time stepk:

ˆ̃xi−k = fk,k−1

(
ˆ̃xi+k−1, wi

k−1

)
b̂m−

k = b̂m+

k−1

b̂o−k = b̂o+k−1

. (18)

fk,k−1(.) is a nonlinear operator representing the model in
state-space, including the model parameters and the meteoro-
logical forcings.i is the ensemble member number, andwi

k−1
is a realization of the model error, which can be obtained by a
perturbation of the model parameters, state variables, and/or
meteorological forcings.

The next step is then the calculation ofP̃−

k using the en-
semble results:

P̃−

k =
1

N−1 DkDTk

Dk =

[
ˆ̃x1−

k − ˆ̃x−

k , . . . ,
ˆ̃xN−

k − ˆ̃x−

k

]
ˆ̃x−

k =
1
N

N∑
i=1

ˆ̃xi−k

. (19)

N is the number of ensemble members.P−

k and Pm−

k are
then calculated using Eq. (16), and Po−k is calculated us-
ing Eq. (17). The three Kalman gains are then calculated in
step 3 and step 5 in Fig.1. Following Reichle et al.(2002),
P−

k HT
k can be calculated as the covariance between the un-

biased state and the measurement predictions, andHkP−

k HT
k

as the covariance of the unbiased measurement predictions.
Analogously,P̃−

k HT
k andHk P̃−

k HT
k can be calculated using

the biased model results. This implies thatP−

k andP̃−

k do not
need to be calculated explicitly.

Before calculating the state Kalman gain,Po−k needs to be
updated toPo+k since this is needed in the expression (step 5
in Fig. 1). This is performed by

Po+k = Po−k
[
I − Ko

k

]
. (20)

Using the calculated Kalman gains and observation bias er-
ror covariance, the state variables and the biases can then be
updated:

b̂m+

k = b̂m−

k + Km
k

(
ỹk − b̂o−k − hk

(
ˆ̃xi−k − b̂m−

k

)
i=1,...,N

)
b̂o+k = b̂o−k + Ko

k

(
ỹk − b̂o−k − hk

(
ˆ̃xi−k − b̂m−

k

)
i=1,...,N

)
x̂i+k = ˆ̃xi−k − b̂m+

k + K k

(
ỹk − b̂o+k − hk

(
ˆ̃xi−k − b̂m+

k

)
+ vik

)
. (21)

hk(.) is a nonlinear function, relating the state variables to
the observations. Note that the two bias update equations are
deterministic, while the third state update equation is per-
formed for each individual ensemble member.i is the en-

semble member, andhk
(

ˆ̃xi−k − b̂m−

k

)
i=1,...,N

indicates the

average simulated observations, calculated across the ensem-
ble. vik is a random realization of the observation error, and
is needed in order to ensure a sufficient ensemble spread
(Burgers et al., 1998).

4 Evaluation of the methodology

The derived equations are tested through a synthetic study.
A very simple rainfall-runoff model is first calibrated for
the Zwalm catchment in Belgium. The obtained parameters
are then used to generate discharge and storage values. The
synthetically true storages are obtained by adding a prede-
fined bias to the modeled storage values (which is consistent
with Eq. 2). The synthetic discharge observations are then
obtained by adding a predefined observation bias to the dis-
charge, obtained with these biased storages. Furthermore, a
random-error term with a predefined standard deviation is
added to the synthetic discharge observations as well. This
is consistent with Eq. (3). The synthetic observations are
then assimilated into the model, and the retrieved storages
and discharges can then be compared to the synthetic truth
in order to evaluate the performance of the data assimilation
algorithm.

5 Site and data description

The study is performed in the Zwalm catchment in Belgium.
Troch et al.(1993) provide a complete description of this
test site; only a very short overview is given here. The to-
tal drainage area of the catchment is 114.3 km2 and the total
length of the perennial channels is 177 km. The maximum
elevation difference is 150 m. The average annual tempera-
ture is 10◦C, with January the coldest month (mean temper-
ature 3◦C) and July the warmest month (mean temperature
18◦C). The average annual rainfall is 775 mm and is dis-
tributed evenly throughout the year. The annual actual evap-
otranspiration is approximately 450 mm.

Meteorological forcing data with a one-day time step
from 1994 through 2002 were used in this study. The
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precipitation and all the variables needed to calculate the po-
tential evapotranspiration using the Penman–Monteith equa-
tion were measured by the Belgium meteorological station in
Kruishoutem. Discharge was measured continuously at the
catchment outlet in Nederzwalm.

6 Model description

The Hydrologiska Byr̊ans Vattenbalansavdelning (HBV)
model, of which Fig.2 shows a schematic, was originally
developed byLinström et al.(1997). In this paper, the ver-
sion ofMatgen et al.(2006) is applied. The model uses ob-
served precipitation (Rtot(t)) and potential evapotranspira-
tion (ETP(t)) as input, both in ms−1. t is the time in seconds.
The catchment is divided into a soil reservoir, a fast reservoir,
and a slow reservoir. There are thus three state variables: the
amount of water in the soil reservoir (S(t), m), the slow reser-
voir (S1(t), m), and the fast reservoir (S2(t), m).

A number of fluxes are calculated, which depend on the
state variables of the system. The actual evapotranspiration
ETR(t) (m3 s−1) is first determined:

ETR(t) =
1

λ

S(t)

Smax
ETP(t). (22)

λ is a dimensionless parameter, andSmax is the storage capac-
ity of the soil reservoir (m). The infiltrationRin(t) (ms−1) is
calculated as follows:

Rin(t) =

(
1 −

S(t)

Smax

)b
Rtot(t). (23)

b is a dimensionless parameter. After this, the effective pre-
cipitationReff(t) (ms−1) is determined:

Reff(t) = Rtot(t) − Rin(t). (24)

The calculation of the percolationD(t) (ms−1) is then
performed:

D(t) = Pe
(
1 − e

−β
S(t)
Smax

)
. (25)

Pe is a percolation parameter (ms−1), andβ a dimensionless
parameter. After this, the storage in the soil reservoir at the
end of the time step can be calculated as follows:

S(t + 1t) = S(t) + (Rin(t) − ETR(t) − Perc(t)) 1t. (26)

1t is the time step in seconds.S(t + 1t) is always positive
after model calibration.

The input in the fast reservoirR2(t) (ms−1) is then

R2(t) = α
S(t)

Smax
Reff(t). (27)

α is a dimensionless parameter. The outflow from this reser-
voir Q2(t) (m3 s−1) is then determined:

Q2(t) = κ2

(
S2(t)

S2,max

)ψ
. (28)

Rtot ETR

RinReff=Rtot−Rin

R2

R1

D

Q1

Q2

t

q

S

S2 S1

qtot

Fig. 2.Schematic of the HBV model.

S2,max is the storage capacity of the fast reservoir (m), and
κ2 (m3 s−1) andψ (–) are model parameters. After this, the
storage in the fast reservoir at the end of the time step can be
calculated as

S2(t + 1t) = S2(t) + (R2(t) − Q2(t)) 1t. (29)

The input in the slow reservoirR1(t) (ms−1) is then
computed:

R1(t) = Reff(t) − R2(t). (30)

The outflow from this reservoirQ1(t) (m3 s−1) can be calcu-
lated as

Q1(t) = κ1S1(t). (31)

κ1 is a model parameter (m2 s−1). Finally, the storage in the
slow reservoir at the end of the time step is calculated:

S1(t + 1t) = S1(t) + (R1(t) − Q1(t) + Perc(t)) 1t. (32)

The total dischargeq(t) is simply the sum ofQ1(t) and
Q2(t). A triangular unit hydrograph is used for runoff rout-
ing. Since in this paper daily time steps are used, and the con-
centration time of the catchment is only 14 h (Ferket et al.,
2008), no routing needs to be performed for this study.

In summary, the model contains ten time-invariant param-
eters (λ, Smax, b, α, Pe, β, ψ , S2,max, κ2 andκ1), and three
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Table 1.Properties of the observation and forecast bias in the synthetic experiments.

Experiment Experiment Forecast bias Forecast bias Observation Observation
set average (mm) amplitude (mm) bias average bias amplitude

S S1 S2 S S1 S2 (m3 s−1) (m3 s−1)

1 1 0 0 0 0 0 0 0.5 0
1 2 20 0.4 0.2 0 0 0 0.5 0
1 3 20 0.4 0.2 0 0 0 0 0
2 1 0 0 0 10 0.2 0.1 0.5 0.25
2 2 20 0.4 0.2 10 0.2 0.1 0.5 0.25
2 3 20 0.4 0.2 10 0.2 0.1 0 0.25

state variables per time step (the storagesS(t), S1(t), and
S2(t)).

The model was calibrated using particle swarm optimiza-
tion (Kennedy and Eberhart, 1995), using the data from 1994
through 1997. Table 2 lists the obtained parameter values,
and Fig.3 shows the comparison of the modeled to the ob-
served discharge for the entire simulation period. Based on
these results, the rainfall-runoff dynamics of the model are
deemed to be sufficiently accurate to be used in a data assim-
ilation study.

7 Results

7.1 Ensemble generation

In order to thoroughly evaluate the performance of the filter,
three experiments are performed. Table 1 shows an overview
of these experiments. The first experiment considers only ob-
servation bias and noise, and no forecast bias. In order to
generate the synthetic truth, no bias is added to the storages,
and a bias of 0.5 m3 s−1 and a random error with a standard
deviation of 0.1 m3 s−1 are added to the synthetically true
discharge. These synthetic observations are then assimilated
into the model with an assimilation interval of 7 days.

The second experiment considers observation bias and
noise as well as forecast bias. Again, a bias of 0.5 m3 s−1 and
a random error with a standard deviation of 0.1 m3 s−1 are
added to the synthetically true discharge. However, in order
to generate the synthetic truth, bias is added to the storages.
Forecast bias is generated this way, in a manner consistent
with the filter theory, so that one can assess to what extent
the bias-aware EnKF will correctly estimate the true storage
and discharge values. The value of the bias added to the stor-
ages is obtained by examining the standard deviation in the
modeled storages, obtained using the calibrated model pa-
rameters. The bias was then assumed to be 10 % of this stan-
dard deviation. This resulted in a bias of 20, 0.4, and 0.2 mm
for the surface, slow reservoir, and fast reservoir storages, re-
spectively (see Sect.6).

The third experiment considers only observation noise and
forecast bias. A random error with a standard deviation of

Table 2.Parameter values used by the hydrologic model.

Parameter Value Units

λ 1.228 –
Smax 0.322 m
b 1.219 –
α 1.512 –
Pe 1.077× 10−8 ms−1

β 1.326 –
ψ 1.049 –
S2,max 1.726× 10−2 m
κ2 1.369× 10−7 ms−1

κ1 6.916× 10−7 s−1

0.1 m3 s−1 is added to the synthetically true discharge, which
is again obtained by adding a predefined bias to the storage
values.

In order to investigate the possibility to estimate a tem-
porally varying observation and forecast bias, the three ex-
periments are repeated, but with a sinus wave added to the
mean biases. The period of this wave is equal to one year and
the amplitude equal to 0.25 m3 s−1 for the observation bias,
and 10, 0.2, and 0.1 mm for the surface, slow reservoir, and
fast reservoir storages, respectively.

The experiments are applied with an ensemble of 32 mem-
bers. The ensemble is generated by adding a Gaussian dis-
tributed random number with zero mean to each parameter
value. The standard deviation of this random number is set to
a fraction of the original parameter value. It was ensured that
the parameter values did not exceed physical limits. At each
time step, a random error is added to the observed precipi-
tation and potential evapotranspiration. Again, the standard
deviation of the random error is set to a fraction of the orig-
inal observed value. The fractions to calculate the standard
deviations are calibrated for each experiment to ensure an ad-
equate ensemble spread, followingDe Lannoy et al.(2006).
Ensemble sizes of 256, 128, 64, 32, and 16 members were
analyzed, and it was found that for sizes larger than 32 the en-
semble statistics no longer varied significantly. For this rea-
son, 32 members were used for the remainder of the analysis.
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Fig. 3.Evaluation of the modeled discharge. The thick solid lines are the observed discharge, and the thin lines are the model results.
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Fig. 4. Evolution of the estimated biases (the type of bias is indi-
cated at the top of each plot) for experiment 2 using a multiplica-
tion factor (κ) of 10 (solid lines) and 100 (dotted lines) to calcu-
late the observation bias error covariance. The top panel indicates
the observation bias, and the second, third, and bottom panels indi-
cate the bias in the soil, groundwater, and surface runoff storages,
respectively.

7.2 Filter parameter estimation

Another issue in the application of the bias-aware EnKF is
the estimation of the parametersγ (used in Eq.16 to esti-
mateP−

k andPm−

k ) andκ (used in Eq.17). The objective of
the determination of these parameters is to obtain stable bias
estimates, meaning that the estimates do not continue to de-
crease or increase as the simulation proceeds.γ is clearly a
value between zero and one, while an indicative value forκ is
more difficult to determine. It has been found that a too low
value forκ leads to observation bias estimates that diverge
from the true value during the simulation. Figure4 shows
this for experiment 2 (a constant observation bias). The ob-
servation bias and the biases forS andS1 evolve to clearly
unrealistic values. A value of 100 forκ can be seen to lead

Fig. 5. Ensemble average of the autocorrelation function of the in-
novations in step 8 of Fig.1 for each ensemble member, for the case
of sinusoidal observation and forecast biases andκ equal to 100.

to stable observation bias estimates. The results of the filter
have been found to be less sensitive to the value ofγ . A value
of 0.1 for this parameter has been found to lead to stable esti-
mates of the forecast bias. As explained in Sect.3.3, the auto-
correlation length of the innovations in step 8 in Fig.1 should
be zero with a zero mean. Figure5 shows the ensemble aver-
age of the autocorrelation functions for each ensemble mem-
ber for the case of sinusoidal observation and forecast bi-
ases. Clearly, for all lags larger than 0, the autocorrelations
approach zero, which indicates thatγ has been adequately
estimated.

7.3 State and bias estimation for a constant observation
and forecast bias

Figure6 shows the estimated storages for each of the exper-
iments described above, using a constant observation bias.
Figure7 shows the analysis of the modeled discharges and
the evolution of the estimated observation bias. For each of
the three experiments, the estimated unbiased storages and
discharges are compared to the storages obtained using a
bias-unaware EnKF in which only states are estimated and
biases are not taken into account. Figure8 shows the time
series of the true discharge, the results of the baseline run,
and the results of the bias-aware EnKF for a selected period
in the simulation period.

Examining the results of experiment 1 (only observation
bias), the advantage of the bias estimation is evident. The
bias-unaware EnKF leads to relatively large errors in the stor-
ages, which practically disappear when bias is taken into ac-
count. Figure7 shows that taking into account the observa-
tion bias also leads to an almost perfect estimate of the dis-
charge. The observation bias shows fluctuations around the
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Fig. 6. Comparison of the estimated storages obtained using the bias-aware and a bias-unaware EnKF for the constant observation bias
experiment. The dashed lines are the regression lines; the solid lines the 1 : line. Synthetic true values are inx axis; estimations iny axis.
The top, middle, and bottom two rows show the results of experiments 1, 2, and 3, respectively. The first, second, and third column show the
results forS, S1, andS2, respectively.
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mean value, but the true value of 0.5 m3 s−1 is retrieved with
reasonable accuracy.

Similar conclusions, but to a lesser extent, can be drawn
for the results of experiment 2 (both observation and forecast
bias). Figure6 shows that the estimation for the three stor-
ages is better for the bias-aware EnKF as compared to the
bias-unaware EnKF. ForS1 andS2 an almost perfect estimate
is obtained, while forS the bias is reduced but not eliminated.
However, asS does not directly influence the discharge (see
the equations in Sect.6), this should not lead to errors in
the discharge estimation. Figure7 shows that indeed the dis-
charge is almost perfectly estimated, and that the estimated
bias fluctuates around the correct value.

Regarding experiment 3 (only forecast bias), the results
from the bias-aware EnKF are better than for the bias-
unaware EnKF. Figure6 shows that forS the improvement
is marginal, but forS1 andS2 a reduction in the RMSE (root
mean square error) can be observed, while the bias in the es-
timates is almost unaltered. Figure7 shows that the discharge
is almost perfectly estimated, and that the estimation of the
observation bias again fluctuates around the correct value. In
experiments 2 and 3,S remains biased due to an observabil-
ity issue: the observed (assimilated) discharge is not directly
related toS, and hence this information cannot be efficiently
used to update the bias estimate.

Further examination of Figs.6 and 7 shows that the es-
timated storages and discharges obtained using the bias-
aware EnKF are almost identical for experiment 2 and exper-
iment 3. This can be explained by the relatively accurate esti-
mation of the observation bias. Since the bias-unaware EnKF
does not take this into account, the results for experiment 3
(where no observation bias is present) are significantly better
than the results for experiment 2 for the bias-unaware EnKF.

Table 3 shows the relative RMSE increase for both the
bias-aware and the bias-unaware EnKF. This relative increase
is defined as

RI = 100
RMSEa − RMSEb

RMSEb
. (33)

RI is the relative increase (%), RMSEa the RMSE of the as-
similation run, and RMSEb the RMSE of the baseline run
(the run in which no data are assimilated). The RMSE values
are calculated both for the state variables and the discharges.
A positive value indicates an increase in RMSE as compared
to the baseline run, a negative value a decrease. If observation
and forecast bias are not taken into account, the analyzed dis-
charge tends to be better estimated than for the baseline run,
but this does not necessarily mean that the storages are bet-
ter estimated. In other words, better discharge forecasts do
not necessarily lead to better estimates of state variables. On
the other hand, when biases are taken into account, the state
variables are better estimated as compared to the baseline run
(except forS). This also leads to better discharge estimates
as compared to the results of a bias-unaware EnKF.

Table 3. Relative RMSE values of the analyzed results from the
bias-unaware and the bias-aware EnKF.

Experiment Variable Bias-unaware Bias-aware
EnKF EnKF

Constant observation and forecast bias

1 S 394.76 −81.95
1 S1 324.48 −71.18
1 S2 −65.77 −95.41
1 Q −23.36 −92.75

2 S 68.42 0.71
2 S1 257.35 −39.42
2 S2 −64.62 −92.11
2 Q −17.3 −85.43

3 S 2.81 0.69
3 S1 −20.35 −39.29
3 S2 −89.4 −92.11
3 Q −0.49 −32.15

Sinusoidal observation and forecast bias

1 S 96.31 −15.93
1 S1 298.96 −52.93
1 S2 −80.7 −88.31
1 Q −40.36 −78.02

2 S 52.95 2.27
2 S1 219.74 −25.42
2 S2 −79.17 −86.26
2 Q −34.01 −74.03

3 S −9.77 2.24
3 S1 35.67 −25.2
3 S2 −72.43 −86.26
3 Q 27.73 −33.16

7.4 State and bias estimation for a temporally variable
observation and forecast bias

Figure9 shows the comparison of the modeled storages to
the synthetic truth for the three experiments with a sinu-
soidally evolving observation and forecast bias. This sinu-
soidal bias was chosen since discharge observations tend to
show a seasonal cycle. The sinusoidal bias may be an exag-
gerated simplification of the true bias, but it is still more re-
alistic than a constant bias. Figure10 shows the comparison
of the modeled discharge to the synthetic truth and the evo-
lution of the observation bias. The same conclusions can be
drawn for the experiments with a constant observation bias.
In all cases the observation bias and the discharge are better
estimated with a bias-aware EnKF, as compared to when a
bias-unaware EnKF is used. The estimation of the storages
also strongly improves when a bias-aware EnKF is used, as
opposed to the use of the bias-unaware EnKF. The only ex-
ception is the estimation ofS for experiment 3, where the
bias and the RMSE slightly worsen. However, this storage
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Fig. 7.Comparison of the estimated discharges obtained using the bias-aware and a bias-unaware EnKF, and the evolution of the observation
bias throughout the simulation – both for the constant observation bias experiment. The dashed lines are the regression lines; the solid lines
the 1 : 1 line. For the bias estimation, the dotted lines refer to the true bias.

does not directly influence the discharge, which explains the
almost perfect estimation of the discharge.

Similar for a constant observation bias, the results from
experiment 2 and experiment 3 are almost identical when a
bias-aware EnKF is used, but not when a bias-unaware EnKF
is used. This can be explained by the relatively accurate esti-
mation of the observation bias.

Table 3 shows that, for the comparison of the results to
the results of the baseline run, the same conclusions can be
drawn for temporally constant observation and forecast bi-
ases. If biases are not taken into account, slightly better dis-
charge estimates than the baseline run are obtained, with not
necessarily better state estimates (except for experiment 3
where the discharge estimates are also worsened). Taking

into account the biases again leads to better state estimates
(except for the storageS).

7.5 Benefit of dual observation-forecast bias estimation

In order to demonstrate the benefit of the estimation of both
forecast and observation biases, as opposed to the estima-
tion of forecast biases alone (Dee and Da Silva, 1998; Dee
and Todling, 2000; Drécourt et al., 2006; De Lannoy et al.,
2007; Bosilovich et al., 2007; Reichle et al., 2010), the ex-
periments described above were repeated, but the estimation
of the observation bias was turned off. Under these condi-
tions, the state and forecast bias estimation reduces to the
methodology described inDe Lannoy et al.(2007). Table 4
shows the results of the comparison of the analyzed storages
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Fig. 8. Comparison of the estimated discharge from the baseline
run and the assimilation run with the bias-aware EnKF to the true
discharge for a selected part of the simulation period.

and discharges to the synthetic truth. These statistics can be
compared to the statistics in Figs.6, 7, 9, and10 in order to
assess whether the estimation of both forecast and observa-
tion biases leads to better results than the estimation of fore-
cast bias alone.

In all cases, as expected, the incorporation of an observa-
tion bias estimation leads to a better estimate of the states and
discharges. This is expressed by the lower bias and RMSE
values in Figs.6, 7, 9, and10 than in Table 4. These results
thus clearly show the benefit of a dual state and observation
and forecast bias estimation.

7.6 Analysis of the ensemble spread

A very important aspect of the application of the Kalman
filter is to ensure an adequate ensemble spread. Figure11
shows the square root of the diagonal elements of the biased
a priori error covariance matrix (thus the ensemble spread)
and the observation error covariance for the case with a si-
nusoidal observation and forecast bias. From these plots the
conclusions can be drawn that the ensemble spread is sta-
ble throughout the simulation and that ensemble collapse
or instability do not occur. For the other experiments, sim-
ilar results were obtained. Figure12 shows the relationship

between these ensemble spreads and the simulated discharge.
The surface storage is only slightly correlated to the total
discharge, while the spread in the surface and groundwater
reservoir storages is more strongly correlated to the total dis-
charge. As can be expected, the standard deviation of the ob-
servation bias is strongly correlated to the total discharge.

7.7 Observability of the biases

An important aspect in the application of the Kalman fil-
ter is the observability of the system. This can be examined
through the observability matrix, of which the rank needs to
be equal to the number of state variables. This observability
matrix can be written as

Ok =


Hk

HkAk

HkA2
k . . .

HkAn−1
k

 . (34)

n is the number of state variables, andAk is the Jacobian
matrix, resulting from the linearization offk,k−1 in Eq. (18).
Since we are using persistent bias models, with less observa-
tions than the number of state variables, the rank of the ob-
servability matrix for the bias vectors will always be smaller
than the number of state variables. In other words, the use
of persistent bias models will always lead to an unobserv-
able system. However, this observability issue is bypassed
by the use of the parametersγ andκ in Eq. (16) andκ in
Eq. (17). What these parameters essentially perform is first
separate the biased background error covariance into an error
covariance of the unbiased states and an error covariance of
the forecast bias and then relate the biased background error
covariance to the observation bias error covariance. If these
two parameters are well chosen by examining the correla-
tion length of the innovations, one should expect an adequate
partitioning of the mismatch between observations and sim-
ulations into biases and state variables. This is demonstrated
by the results mentioned in the sections above. The develop-
ment of realistic bias models is under investigation, but this
subject falls outside the scope of this paper.

7.8 Assimilation of in situ discharge data

In order to demonstrate the applicability of the dual bias esti-
mation in real-world situations, in situ observed discharge
rates are assimilated instead of synthetically true values.
Again, an observation error standard deviation of 0.1 m3 s−1

has been assumed, and an assimilation interval of 7 days has
been used. Persistent bias models are again used. Figure13
shows the results of this experiment. A seasonal cycle in the
observation bias can be seen. This is very realistic, because
there is a relatively large scatter in the discharge-water level
relationship that is used to invert the water level observa-
tions into discharge values (W. Defloor, Department of Oper-
ational Water Management, Flemish Environmental Agency,

Hydrol. Earth Syst. Sci., 17, 3499–3521, 2013 www.hydrol-earth-syst-sci.net/17/3499/2013/



V. R. N. Pauwels et al.: Simultaneous bias estimations using a two-stage hybrid Kalman filter 3513

Fig. 9. Comparison of the estimated storages obtained using the bias-aware and a bias-unaware EnKF for the sinusoidal observation bias
experiment. The dashed lines are the regression lines; the solid lines the 1 : 1 line. Synthetic true values are inx axis; estimations iny axis.
The top, middle, and bottom two rows show the results of experiments 1, 2, and 3, respectively. The first, second, and third column show the
results forS, S1, andS2, respectively.
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Fig. 10.Comparison of the estimated discharges obtained using the bias-aware and a bias-unaware EnKF, and the evolution of the observation
bias throughout the simulation – both for the sinusoidal observation bias experiment. The dashed lines are the regression lines; the solid lines
the 1 : 1 line. For the bias estimation, the dotted lines refer to the true bias.

personal communication, 2011). Since the water levels are
usually low in the summer and high in the winter, this could
lead to a seasonal signal in the observation bias. The bias
in the storages evolves to realistic values. The unbiased dis-
charge estimates and observations also show a slightly bet-
ter match than the biased values, which increases confidence
in the obtained results. This real-world application shows, at
least for this relatively simple model, that the methodology
can also be used in realistic situations. Further investigation
using more complicated models in more challenging environ-
ments (for example the presence of snow and frozen soils)
is needed. However, this is outside the scope of the paper,
which focuses on the development of the theoretical frame-
work and the initial assessment using a simple model.

8 Discussion and conclusions

In this paper, we presented a two-stage hybrid Kalman filter
for the simultaneous estimation of forecast and observation
biases and model state variables using the EnKF. The filter
equations were first derived for a linear system. A first step
consists of the updating of the forecast and observation bi-
ases, which are then used to update the unbiased state esti-
mates. The Kalman gains for the forecast bias, the observa-
tion bias, and the model state variables can be interpreted
as the fraction of the mismatch between the observations
and the corresponding model simulations, which can be at-
tributed to forecast bias, observation bias, and random fore-
cast and observation error, respectively, remapping this mis-
match onto state-space for the model state and bias estimates.
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Table 4. Statistics of the linear regression between the true states and discharges (X) and the values obtained using an observation bias-
unaware EnKF (Y ).

Experiment Variable Units MeanX MeanY Slope Intercept R RMSE

Constant observation and forecast bias

1 S mm 98.350 95.461 0.985 −1.464 0.998 3.795
1 S1 mm 11.147 13.679 0.991 2.626 0.985 2.603
1 S2 mm 0.859 1.136 1.006 0.270 0.997 0.292
1 Q m3 s−1 1.573 2.065 0.986 0.513 0.997 0.501

2 S mm 117.838 96.360 0.984 −19.625 0.997 21.671
2 S1 mm 11.519 13.961 0.980 2.672 0.979 2.543
2 S2 mm 0.917 1.108 1.030 0.163 0.997 0.217
2 Q m3 s−1 1.575 2.067 0.981 0.520 0.997 0.502

3 S mm 117.838 97.719 0.989 −18.916 0.996 20.374
3 S1 mm 11.519 11.747 0.994 0.293 0.986 0.621
3 S2 mm 0.917 0.861 1.041 −0.093 0.997 0.129
3 Q m3 s−1 1.575 1.626 0.990 0.066 0.997 0.117

Sinusoidal observation and forecast bias

1 S mm 96.975 90.925 0.988 −4.897 0.982 9.547
1 S1 mm 11.291 13.822 0.990 2.633 0.941 2.835
1 S2 mm 0.833 1.120 1.062 0.235 0.993 0.336
1 Q m3 s−1 1.557 2.061 1.023 0.468 0.991 0.536

2 S mm 116.468 86.113 0.983 −28.457 0.976 31.533
2 S1 mm 11.674 13.530 0.976 2.128 0.934 2.280
2 S2 mm 0.885 1.132 1.076 0.178 0.994 0.303
2 Q m3 s−1 1.559 2.057 1.011 0.480 0.990 0.534

3 S mm 116.468 98.404 0.996 −17.613 0.975 20.048
3 S1 mm 11.674 13.705 1.006 1.957 0.896 2.690
3 S2 mm 0.885 0.820 1.108 −0.162 0.992 0.235
3 Q m3 s−1 1.559 1.762 1.027 0.160 0.990 0.283

The equations were then modified for nonlinear processes
and observation systems in an ensemble framework. We fol-
lowed the same approach as inDe Lannoy et al.(2007).
More specifically, a hybrid approach between an EnKF and
a discrete KF is suggested, in which the state vector is es-
timated using the EnKF, and the biases are estimated using
the discrete KF. The unbiased forecast error covariance and
the forecast bias error covariance are calculated as fractions
of the biased forecast error covariance. The observation bias
error covariance is calculated as a multiplication of the ob-
servation prediction error covariance. In order to apply the
algorithm to existing data assimilation codes, minimal code
modification is needed.

The developed methodology was then applied to a rainfall-
runoff model in situations with either only observation bias,
both observation and forecast bias, or only forecast bias. The
bias-aware EnKF with both observation and forecast bias es-
timation outperformed the bias-unaware EnKF as well as the
bias-aware EnKF with forecast bias estimation only.

The filter depends on two parameters,γ andκ, which are
assumed constant in time and which are used to estimate the

bias error covariances.κ has been estimated by examining
the temporal evolution of the forecast bias. For low values
of κ, a continuous absolute growth of the forecast and ob-
servation bias was observed. The results were found to be
less sensitive to the values forγ . It can be argued that these
parameters should be made temporally variable, thus that a
model for these two parameters would have to be developed.
A more realistic model for the evolution of the biases could
also be developed. Although this could certainly be the sub-
ject of further investigations, this falls outside the scope of
this paper.

A next step in the development of the two-stage hybrid fil-
ter will be the assimilation of remotely sensed data such as
soil moisture values into a spatially distributed, physically-
based land surface model. The reliability of the method can
be assessed by examining the modeled discharge. It is well
known that a good estimation of surface soil moisture val-
ues will not necessarily lead to a good estimation of mod-
eled discharge and vice versa (Lin et al., 1994). As a con-
sequence, the use of discharge data for the calibration of
hydrologic models will probably lead to biased surface soil
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Fig. 11.Time series of the standard deviation of the a priori biased
state error covariance (top three panels) and the a priori observa-
tion bias error covariance (bottom panel) for the experiment with
sinusoidal observation and forecast biases.

moisture estimates. The reliability of the newly developed
method can thus be examined by examining the modeled dis-
charge values.

This paper presents an initial step towards dealing with the
complex problem of joint observation and forecast bias and
state estimation. The overall conclusion, based on the results
that have been described, is that there is potential to improve
data assimilation results if both observation and forecast bias
are taken into account, as opposed to the use of bias-unaware
Kalman Filters.

Fig. 12. Relationship between (1) the standard deviations of the a
priori biased state error covariance and the a priori observation bias
error covariance, and (2) the simulated discharge. In the two top
and the left-hand side bottom panels,P in they axis refers to the a
priori forecast error covariance. In the bottom right-hand side panel,
Po refers to the a priori observation bias error covariance.

Appendix A

Proof of the unbiased state estimate

It is relatively straightforward to prove that the last update
in Eq. (9) leads to unbiased state estimates. We can calculate
the temporal average of the state estimate error:〈
x̂+

k − xk

〉
=

〈
ˆ̃x−

k − xk − b̂m+

k + K k

(
ỹk − b̂o+k − Hk

(
ˆ̃x−

k − b̂m+

k

))〉
. (A1)

The following definitions of the a priori estimate errors are
used:

e+

k = x̂−

k − xk

ẽ+

k = ˆ̃x−

k − x̃k

em−

k = b̂m−

k − bmk
eo−k = b̂o−k − bok

. (A2)

A similar definition is used for the a posteriori estimate error.
In Eq. (A1) we add and subtract̃xk to the right-hand side
term, and use the previous definition:〈
e+

k

〉
=

〈
ẽ−

k − em+

k + K k

(
ỹk − b̂o+k − Hk

(
ˆ̃x−

k − b̂m+

k

))〉
. (A3)

Through substitution of Eq. (3) we can write〈
e+

k

〉
=

〈
ẽ−

k − em+

k + K k

(
Hk xk + vk + bok − b̂o+k − Hk

(
ˆ̃x−

k − b̂m+

k

))〉
. (A4)
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Fig. 13.Results of the assimilation of in situ observed discharge rates. Left panels: the bias estimates. The top plot shows the results for the
observation bias. The following three plots show the bias inS, S1 andS2. Right panels: the discharges.

Substitution of Eqs. (A2) and (2) leads to〈
e+

k

〉
=

〈
ẽ−

k − em+

k + K k

(
Hk

(
x̃k − bmk

)
+ vk − eo+k − Hk

(
ˆ̃x−

k − b̂m+

k

))〉
. (A5)

Rearrangement and again substituting Eq. (A2) result in the
following expression:〈
e+

k

〉
=

〈
ẽ−

k − em+

k + K k

(
−Hk ẽ

−

k + vk − eo+k + Hk ẽ
m+

k

)〉
. (A6)

By definition, each individual error component on the right-
hand side is equal to zero. For example, for the state vector
we can write

xk = x̃k − bmk . (A7)

We add and subtracte−

k and substitute this once by Eq. (A2):

xk = x̃k − e−

k + ˆ̃x−

k − x̃k − bmk . (A8)

This reduces to

xk = ˆ̃x−

k − e−

k − bmk . (A9)

Comparison to Eq. (2) shows that by definition the estimate
error average needs to be zero. The temporal average of the
a posteriori estimate error is thus equal to zero, which means
that the system estimates an unbiased state.

Appendix B

The derivation for a linear system

B1 Calculation of the observation bias Kalman gain

First the expression for the Kalman gain for the observation
bias will be derived. For this purpose, the a posteriori error
covariance of the observation bias (Po+k ) needs to be mini-
mized. Substitution of Eq. (9) by Eq. (11) leads to

Po+k = E


(
bok − b̂o−k − Ko

k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m−

k − b̂o−k

))
·

(
bok − b̂o−k − Ko

k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m−

k − b̂o−k

))T
 . (B1)
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Expansion of this product, placing the Kalman gains and
observation matrices outside the expected value expressions
(they are constant over a time step), using Eq. (3) for the
substitution ofỹk, and knowing that the unbiased states, the
biases and the random error are independent of each other,
leads to

Po+k = E

[(
bok − b̂o−k

) (
bok − b̂o−k

)T ]
− Ko

kE

[(
bok − b̂o−k

) (
bok − b̂o−k

)T ]
−E

[(
bok − b̂o−k

) (
bok − b̂o−k

)T ]
KoT
k + Ko

kHk

E

[(
x̃k − ˆ̃x−

k

) (
x̃k − ˆ̃x−

k

)T ]
HT
k KoT

k

+Ko
kE

[(
bok − b̂o−k

) (
bok − b̂o−k

)T ]
KoT
k

+Ko
kHkE

[(
bmk − b̂m−

k

) (
bmk − b̂m−

k

)T ]
HT
k KoT

k + Ko
kE

[
vk v

T
k

]
KoT
k . (B2)

Substitution of Eqs. (11) and (12) results in the following
expression:

Po+k = Po−k − Ko
kPo−k − Po−k KoT

k + Ko
kHk

(
P̃−

k + Pm−

k

)
HT
k KoT

k + Ko
kPo−k KoT

k + Ko
kRkKoT

k . (B3)

The minimization ofPo+k means that the first derivative with
respect toKo

k is equal to zero. Calculation of this first deriva-
tive and equalizing this to zero lead to[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k

]
KoT
k + RkKoT

k = Po−k . (B4)

After rearrangement, the Kalman gain for the observation
bias can be written as

Ko
k = Po−k

[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k + Rk

]−1
. (B5)

B2 Calculation of the Kalman gain of the forecast bias

Similarly as in the derivation of the expression for the obser-
vation bias Kalman gain, the a posteriori error covariance of
the forecast bias (Pm+

k ) needs to be minimized. Substitution
of Eq. (9) by Eq. (11) leads to

Pm+

k = E


(
bmk − b̂m−

k − Km
k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m−

k − b̂o−k

))
·

(
bmk − b̂m−

k − Km
k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m−

k − b̂o−k

))T
 . (B6)

Again, expanding this product, placing the Kalman gains and
observation matrices outside the expected value expressions,
using Eq. (3) for the substitution of̃yk, and knowing that the
unbiased states, the biases, and the random error are indepen-
dent of each other, results in the following expression:

Pm+

k = E

[(
bmk − b̂m−

k

) (
bmk − b̂m−

k

)T ]
+Km

k HkE

[(
bmk − b̂m−

k

) (
bmk − b̂m−

k

)T ]
+E

[(
bmk − b̂m−

k

) (
bmk − b̂m−

k

)T ]
HT
k KmT

k

+Km
k HkE

[(
x̃k − ˆ̃x−

k

) (
x̃k − ˆ̃x−

k

)T ]
HT
k KmT

k

+Km
k E

[(
bok − b̂o−k

) (
bok − b̂o−k

)T ]
KmT
k

+Km
k HkE

[(
bmk − b̂m−

k

) (
bmk − b̂m−

k

)T ]
HT
k KmT

k

+Km
k E

[
vk v

T
k

]
KmT
k . (B7)

Substitution of Eqs. (11) and (12) results in the following
equation:

Pm+

k = Pm−

k + Km
k HkPm−

k + Pm−

k HT
k KmT

k

+Km
k Hk P̃−

k HT
k KmT

k + Km
k Po−k KmT

k

+Km
k HkPm−

k HT
k KmT

k + Km
k RkKmT

k . (B8)

Derivation of this expression with respect toKm
k and equal-

ization to zero leads to[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k

]
KmT
k + RkKmT

k = −HkPm−

k . (B9)

Rearrangement finally leads to the analytical expression for
the Kalman gain for the forecast bias:

Km
k = −Pm−

k HT
k

[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k + Rk

]−1
. (B10)

B3 Calculation of the Kalman gain of the states

The objective is to estimate the unbiased state vector as accu-
rately as possible. For this purpose, similarly as in the deriva-
tion of the expression for the biases Kalman gain, the unbi-
ased a posteriori error covariance of the model states (P+

k )
needs to be minimized. Substitution of Eq. (9) by Eq. (11)
leads to

P+

k = E


(
xk − ˆ̃x−

k + b̂m+

k − K k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m+

k − b̂o+k

))
(
xk − ˆ̃x−

k · + b̂m+

k − K k

(
ỹk − Hk

ˆ̃x−

k + Hk b̂
m+

k − b̂o+k

))T
 . (B11)

Similarly as in the derivation of the Kalman gains for the bi-
ases, this product is expanded, placing the Kalman gains and
observation matrices outside the expected value expressions.
Equation (3) is used for the substitution of̃yk, knowing that
the unbiased states, the biases, and the random error are in-
dependent of each other, results in the following expression:

P+

k = E
[(

xk − x̂−

k

) (
xk − x̂−

k

)T ]
− K kHkE

[(
xk − x̂−

k

) (
xk − x̂−

k

)T ]
−E

[(
xk − x̂−

k

) (
xk − x̂−

k

)T ]
HT
k KT

k + K kHk

E
[(

xk − x̂−

k

) (
xk − x̂−

k

)T ]
HT
k KT

k + K k

E

[(
bok − b̂o+k

) (
bok − b̂o+k

)T ]
KT
k + K kE

[
vk v

T
k

]
KT
k . (B12)
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Substitution of Eqs. (11) and (12) leads to

P+

k = P−

k − K kHkP
−

k − P−

k HT
k KT

k + K kHkP−

k HT
k KT

k

+K kPo+k KT
k + K kRkKT

k . (B13)

Calculation of the first derivative with respect toK k and
equalization to zero results in the following expression:[
HkP−

k HT
k + Po+k

]
KT
k + RkKT

k = HkP−

k . (B14)

After rearrangement, the Kalman gain for the unbiased states
can be written as

K k = P−

k HT
k

[
HkP−

k HT
k + Po+k + Rk

]−1
. (B15)

B4 Updating of the error covariances

In the application of the Kalman filter, the error covariances
need to be updated. This is performed using the previously
derived expressions for the a posteriori error covariances
(Eqs.B3, B8 andB13). These equations can be rewritten as


P+

k = P−

k − K kHkP−

k − P−

k HT
k KT

k + K k

[
HkP−

k HT
k + Po+k + Rk

]
KT
k

Po+k = Po−k − Ko
kPo−k − Po−k KoT

k + Ko
k

[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k + Rk

]
KoT
k

Pm+

k = Pm−

k + Km
k HkPm−

k + Pm−

k HT
k KmT

k + Km
k

[
Hk

(
P̃−

k + Pm−

k

)
HT
k + Po−k + Rk

]
KmT
k

.(B16)

Substitution of the Kalman gains (step 3 in Fig.1) and leav-
ing out the factors that cancel each other lead to

P+

k = [I − K kHk] P−

k

Po+k =
[
I − Ko

k

]
Po−k

Pm+

k =
[
I + Km

k Hk

]
Pm−

k

. (B17)

The minus in the expression for the forecast bias Kalman
gain explains the plus in the propagation of the forecast bias
error covariance. The fact that a remapping of the system
state and the forecast bias to observation space is needed
explains theHk factor in the equations for the system state
and forecast bias error covariances, while this factor does not
appear in the observation bias error covariance propagation
equation.

B5 Propagation of the state error covariance

The a posteriori error covariances need to be propagated from
time stepk− 1 to time stepk. First, we will propagate the un-
biased state error covariance. Substituting the definition for
the forecast bias (Eq.2) by Eq. (11) leads to

P−

k = E

[(
x̃k − bmk − ˆ̃x−

k + b̂m+

k

) (
x̃k − bmk − ˆ̃x−

k + b̂m+

k

)T ]
. (B18)

Substitution of the system equation (Eq.1), again substitut-
ing Eq. (2) for simplification, results in

P−

k = E


(
Ak−1

(
x̃k−1 − ˆ̃x+

k−1

)
− bmk + b̂m+

k + wk−1

)
·
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(
x̃k−1 − ˆ̃x+

k−1

)
− bmk + b̂m+

k + wk−1

)T
 . (B19)

Expansion of the product, knowing that the errors in the un-
biased state estimates, the biases, and the noise are indepen-
dent of each other, and substituting the expressions for the
error covariances, leads to:

P−

k = Ak−1 P̃+

k−1ATk−1 + Pm+

k + Qk−1

−Ak−1E

[(
bmk−1 − b̂m+

k−1

) (
bmk − b̂m+

k

)T ]
−E

[(
bmk − b̂m+

k

) (
bmk−1 − b̂m+

k−1

)T ]
ATk−1. (B20)

We know thatbmk is equal tobmk−1 and thatb̂m−

k is equal to

b̂m+

k−1. This is written in the system description (Eqs.5 and8).
We can thus write the following:

E

[(
bmk−1 − b̂m+

k−1

) (
bmk − b̂m+

k

)T ]
= E

[(
bmk−1 − b̂m−

k

) (
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k

+Km
k

(
ỹk − Hk
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k + Hk b̂
m−

k − b̂o−k

))T ]
. (B21)

Substitution of the observation equation (Eq.3) and rear-
rangement lead to

E

[(
bmk−1 − b̂m+

k−1

) (
bmk − b̂m+

k

)T ]
= Pm−

k−1 + E
[(

bmk−1 − b̂m+

k−1

) (
Hk x̃k − Hk b

m
k

+vk + bok − Hk
ˆ̃x−

k + Hk b̂
m−

k − b̂o−k

)T ]
KmT
k . (B22)

We know that the forecast bias is independent of the observa-
tion bias and of the observation noise. This expression thus
reduces to

E

[(
bmk−1 − b̂m+

k−1

) (
bmk − b̂m+

k

)T ]
= Pm−

k−1 + E
[(

bmk−1 − b̂m+

k−1

) (
Hk x̃k − Hkb

m
k

−Hk
ˆ̃x−

k + Hk b̂
m−

k

)T ]
KmT
k . (B23)

This can be rewritten as

E

[(
bmk−1 − b̂m+

k−1

) (
bmk − b̂m+

k

)T ]
= Pm−

k−1

+E
[(

bmk−1 − b̂m+

k−1

) (
Hk xk − Hk x̂

−

k

)T ]
KmT
k . (B24)

We know that the unbiased state errors are independent of
the bias errors, so the last term reduces to zero. We can thus
write the propagation equation as

P−

k = Ak−1 P̃+

k−1ATk−1 + Pm+

k + Qk−1. (B25)

The use of a persistent bias model will lead to a propagation
of the bias error covariances to the next time step without
transformation:
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{
Pm−

k = Pm+

k−1
Po−k = Po+k−1

. (B26)
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