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The Robert-Bonamy formalism has been commonly used to calculate half-widths and shifts of
spectral lines for decades. This formalism is based on several approximations. Among them, two
have not been fully addressed: the isolated line approximation and the neglect of coupling between
the translational and internal motions. Recently, we have shown that the isolated line approximation
is not necessary in developing semi-classical line shape theories. Based on this progress, we have
been able to develop a new formalism that enables not only to reduce uncertainties on calculated
half-widths and shifts, but also to model line mixing effects on spectra starting from the knowledge
of the intermolecular potential. In our previous studies, the new formalism had been applied to linear
and asymmetric-top molecules. In the present study, the method has been extended to symmetric-top
molecules with inversion symmetry. As expected, the inversion splitting induces a complete failure
of the isolated line approximation. We have calculated the complex relaxation matrices of self-
broadened NH3. The half-widths and shifts in the ν1 and the pure rotational bands are reported in the
present paper. When compared with measurements, the calculated half-widths match the experimental
data very well, since the inapplicable isolated line approximation has been removed. With respect to
the shifts, only qualitative results are obtained and discussed. Calculated off-diagonal elements of
the relaxation matrix and a comparison with the observed line mixing effects are reported in the
companion paper (Paper II). Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4952995]

I. INTRODUCTION

Retrieval of reliable information from space and ground-
based measurements and the ability to perform reliable climate
and atmospheric modelings require accurate knowledge of the
spectroscopic parameters of all the significant molecules.1

A complete knowledge of the corresponding lines, including
how their shapes vary with the temperature and pressure of the
atmospheric environment, is crucial in all of these applications.
Usually, this knowledge is given by spectroscopic parameters
for each of the transitions (i.e., the line position, the intensity,
the self- and air-broadened half-widths, the shift, and the
temperature exponent) that are stored in databases.2 Among
all the parameters, to accurately determine the last four
is the most difficult problem that remains as a challenge
for experimentalists and theorists. Because the ambient
atmospheric species, temperatures, and pressures are not
always amenable to laboratory measurements, or because
of the large number of transitions, one often has to largely
rely on theoretical calculations based on various line shape
theories.1,3–8

The formalism developed by Robert and Bonamy7 in
1979, based on the well-known Anderson-Tsao-Curnutte
(ATC) theory,4,8 is one of the most widely used methods,
especially for complex molecules. Mainly due to its
importance for practical applications, a lot of efforts have been
made in order to improve the RB formalism (see Refs. 9 and 10

for a detailed presentation. However, so far its performance is
still not satisfactory as it has been shown that in comparison
with the measurements and the most accurate close coupling
calculations, it significantly overestimates the half-widths.11,12

Although the non diagonality in the line space of
the Liouville scattering operator was known,13,14 a major
limitation of the RB formalism results from applying
nevertheless the isolated line approximation. Attempts to
overcome this weakness take a long journey. Around
12 years ago, we have found that when the authors of
Ref. 7 applied the linked cluster theorem to evaluate the
Liouville scattering Ŝ operator, there was a subtle derivation
error and consequently, their expressions for operators
(i.e., S1 and S2) appearing in the cumulant expansion were
not correct.15 Unfortunately, after correcting this error we
simply adopted their assumption that one needs only to
consider diagonal matrix elements for operators involved
in the cumulant expansion. It turns out that the latter is
nothing, but the isolated line approximation. Mainly due
to this negligence, an opportunity to completely remove
this approximation was missed by us. In 2013, we finally
realized that this approximation is not necessary because
with the correct expressions, the matrix size of –iS1 –S2 is
dramatically reduced.10 Thus, one can accurately evaluate
the matrix elements of exp(–iS1 –S2), and consequently,
calculate the whole relaxation matrix based on the potential
energy surfaces between the molecules involved. It then
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became possible to analyze line mixing effects for complex
molecular systems for which fully quantum approach are not
feasible.

In our previous studies, we have developed a refined
formalism applicable for linear16–18 and asymmetric-top
molecules.19 In the present study, the method has been
extended to symmetric-top molecules with inversion sym-
metry where the relatively small inversion splitting induces
a complete failure of the isolated line approximation and
results in significant line coupling within doublets. As
an example, we have applied the refined method to the
calculation of the relaxation matrices for self-broadened
NH3.

The pressure broadening of NH3 lines has been the
subject of numerous experimental and theoretical studies,
mainly due to its importance for tropospheric and planetary
atmosphere studies. Besides, it is the simplest molecule
with inversion symmetry. Half-widths and shifts in the ν1
band were measured by Markov et al. in 1993 for some
selected lines.20 In 1994, Brown and Peterson21 measured
half-widths in the pure rotational R branch between 40
and 210 cm−1, and developed empirical formulas. The
latter have been used to complete the HITRAN data
base. In 2004, Pine and Markov22 have improved their
earlier results by considering profiles more sophisticated
than the Voigt profile. There are many other measurements
carried out in ν2, 2ν2, ν3, and ν4 bands by different
groups.23–26

On the other hand, previous theoretical calculations
were mainly carried out based on the ATC or RB
formalisms.24,25,27–30 In the present work, we have applied
our refined formalism to the calculation of the self-
broadened half-widths and shifts in the ν1 and the pure
rotational bands. The results are reported here as well as
the derivation of the formalism. In the companion paper,
calculated off-diagonal elements of the relaxation matrix and
a comparison with the observed effects of line mixing are
reported.31

Independently, Cherkasov32 has proposed a different
approach. In his formalism, the scattering operator is also
put into an exponential form without relying on the cumulant
expansion, but in contrast with us, his operator –iS1 –S2 does
depend on the states of the bath molecules and consequently,
has a corresponding space of huge dimension. The difficulty
in evaluating matrix elements of exp(–iS1 –S2) forces him
to introduce additional approximations. Recently, he has
applied his method to Q(j,k) doublets in the ν1 band of
self-broadened NH3 and has demonstrated that the isolated
line approximation is not applicable.33 By comparing his
numerical calculations with ours, there are other differences.
For example, the linespace he considered is limited to
a 2 × 2 matrix constructed within each inversion doublet.
This implies that in the whole relaxation matrix, all the
off-diagonal elements are zero unless the two lines of
interest belong to the same doublet. As we will report
in Paper II,31 this statement may be wrong. Indeed, intra-
doublet off-diagonal elements are not always negligible and
could be comparable in magnitude with other off-diagonal
ones.

II. THEORY

A. Basis sets of the symmetric-top absorber
with inversion symmetry in the line space

It is well known that the wave functions of a symmetric-
top molecule labeled as |jkm⟩ are

(2 j + 1)/8π2D j∗
mk

(α, β,γ)
where D j

mk
(α, β,γ) are rotational matrices. In order to have

definite parity, it is necessary to introduce the parity adapted
wave functions defined by

|νε j km⟩ = Nε (|ν j km⟩ + ε |ν j − km⟩) , (1)

where k = 0, 1, . . . , j and for k = 0, Nε = 1,ε = 0; for
k , 0, Nε = 1/

√
2. With respect to the index ε for k

, 0, we adopt the definition given by Green34 such that
ε = ±(−1) j+1 where ε = (−1) j+1 and ε = (−1) j correspond to
the symmetric vibrational inversion (i.e., “s”) and the anti-
symmetric vibrational inversion (i.e., “a”), respectively. In
Eq. (1), a short notation ν is used to represent all vibrational
quantum numbers. We follow Ben-Reuven’s conventions35

and introduce a set of bases
�
νiεi jikiνf ε f j f k f , JMJ

��
in the

line space defined by
�
νiεi jikiνf ε f j f k f , JMJ

��

=

mim f

(−1) j f−m fC( ji j f J,mi − m f MJ)

×
�
νiεiJikimiνf ε f j f k f

��
. (2)

In order to simplify notations, we will sometimes adopt a
simple notation of i to represent all the quantum numbers of
νi, εi, ji, and ki.

In the present study, the bath molecule of interest will be
a symmetric top. With respect to its states, we use a simple
notation of |i2m2⟩ where i2 is a short notation to represent
all the quantum numbers in its ground state except for the
magnetic quantum number m2. Because one usually assumes
that the bath molecule remains in the vibrational ground states,
the notation i2 represents the parity ε2, the angular momentum
ji2, and its component k2 along the z axis in the molecular
fixed frame. Thus, |i2m2⟩ means

�
ε2 ji2k2m2

�
For simplifying

symbols, the angular momentum ji2 is denoted by j2 later.

B. Expression for matrix elements
of the relaxation operator

Following procedures detailed in Refs. 10 and 15–19,
matrix elements of the relaxation operator can be expressed
in terms of the average of the Liouville scattering operator
over the internal degrees of the bath molecule, expressed via
a second order cumulant expansion as

Wi′f ′, i f =
nbν̄

2πc

+∞
rc,min

2π(b db
drc

)drc

×

δi′iδ f ′f − ⟨⟨i′ f ′ |e−iS1(rc)−S2(rc)| i f ⟩⟩ (3)

where nb is the number density of the bath molecules, ν̄ is
the averaged velocity, b is the impact parameter, and rc is the
distance of closest approach for a given trajectory.
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C. Expressions for matrix elements of S1 and S2

With the semi-classical line shape theories,4,7–9 the matrix
elements of the first and second order operators S1 and S2 can
be calculated from the intermolecular potential. For systems
consisting of two symmetric-top molecules, the potential
can be expressed in terms of a spherical tensor expansion
as36

V
(
R⃗ (t)) = 

L1K1L2K2L

U (L1L2L; K1K2; R (t))

×


µ1µ2M

C(L1L2L, µ1µ2M)DL1∗
µ1K1

(Ωa)

×DL2∗
µ2K2

(Ωb)Y ∗LM (ω (t)) , (4)

where the C(L1L2L, µ1µ2M) are Clebsch-Gordan coefficients
and the DL

µK(Ω) are rotation matrices. The orientations of
the absorber and bath molecules are described by Ωa and
Ωb, respectively. The translational motion is described by
R(t) and ω (t). The isotropic part of the potential Viso
corresponds to the component with L1 = K1 = L2 = K2 = 0
in Eq. (4) and some time, it is represented by a fit to a 12-6
Lennard-Jones (LJ) form with two adjusted parameters εLJ and
σLJ.

As for the anisotropic part of the potential, it is here
limited to the dipole-dipole (Vdd), dipole-quadrupole (Vdq),
quadrupole-dipole (Vqd), and quadrupole-quadrupole (Vqq)
components. Because the NH3 molecule has a very large dipole
moment and a significant quadrupole moment, we expect that
a combination of the leading multipole interactions represents
the anisotropic potential sufficiently well. This approximation
has been validated31 by calculations.

According to the definition of S1, its matrix elements
are determined by the vibrational dependence of the isotropic
potential through the following expression:

Si′f ′, i f
1 =

δi′iδ f f ′

~

×
∞

−∞

dt[⟨νi |Viso (t) |νi⟩ − 
νf �Viso (t) �νf �]. (5)

In the present study, because there is no knowledge of
the vibrational dependence of εLJ and σLJ for the NH3–NH3
system, we assume that the vibrational dependence of Viso
mainly comes from the isotropic induction and dispersion

components which are given by

V ind
iso = −

µ2
1α2

R6 (6)

and

V disp
iso = −

3U1U2

2 (U1 +U2) ×
α1α2

R6 , (7)

respectively. Here, µ1 is the dipole moment of the absorber
molecule, α1,2 are the isotropic polarizabilities of the absorber
and bath molecules, and U1,2 the ionization energies. With the
“exact” trajectory model,37,38 a matrix element of S1 is given
by

S1(rc)i f , i f = 2rc
~ν̄

∞
1

xdx

×
|∆Viso (xrc)|i f


x2 − 1 + 2Viso(rc)

mν̄2 − x2 2Viso(xrc)
mν̄2

 1
2
, (8)

where ∆Viso denotes the vibration-dependent part of Viso.39

With respect to the S2 term, it is usually divided into three
terms: S2,outer,i, S2,outer,f, and S2,middle and we follow the same
custom here. It is known that for linear molecules16–18 S2,outer,i
and S2,outer,f are diagonal (in the line space) and complex
matrices while S2,middle is an off-diagonal and real matrix.
Note that similar properties were also observed, however,
with different definitions of the S2 operators.13,14,32,40 For more
complicated molecules whose rotational states are labeled by
additional quantum numbers besides the angular momentum
j, the diagonality of S2,outer,i and S2,outer,f may not be valid.
However, the reality and the non-diagonality of S2,middle remain
true. This implies that in contrast to linear molecules, one
needs to provide more general expressions for S2,outer,i and
S2,outer,f for symmetric tops.

Before deriving expressions for these terms, we would
like to note that the formalism can be given in the standard
or the symmetrized forms.16 In the derivation presented here,
we follow the symmetrized form where the density matrix ρ
is symmetrized. It is easy to switch back to the standard form
with a replacement of 

ρi2ρi′2
appearing in the following

expressions by ρi2. In addition, we note that we adopt a
convention such that ρi2 does not include the degeneracy
factor (2j2 + 1).

The derivations of these expressions and definitions of
terms are presented in Appendices A and B. With Eq. (B5),
the expression for the real part of Si′f ′, i f

2,outer, i (rc) is given by

ReSi′f ′, i f
2,outer, i (rc) = πδ j′

i
jiδ f f ′


L1K1K

′
1L2K2K

′
2


ε′′
i
j′′
i
k′′
i

(2 j ′′i + 1)

×DP(ε′i j ′ik ′i, ε′′i j ′′i k ′′i ; L1K1)DP(ε′′i j ′′i k ′′i , εi jiki; L1K ′1)

i2i
′
2


ρi2ρi′2

(2 j2 + 1)

× (2 j ′2 + 1)DP(ε2 j2k2, ε
′
2 j ′2k ′2; L2K2)DP(ε′2 j ′2k ′2, ε2 j2k2; L2K ′2)

× FL1K1K
′
1L2K2K

′
2

(
ωi′i′′ + ωii′′

2
+ ωi2i

′
2
,ωi′i

)
. (9)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.183.168.166 On: Tue, 02

Aug 2016 20:06:01



224303-4 Q. Ma and C. Boulet J. Chem. Phys. 144, 224303 (2016)

The expression for the imaginary part of Si′f ′, i f
2,outer, i (rc) is the

same as Eq. (9) except that FL1K1K
′
1L2K2K

′
2

are replaced by
HL1K1K

′
1L2K2K

′
2
.

However, in many cases one does not need to calculate
the off-diagonal elements of S2,outer. For example, if the
intermolecular potential does not contain components with
K1 , 0, the quantum numbers of ki, k ′i, k

′′
i appearing in the DP

factors in Eq. (9) must be identical. This identity yields a factor
of δk′

i
ki and a combination of δ j′

i
ji and δk′

i
ki implies that i′ and

i are the same states. Thus in this case, the operators S2,outer,i
and S2,outer,f are diagonal matrices within a given vibrational
band. Then, one can use simpler expressions to calculate their
diagonal elements. More explicitly, the real part of a diagonal
element of S2,outer,i is given by

ReSi f , i f
2,outer, i (rc) =


π

2


L1K1K

′
1L2K2K

′
2


ε′
i
j′
i
k′
i

�
2 j ′i + 1

�

×DP(εi jiki, ε′i j ′ik ′i; L1K1)DP(ε′i j ′ik ′i, εi jiki; L1K ′1)

i2i
′
2


ρi2ρi′2

(2 j2 + 1) �2 j ′2 + 1
�

×DP
�
ε2 j2k2, ε

′
2 j ′2k ′2; L2K2

�
DP

�
ε′2 j ′2k ′2, ε2 j2k2; L2K ′2

�
FL1K1K

′
1L2K2K

′
2
(ωii′ + ωi2i

′
2
). (10)

Note that in order to simplify notations, we use the same symbols of FL1K1K
′
1L2K2K

′
2

to represent the 2-D and 1-D Fourier

transforms in Eqs. (9) and (10). Readers can distinguish them by the number of their arguments. The expression of ImSi f , i f
2,outer, i (rc)

together with those of ReSi f , i f
2,outer, f (rc) and ImSi f , i f

2,outer, f (rc) can be easily obtained from Eq. (10) by making proper replacements
of FL1K1K

′
1L2K2K

′
2

by HL1K1K
′
1L2K2K

′
2

and/or exchanges between the quantum numbers i and f′ and between i′ and f.
As a next step, we consider the expression of S2,middle. As mentioned above, the S2,middle operator is always off-diagonal.

With Eq. (C9), the expression of matrix elements Si′f ′, i f
2,middle is given by

Si′f ′, i f
2,middle (rc) = 2π(−1)1+Jδν′

i
νiδν fν

′
f
(−1) j f+ j′f

×

(2 j ′i + 1)(2 j ′

f
+ 1)(2 ji + 1)(2 j f + 1)


L1K1K

′
1L2K2K

′
2

(−1)L1W
(
j ′i j ′f ji j f , JL1

)
×DP

�
ε′i j
′
ik
′
i, εi jiki; L1K1

�
DP

(
ε f j f k f , ε

′
f j ′f k

′
f ; L1K ′1

)
×


i2i
′
2


ρi2ρi′2

(2 j2 + 1) �2 j ′2 + 1
�

DP
�
ε′2 j ′2k ′2, ε2 j2k2; L2K2

�
DP

�
ε2 j2k2, ε

′
2 j ′2k ′2; L2K ′2

�

× FL1K1K
′
1L2K2K

′
2

(ωi′i + ω f ′f

2
+ ωi′2i2

,ω f i − ω f ′i′

)
. (11)

For linear perturbers, one can consider them as special symmetric-top perturbers. By replacing DP
�
ε2 j2k2, ε

′
2 j ′2k ′2; L2K ′2

�
by

C
�
j2 j ′2L2,000

�
,DP

�
ε′2 j ′2k ′2, ε2 j2k2; L2K2

�
by C

�
j ′2 j2L2,000

�
, and setting K2 = K′2 = 0 in the Fourier transforms, Eqs. (9)–(11)

become applicable for symmetric-top absorbers with inversion doubling immersed in a bath of linear molecules.

III. PREPARATION OF THE CALCULATIONS

A. Selection of molecular parameters of NH3
in the ground and ν1 states

For symmetric tops with inversion symmetry, the value of
the doublet splitting is the most important factor to determine
the effects of line coupling. For NH3, one can directly obtain
energy levels from databases such as HITRAN.2 However,
most of these values result from various and complex
intramolecular resonances among numerous levels.41,42 Of
course, the present formalism neglects these resonances
in the expression of the basis eigenvectors (Eqs. (1) and
(2)), which are “0th” order wavefunctions. By making the
same approximation, one can calculate them with simple
formulas containing two sets of parameters. One set is
applicable for states with the symmetric vibrational inversion

and another for the anti-symmetric vibrational inversion.
For the fundamental vibrational state, these parameters are
provided by Urban et al.43 In general, the accuracy of
calculated energy levels in the ground state is sufficient for
our practical applications. For the v1 = 1 vibrational state,
the two corresponding sets are provided by Angstl et al.44

However, as is known from that work, rovibrational levels
for v1 = 1 and j > 6 are affected by strong intramolecular
resonances, prohibiting the use of “0th” order formulas. Based
on these considerations, we have decided to set jmax = 8
as the maximum of initial angular number for lines to be
considered.

With respect to the other molecular parameters, the
average dipole moment of NH3 in the ground and ν1 states
is 1.4719 and 1.4791 (in Debye), respectively.45 The value
of quadrupole moment (i.e., Q = −2.32 D Å) and the
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polarizability associated with the ground state (α = 2.18 Å3)
come from Ref. 36. In order to calculate the S1 term with
Eq. (7), one needs to know the value of αf − αi. With a
formula provided by Russell and Spackman,46 one can find
α1,f − α1,i = 0.0445 Å3 (for comparison, Dhib et al.,27 had
selected α1,f − α1,i = 0.05 Å3 for the ν4 band). Finally, the
ionization energy of NH3 is U1 = U2 = 10.16 eV.47

B. Construction of linespaces

In general, the linespaces of interest are constructed by all
the lines belonging to a given vibrational band. For vibrational
bands of symmetric tops, the number of lines in a band can be
over a thousand. Actions to handle such large size matrices
not only once, but many times are not realistic. This implies
that one has to find ways to divide the whole linespace into
many smaller sub-linespaces. The smaller the sizes of these
sub-blocks are, the easier are the calculations.

In the present study we only consider parallel bands of
NH3 where the dipolar selection rules are ∆ j = 0,±1; ∆k
= 0; a ← s, s ← a. At the same time, since NH3 has large
dipole and quadrupole moments and the latter lie along its
symmetric axis, the leading multipole interactions between
two NH3 molecules have only spherical components with
K1 = 0 and K2 = 0 in Eq. (4). This implies that the line
coupling (cf. Eq. (11)) occurs only among lines with the same
k values. As a result, the whole linespace can be divided into
jmax + 1 sub-linespaces and consequently, the sizes of these
sub-blocks are significantly reduced. With the cut-off jmax = 8,
the whole linespace to be considered is constructed from 217
lines. There are 9 sub-blocks associated with k = 0, 1, 2, . . . ,
8 whose sizes are 17, 46, 40, 34, 28, 22, 16, 10, and 4,
respectively.

C. Selections of the trajectory and potential models

Concerning the trajectory, we have adopted an “exact”
model with trajectories governed by the isotropic poten-
tial.37,38,48 In order to well sample all important trajectories,
we have selected 600 values for the closest distance rc with
more dense points to depict nearly head-on collisions than
other ones.

With respect to the potential, we assume that the isotropic
part of the potential between two interacting NH3 molecules
can be represented by the LJ model and the anisotropic part
consists of the Vdd, Vdq, Vqd, and Vqq interactions. The two
LJ parameters (i.e., σLJ = 3.018 Å and εLJ = 294.3 K) are
adopted from Bouanich et al.49 and these values are assumed
to be independent of vibration modes.

D. Calculations of the Fourier and Hilbert transforms

Based on the selected trajectory and potential models,
one can calculate the corresponding 2-D and 1-D correlation
functions. Given the fact that all of the Vdd, Vdq, Vqd, and
Vqq interactions have no spherical components associated
with K1 , 0 and K2 , 0 in Eq. (4) and that the ν1 and pure
rotational transitions do not involve any bending motions,
only four 2-D and four 1-D correlation functions are required.

FIG. 1. The Fourier transform of F100100(k, rc) (in ps−2) at T = 296 K where
k is dimensionless and rc is given in Å.

More explicitly, they are denoted as G100100,G100200,G200100,
and G200200 with two or one τ arguments (cf. Appendix C).
For simpler notation, they can be identified by values of the
two ranks of L1 and L2 as (11), (12), (21), and (22).

Once these symmetric correlation functions are available,
we introduce their causal partners which are identical to
them for τ ≥ 0 and are set to be zero for τ < 0.50 Then, we
carry out the complex Fourier transforms of the 2-D and
1-D causal correlation functions and the real and imaginary
parts of the results are just the symmetric 2-D and 1-D
Fourier transforms and the subsequent 2-D and 1-D Hilbert
transforms, respectively. Note that those associated with (11)
are dominant.

Based on the LJ model, the minimum of closest distances
for the “exact” trajectories at T = 296 K is rc,min = 2.906 Å.
In Fig. 1, we present a profile of the symmetric 1-D
Fourier transform with (11) as a function of k and rc in
the range of [0, 12] and [3 Å, 9 Å] where k = (rcω/ν̄)
is a dimensionless argument. Readers must be careful to
distinguish this dimensionless k from the project quantum
number k used to denote wave functions of NH3. In Fig. 2,

FIG. 2. The same as Fig. 1 except for the Hilbert transform ofH100100(k, rc).
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we present a profile of the 1-D Hilbert transform with
(11). Meanwhile, given the fact that the symmetric Fourier
transform is even over k and the Hilbert transform is odd,
their ranges of k in these two plots are limited to k ≥ 0.
Finally, it is worth mentioning that if we plot these two
transforms multiplied by a factor of (rc/3.0)6, their profiles
remain identical for rc > 6 Å. The variation with rc as 1/rc

6 is a
well-known feature for these two transforms derived from the
dipole-dipole interaction and the straight line trajectory model.
For glancing collisions happening at large rc, differences
between the “exact” trajectory model and the straight line
model are negligible.

The symmetric 2-D Fourier transforms are functions
of the three arguments k, k′, and rc. To derive them is a
large computational task, but one only needs to do it once.
The calculated results can be stored as input files for the
calculation of the off-diagonal elements of S2,middle. In order
to show their profiles, we present a three dimensional plot of
the main function F100100 (k, k ′,rc) at rc = 5.5 Å and T = 296 K
in Fig. 3. We have selected the trajectory with rc = 5.5 Å to
represent typical collisions beyond nearly head-on collisions
because after rc ≥ 5.5 Å, all the trajectories become closer
to a straight line. In addition, for the NH3–NH3 system with
strong dipole-dipole interaction, the glancing collisions are the
dominant broadening and coupling processes. For the straight
line trajectories, the magnitude of F100100 (k, k ′,rc) behaves as
(1/rc)6 and its dependences on k and k′ remain unchanged.
This implies that the conclusion drawn from analyzing Fig. 3
with rc = 5.5 Å is valid for all other trajectories in this
category. As shown in the figure, F100100

(
k, k ′,rc ≥ 5.5 Å

)
has two peaks located near (1.05, 0) and (−1.05, 0) in the k
and k′ coordinates. Roughly speaking, for |k| ≈ 4 or |k′| ≈ 4,
its magnitude is around 14 times smaller than its maximum.
Therefore, one can consider |k| = 4 or |k′| = 4 as a limitation
such that as long as one of these two parameters is larger than
this limit, the corresponding off-diagonal elements of S2,middle
become negligible. In terms of the dimensional parameters k
and k′, the above conclusion is valid for all trajectories with
rc ≥ 5.5 Å. These limits in k, k′ can be converted in ω,ω′

FIG. 3. The symmetric 2-D Fourier transform of F100100(k, k ′, rc) (in ps−2)
at rc= 5.5 Å and T = 296 K for the NH3–NH3 system.

with a simple formula, ω = 5.309
(
ν̄
rc

)
k where ν̄ is in the

units of 104 cm/s and rc is in Å. For example, for rc = 5.5 Å,
the limitation for both the |ω| and |ω′| is 33 cm−1 and for rc
= 7.0 Å, it is 26 cm−1.

E. Calculations of the matrix elements of exp(–iS1 –S2)

After all matrix elements of S1 and S2 are available, the
remaining problem is now to find a proper way to calculate
matrix elements of the exponential of –iS1 –S2. The first step
is to diagonalize the matrix –iS1 –S2, in order to obtain its
complex eigenvalues and complex right (or left) eigenvectors.
From the former, one constructs a diagonal matrix D and
from the latter a right eigenvector matrix XR whose columns
represent the corresponding eigenvectors. Then, one finds the
inverse matrix X−1

R . Finally, the exponential of –iS1 –S2 is
given by

e−iS1−S2 = XReDX−1
R . (12)

IV. CALCULATED HALF-WIDTHS

In the present study, the interaction potential does not
connect lines with different k values. Calculations mentioned
in Eqs. (10)–(12) are independently carried out for each of the
sub-linespaces labeled by k.

A. Two approximate rules applicable for calculated
half-widths and shifts

It is well known that without including any vibrational
dependences, calculated half-widths and shifts of NH3 lines
from the ATC theory4 or the RB formalism7 have a symmetry
applicable for two lines with switching their initial and final
rotational states. In other words, for the pairs {aR(j, k),
sP(j+1, k)}, {aQ(j, k), sQ(j, k)}, {sR(j, k), aP(j+1, k)}, and
{sQ(j, k), aQ(j, k)}, the calculated half-widths are exactly
identical while the shifts have exactly identical magnitudes,
but opposite signs.

For the ν1 band of NH3, the vibrational dependence
of both the average dipole moment and the spectroscopic
parameters does exist, but they are not strong enough to
completely break this symmetry down. In other words, the
symmetry rules remain approximately valid. Our calculated
results with considering the line coupling have confirmed the
above conclusions: if vibrational dependences are ignored,
these symmetries remain exact, and they are approximately
valid in the case of the “real” ν1 band.

Besides, there is an approximate rule applicable for
two lines by only switching their initial and final inversion
symmetry indices “s” and “a.” In other words, the widths
are approximately equal for pairs of {aP(j, k), sP(j, k)} and
{aR(j, k), sR(j, k)}, regardless of the inclusion or not of
the line coupling in calculations. It is easy to understand
this approximate symmetry because within the same pair,
their differences only result from the inversion indices and in
general, their doubling splits are small.
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FIG. 4. An approximate symmetry of calculated half-widths for pairs of
aR(j,k) (�) and sR(j,k) (+) with k = 0, 1, 2, . . . , 8. The sub-blocks are labeled
by their k value at the right side of aR(8,k) and symbols in a specified k
sub-block are given in the same color and connected by a thin line.

In Fig. 4, we present calculated half-widths of aR(j, k) and
sR(j, k) lines in the ν1 band to show the second rule. Although
these symmetry properties are approximate, one can use them
as tools to check the consistency of calculated results and
measured data because significant violations represent red
flags.

B. Overestimation of calculated half-widths due
to the isolated line approximation

It is known that the RB formalism significantly overes-
timates the half-widths.11,12 Recently we have demonstrated
that for the systems N2–N2,10 C2H2–N2,17 CO2–N2,18 and
H2O–N2,19 removing the isolated line approximation reduces
the calculated half-widths which get closer to measurements.
In the present study, given the fact that except for those with k
= 0, all the other NH3 lines are doublets having small splitting,
the inapplicability of this assumption is well expected.

In Fig. 5, we present relative differences of half-widths
of R(j,k) lines in the pure rotational band derived without and
with the line coupling (L.C.). We do not distinguish sR(j,k)
and aR(j,k) here because the difference is negligible. As shown

FIG. 5. Overestimation of calculated half-widths (i.e., [γnoL.C .−γL .C .]/
γL .C .) for R(j,k) lines in the pure rotational band resulting from the isolated
line approximation.

in the plot, the relative difference for R(j,k) (in %) strongly
depends on k and the larger the k is, the larger the reduction.
Its value varies from almost zero at k = 0 to more than 20%
at k = 8. It is easy to understand why there are no reductions
for R(j,0) because these lines do not have doubling partners.
The reduction also varies with j, but it decreases as j increases
from its maximum value for j = k to a constant value at
higher j.

By removing the isolated line approximation, calculated
half-width values are reduced and meanwhile, calculated
relaxation matrices become non-diagonal. We note that a
large reduction of the diagonal element of the n-th column
(and n-th row) indicates that some off-diagonal elements of
the corresponding column and row likely differ from zero by
significant amounts. Because non-zero off-diagonal elements
directly represent the line coupling, the reduction of the half-
width of a line can serve as a measure of how strongly this line
couples with others. Because the reduction variation pattern
shown in Fig. 5 can be used to understand the line coupling
pattern,31 its investigation deserves a detailed analysis.

With our formalism, we can explain these k and j
dependences. The non-diagonality of –iS1 –S2 results solely
from the off-diagonal elements of S2,middle whose expression
is given by Eq. (11). From Eq. (11), one can conclude that
the coupling between two given lines is mainly determined
by two factors. One is the coupling strength factor defined
by

(−1)L1

(2 j ′i + 1)(2 j ′

f
+ 1)(2 ji + 1)(2 j f + 1)

×W
(
j ′i j ′f ji j f , JL1

)
DP

�
ε′i j
′
ik
′
i, εi jiki; L1K1

�

×DP
(
ε f j f k f , ε

′
f j ′f k

′
f ; L1K ′1

)
, (13)

and another is the 2-D Fourier transforms FL1K1K
′
1L2K2K

′
2

with

two arguments of
ωi′i+ω f ′f

2 + ωi′2i2
called the energy gap and

ω f i − ω f ′i′ called the frequency gap in the following. The
magnitudes of the off-diagonal elements of S2,middle between
two lines are thus governed by the coupling strength factor, the
energy gap, and the frequency gap. In addition, the first factor
plays the most important role because contributions are simply
proportional to its magnitude. Concerning the two gaps, as

FIG. 6. The coupling strength factors of the doublets P(7,k), Q(7,k),
and R(7,k) and the DP matrices involved (i.e., DP(ε′ 6 k,ε 6 k; 1 0),
DP(ε′ 7 k,ε 7 k; 1 0), and DP(ε′ 8 k, ε 8 k; 1 0)).
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FIG. 7. The coupling strength factors of the doublets R(j,2), R(j,3), and R(j,4)
and the DP matrices involved (i.e., D(ε′ j 2,ε j 2; 1 0), D(ε′ j 3,ε j 3; 1 0), and
D(ε′ j 4,ε j 4;10)).

shown by the profiles of FL1K1K
′
1L2K2K

′
2
, the smaller these two

gaps are, the larger the magnitudes of FL1K1K
′
1L2K2K

′
2
.

For the NH3 molecule, its rotational constants are quite
large. Except for doublets, the energy and frequency gaps
between two lines are generally large. In contrast, values of
these two gaps within doublets in the ν1 and pure rotational
bands are smaller than 2 cm−1. Based on this fact, one can
draw two conclusions. The first is, in most cases (not always),
that the largest off-diagonal elements of S2,middle are obtained
for doublets. Besides, among these doublets, the amplitude
of the off-diagonal elements of S2,middle is mainly determined
by the magnitude of the strength factor. In Fig. 6, we present
magnitudes of the coupling strength factor for the doublets
P(7,k), Q(7,k), and R(7,k) as functions of k. As shown in
the figure, roughly speaking, the magnitudes of the strength
factor quadratically increase as k increases. This implies that
the calculated off-diagonal elements of S2,middle increase by the
same amount. Meanwhile, variations of the diagonal elements
remain within the same order. Thus, as k increases, the line
coupling of these doublets becomes stronger and stronger.
This is the reason why reduction of calculated half-widths
quickly increases as k increases. Furthermore, according to
Eq. (13), it is the DP matrices involved that cause the k
dependence described above. In order to demonstrate this,
these DP matrices are also plotted in Fig. 6. As can be seen,
the magnitude of the DP matrices roughly linearly increases
with k, leading to the roughly quadratic increase of the strength
factor.

Similarly, we can provide an explanation for the j
dependence of the reductions of the calculated half-widths
when line coupling is considered. Figure 7 gives the coupling
strength factor for the doublets R(j,2), R(j,3), and R(j,4)
as functions of j together with the DP matrices involved.

FIG. 8. Calculated half-widths (�) and measured results (+) by Pine and
Markov22 of sQ(j,k) lines in the ν1 band. The sub-blocks are labeled by their
k values on the right side of sQ(8,k) and symbols in a specified k sub-block
are given in the same color and connected by a thin line.

The strong resemblance between the j variation patterns of
the coupling strength factor in Fig. 7 and the reduction of
half-width in Fig. 5 is clearly exhibited.

The case of the aR(0,0) line deserves a special comment. It
has no doublet partner to which it can be coupled, but exhibits
a very important shift as shown by Table I. Such a shift results
from a very significant imaginary term of ImS2, while S1 has a
small influence. At the same time, ImS2 significantly modifies
the calculation of the widths, even in the absence of any L.C.
effect.

C. Comparisons between calculated half-widths
and measurements

In Fig. 8, we present comparisons between our calculated
half-widths for sQ(j,k) and aQ(j,k) lines in the ν1 band
and the measured data by Pine and Markov.22 As can be
seen, the agreements are very good. Concerning the pure
rotational band, we present a similar comparison between
our calculated half-widths of sR(j,k) lines and Brown and
Peterson’s measurements21 in Fig. 9. Very good agreements
between the theory and measurements are also obtained.
Comparisons for lines with the inversion “a” symmetry in
these two bands are very similar to Figs. 8 and 9 are not
presented here. Meanwhile, see the supplementary material51

for detailed comparisons of calculated and experimental
widths and shifts.

For other systems N2–N2, C2H2–N2, and CO2–N2
previously studied,10,17,18 although calculated half-widths
were significantly reduced, the new results still differed
from measurements by significant amounts. Removing only
the isolated line approximation was not sufficient to match
measurements. In contrast, the very good agreements obtained

TABLE I. Contributions to the half-width and shift (in10−3 cm−1 atm−1) from S1 and ImS2.

Without L.C.
Without S1 and ImS2

Without L.C.
With S1 and ImS2

With L.C.
Without S1 and ImS2

With L.C.
With S1 and ImS2

Experiment
Ref. 22

Γ δ γ δ γ δ γ δ γ δ

287 0 359 183 286 0 359 183 352 147
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FIG. 9. Calculated half-widths (�) and measured results (+) by Brown and
Peterson21 of sR(j,k) lines in the pure rotational band. The sub-blocks with k
, 0 are labeled by their k values at the right side of sR(8,k) and the sub-block
with k = 0 is labeled on the right side of calculated value of sR(7,0).

in the ν1 and pure rotational bands for self-broadened NH3
point out that for these bands, the significant overestimation
mainly results from applying this assumption. We thus believe
that different intermolecular interactions induce different
behaviours. Because the NH3 molecule has a large dipole
moment, the leading long-range interaction in NH3–NH3
collisions is much stronger than that in other systems. As
a result, as one carries out an average over the collisional
trajectories, glancing collisions make a major contribution.
For the other systems, nearly head-on collisions play a
major role. On the other hand, the remaining approximation
(i.e., neglecting the coupling between the translational and
the rotational motions) becomes invalid as two interacting
molecules are close. As a result, this remaining invalid
approximation does not significantly affect calculated results
for NH3–NH3 at all.

D. Comparisons between calculated half-widths
and those listed in HITRAN

First of all, by screening values of the air- and self-
broadened half-widths for the ν1 lines listed in HITRAN 2008
and 2012 with the two symmetry rules mentioned above, we
have found that these two data sets exactly follow the second
rule. However, the air-broadened half-widths exactly follow
the first rule and the self-broadened ones do not follow it at all.
The screening result indicates that these two data sets listed
in HITRAN are, at least, not consistent.

Secondly, by comparing our calculated half-widths in
the ν1 band with those in HITRAN 2012, we have found a
reasonable agreement in the R branch, that deteriorates in
the Q and P branches (see Table IV of the supplementary
material51). We guess that the empirical formulas21 used to
provide the HITRAN values may play a role here.

V. CALCULATED SHIFTS

Because reliable shift measurements are difficult to carry
out, those reported in Ref. 22 may contain large uncertainties.
With respect to theoretical calculations, the accuracy of

FIG. 10. An approximate symmetry of the calculated shifts for pairs of
aQ(j,k) (�) and sQ(j,k) (∆) with k = 1, 2, . . . , 8 in the ν1 band. The sub-blocks
of aQ(j,k) are labeled by their k values at the right side of calculated shifts
of aQ(8,k). A similar labeling is applied for the sub-block of sQ(j,k) with
k ≥ 4. But, for sQ(j,k) with k ≤ 3, their k values are presented on the left side
of sQ(k,k).

calculated shifts is poorer than that of the half-widths. This
results from several factors such as a lot of large cancelations
occurring in the calculation process. Moreover, calculated
shifts are more sensitive than widths to averaging or not
over the Maxwell–Boltzmann distribution of translational
energy.52,53 Since the present work uses the average
velocity approximation, no quantitative comparisons between
theoretical calculations and measurements is presented here
(see supplementary material51) and the discussion is limited
to more qualitative behaviors.

Indeed, even if limited, our model remains a useful tool
that enables one to monitor variations of shift values for
most of the NH3 lines in the ν1 and pure rotational bands.
As mentioned in Sec. IV A, there are two approximate rules
applicable for the half-width. With more tolerance, similar
rules exist also for the shifts. First of all, in Fig. 10 we present
calculated shifts for pairs of aQ(j,k) and sQ(j,k) with k = 1,
2, . . . , 8 in the ν1 band as functions of j. As expected, the
magnitudes of the shifts for doublets are almost identical, but
their signs are opposite. In other words, the plot demonstrates

FIG. 11. An approximate symmetry of calculated shifts for doublets of
aR(j,k) (�) and sR(j,k) (∆) with k = 0, 1, 2, . . . , 8 in the ν1 band. A value
of 183.52×10−3 cm−1 atm−1 for aR(0,0) is outside of the figure frame. The
sub-block labeling is similar to Fig. 10.
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that the first rule is approximately valid for the shift. In
addition, it is worth mentioning that except for the sub-block
with k = 1, the shifts in the same k sub-blocks vary smoothly
and the variation patterns in different sub-blocks are well
organized. This implies that for lines with j ≥ 9, it is possible
to predict their shift values based on those available with j
< 9. Of course, lines involving the intramolecular resonances
must be excluded.

Secondly, in Fig. 11 we present calculated shifts for
doublets of aR(j,k) and sR(j,k) with k = 0, 1, 2, . . . , 8
as function of j. The pair with a specified j consists of
two lines with only switching their initial and final inverse
symmetry indices “a” and “s”. As shown by the figure, the
“anti-symmetry” is approximately valid for lines in sub-blocks
with k ≥ 3. However, the rule is completely broken for k= 0, 1,
and 2. For these lines, the shift values are somehow randomly
distributed. A detailed discussion of these behaviors will be
our further research subject, as well as a comparison with
the experimental data which requires to remove the average
velocity approximation.

VI. CONCLUSION

We have extended the refined RB formalism to the
case of symmetric tops with inversion symmetry. In a first
step the model has been applied to parallel bands of self-
broadened NH3. The very successful comparison of calculated
and experimental widths has demonstrated, once more, the
importance of line coupling. In the present case, the coupling
between the two components of each inversion doublet plays
a major (but not unique) role in the reduction of the widths,
when compared to the former RB formalism.

The present formalism can be easily extended to foreign
gas broadening, for which many experimental results are
available. With respect to an extension to perpendicular bands,
the situation is more complicated, since the radiative selection
rule now is ∆k = ±1 (instead of ∆k = 0 for the parallel bands)
and requires a re-examination of the linespace structure.
Furthermore, as in the CO2 case,18 the vibrational angular
momentum may play a role.

Besides, among the various extensions of the present
work, an interesting challenge should be the comparison of
the calculated widths and shifts, and more generally of the
entire relaxation matrix for the ν1, ν2, and 2ν2 bands. As

shown in the present work, one of the parameters governing
the amplitude of the line coupling within doublets is the
inversion splitting. However, the latter strongly varies when
going from the ν1 = 1 level (� 1 cm−1) to the ν2 = 1 level
(� 36 cm−1) and to the ν2 = 2 level (� 284 cm−1). Based
on the present analysis, it can be reasonably expected that,
when compared to the ν1 band, line coupling (and hence line
mixing) among doublets will be much smaller in the ν2 band
and non-existent in the 2ν2 band.

It must be emphasized that the present formalism,
by removing the isolated line approximation, enables
the calculation of the entire relaxation matrix. As
noted previously the significant reduction of the widths
consecutively indicates non-negligible off-diagonal elements
of the relaxation matrix. It is therefore interesting to
see if the present model could explain the obvious
and complex line mixing signatures observed by Pine
and Markov in the ν1 band.22 This is the subject of
Paper II.31 Finally, all the calculated complex relaxation
matrices in the ν1 band are available in the supplementary
material.51

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
valuable suggestions and comments and for greatly improving
the manuscript. One of the authors (Q. Ma) acknowledges
financial support from NSF under Grant No. 1501297. This
research used resources of the National Research Scientific
Computing Center, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

APPENDIX A: POTENTIAL MATRIX ELEMENTS
IN HILBERT SPACE

In order to derive expressions for the matrix elements
of S2,outer,i, S 2,outer,f, and S2,middle, one needs the potential
matrix elements



i′m′ii

′
2m′2 |V (R (t))| imii2m2

�
. In the presence

of inversion symmetries, each of the notations i, i′, i2, and i′2
represents a summation of two terms. As a result, the matrix
elements contain 16 terms with different combinations of ±k,
±k′, ±k2, and ±k′2. For example, for the term with all the
positive k values, we show how to evaluate it in detail here,



ν′i j
′
ik
′
im
′
i j
′
2k ′2m′2

�
V (R (t)) �νi jikimi j2k2m2

�
= δν′

i
νi


(2 j ′i + 1)(2 ji + 1) �2 j ′2 + 1

� (2 j2 + 1)


L1K1L2K2L

1
(2L1 + 1)(2L2 + 1)

× (−1)ki+k2C
�
ji j ′iL1,−kik ′iK1

�
C
�
j2 j ′2L2,−k2k ′2K2

�

×U (L1L2L; K1K2; R (t))


µ1µ2M

(−1)mi+m2C(L1L2L, µ1µ2M)

×C( ji j ′iL1,−mim′iµ1)C �
j2 j ′2L2,−m2m′2µ2

�
Y ∗LM (ω (t)) . (A1)

Similarly, all the other 15 terms can be obtained and their expressions are almost identical to Eq. (A1). Then, by simply adding
them together, one obtains the expression for the potential matrix elements as
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⟨i′m′ii′2m′2 |V (R (t))| imii2m2⟩ = δν′
i
νi


(2 j ′i + 1)(2 ji + 1) �2 j ′2 + 1

� (2 j2 + 1)


L1K1L2K2L

1
(2L1 + 1) (2L2 + 1)

×DP
�
ε′i j
′
ik
′
i, εi jiki; L1K1

�
DP(ε′2 j ′2k ′2, ε2 j2k2; L2K2)

×U (L1L2L; K1K2; R (t))


µ1µ2M

(−1)mi+m2C(L1L2L, µ1µ2M)

×C
�
ji j ′iL1,−mim′iµ1

�
C
�
j2 j ′2L2,−m2m′2µ2

�
Y ∗LM (ω (t)) , (A2)

where the DP matrix is defined by

DP(ε′ j ′k ′, ε j k; LK) = Nε′Nε(−1)k{C ( j j ′L,−kk ′K) + ε′C ( j j ′L,−k − k ′K) + εC ( j j ′L, kk ′K) + εε′C ( j j ′L, k − k ′K)}.
(A3)

In the notation of DP, the superscript of P is used to emphasize a parity specification. By comparing Eqs. (A1) and (A2),
their differences are replacements of (−1)kiC �

ji j ′iL1,−kik ′iK1
�

by DP
�
ε′i j
′
ik
′
i, εi jiki; L1K1

�
and (−1)k2C

�
j2 j ′2L2,−k2k ′2K2

�
by

DP
�
ε′2 j ′2k ′2, ε2 j2k2; L2K2

�
.

APPENDIX B: DERIVATIONS OF EXPRESSIONS FOR S i ′f ′,if
2,outer ,i, S

i ′f ′,if
2,outer ,f , AND S i ′f ′,if

2,middle

The expression for matrix elements of S2,outer,i is given by10

Si′f ′, i f
2,outer, i (rc) =

1
~2

∞
−∞

dt

t
−∞

dt ′⟨⟨i′ f ′, JMJ |⟨L1 (t) L1 (t ′)⟩| i f , JMJ⟩⟩outer, i

=
δ j′

i
jiδ f f ′

~2(2 ji + 1)
∞

−∞

dt

t
−∞

dt ′

i2


ρi2ρi′2


i′′


i′2


(m)

e
i(ωi′i′′+ωi2i

′
2
)t−i(ωii′′+ωi2i

′
2
)t′

× ⟨i′mii2m2 |V (R (t))| i′′m′′i i′2m′2⟩ ⟨i′′m′′i i′2m′2 |V (R (t ′))| imii2m2⟩. (B1)

In Eq. (B1), ωii′ =
�
E(a) (i) − E(a) (i′)� /~, ωi2i

′
2
=
�
E(b) (i2) − E(b) �i′2

��
/~, and the superscripts of (a) and (b) are used to indicate

the absorber and bath molecules, respectively. We note that due to a presence of the factor of δ j′
i
ji in Eq. (B1), the off-diagonal

elements of S2,outer,i have non-zero values only among those lines with the same angular values. For linear molecules, this
implies that the S2,outer,i term is diagonal in the line space within the same bands. For more complicated molecules, the S2,outer,i
term can have non-zero off-diagonal elements within the same bands, but they are confined within sub-blocks of the line space.

With Eq. (A2), off-diagonal elements S2,outer,i (i.e., Eq. (B1)) can be expressed as

Si′f ′, i f
2,outer, i (rc) =

δ j′
i
jiδ f f ′

~2


i2i2
′


ρi2ρi′2

(2 j2 + 1) �2 j ′2 + 1
�

×


L1K1L2K2L


L′1K

′
1L
′
2K
′
2L
′

DP(ε2 j2k2, ε
′
2 j ′2k ′2; L2K2)DP(ε′2 j ′2k ′2, ε2 j2k2; L′2K ′2)

(2L1 + 1)(2L2 + 1)(2L′1 + 1)(2L′2 + 1)

×


ε′′
i
j′′
i
k′′
i

�
2 j ′′i + 1

�
DP(ε′i j ′ik ′i, ε′′i j ′′i k ′′i ; L1K1)DP(ε′′i j ′′i k ′′i , εi jiki; L′1K ′1)

∞
−∞

dt

t
−∞

dt ′e
i(ωi′i′′+ωi2i

′
2
)t−i(ωii′′+ωi2i

′
2
)t′

×U (L1L2L; K1K2; R (t))U
�
L′1L′2L′; K ′1K ′2; R (t ′)�


(m)

(−1)m′′i+m′2+mi+m2

×C(L1L2L, µ1µ2M)C(L′1L′2L′, µ1µ2M)C �
j ′′i jiL1,−m′′i miµ1

�
C
�
ji j ′′i L′1,−mim′′i µ

′
1

�

×C
�
j ′2 j2L2,−m′2m2µ2

�
C
�
j2 j ′2L′2,−m2m′2µ

′
2

�
Y ∗LM (ω (t))Y ∗L′M′ (ω (t ′)) . (B2)

By carrying out the summations over the magnetic quantum numbers in Eq. (B2), one obtains three Kronecker deltas of
δL1L

′
1
, δL2L

′
2
, and δL1L

′
1
. Then, by introducing the two dimensional (2-D) correlation functions GL1K1K

′
1L2K2K

′
2
(t, t ′) defined by

GL1K1K
′
1L2K2K

′
2
(t, t ′) = 1

4π~2(2L1 + 1)2(2L2 + 1)2

L

(−1)L1+L2+L

× (2L + 1)U (L1L2L; K1K2; R (t))U
�
L1L2L; K ′1K ′2; R (t ′)� PL [Θ (t, t ′)] , (B3)
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where Θ (t, t ′) is the angle between R⃗(t) and R⃗ (t ′), one can rewrite Eq. (B2),

Si′f ′, i f
2,outer, i (rc) = δ j′

i
jiδ f f ′


L1K1K

′
1L2K2K

′
2


ε′′
i
j′′
i
k′′
i

(2 j ′′i + 1)

×DP(ε′i j ′ik ′i, ε′′i j ′′i k ′′i ; L1K1)DP(ε′′i j ′′i k ′′i , εi jiki; L1K ′1)

i2i
′
2


ρi2ρi′2

(2 j2 + 1)

×
�
2 j ′2 + 1

�
DP(ε2 j2k2, ε

′
2 j ′2k ′2; L2K2)DP(ε′2 j ′2k ′2, ε2 j2k2; L2K ′2)

×
∞

−∞

dt

t
−∞

dt ′e
i(ωi′i′′+ωi2i

′
2
)t−i(ωii′′+ωi2i

′
2
)t′

GL1K1K
′
1L2K2K

′
2
(t, t ′) . (B4)

In terms of the symmetric 2-D Fourier and Hilbert transforms of FL1K1K
′
1L2K2K

′
2
(ω,ω′) and HL1K1K

′
1L2K2K

′
2
(ω,ω′) defined by

Eqs. (C3) and (C4), respectively, the integrations over t and t′ appearing in Eq. (B4) can be evaluated by Eq. (C3). Then, the
expression for the real part of Si′f ′, i f

2,outer, i (rc) is given by

ReSi′f ′, i f
2,outer, i (rc) = πδ j′

i
jiδ f f ′


L1K1K

′
1L2K2K

′
2


ε′′
i
j′′
i
k′′
i

(2 j ′′i + 1)

×DP(ε′i j ′ik ′i, ε′′i j ′′i k ′′i ; L1K1)DP(ε′′i j ′′i k ′′i , εi jiki; L1K ′1)

i2i
′
2


ρi2ρi′2

(2 j2 + 1)

×
�
2 j ′2 + 1

�
DP(ε2 j2k2, ε

′
2 j ′2k ′2; L2K2)DP(ε′2 j ′2k ′2, ε2 j2k2; L2K ′2)FL1K1K

′
1L2K2K

′
2

(
ωi′i′′ + ωii′′

2
+ ωi2i

′
2
,ωi′i

)
. (B5)

The expression for the imaginary part of Si′f ′, i f
2,outer, i (rc) is the

same as Eq. (B5) except that FL1K1K
′
1L2K2K

′
2

are replaced by

HL1K1K
′
1L2K2K

′
2
. Similarly, the expression of ReSi′f ′, i f

2,outer, f (rc)
can be obtained from Eq. (B5) by making exchanges between
the quantum numbers i and f′ and between i′ and f. The

expression for ImSi′f ′, i f
2,outer, f (rc) can also be obtained from

ReSi′f ′, i f
2,outer, f (rc) through similar replacements. In addition, all

the conclusions for S2,outer,i are also valid for S2,outer,f.
For matrix elements of Si′f ′, i f

2,middle, the starting expression is
given by10

Si′f ′, i f
2,middle (rc) = −

1
~2(2J + 1)

∞
−∞

dt

∞
−∞

dt ′

i2


ρi2ρi′2


i′2


(m)

e
i(ωi′i+ωi′2i2

)t−i(ω f ′f+ωi′2i2
)t′

× (−1) j f−m f+ j
′
f
−m′

fC( j ′i j ′f J,m′i − m′f MJ)C �
ji j f J,mi − m f MJ

�

×


i′m′ii

′
2m′2

�
V (R (t)) |imii2m2⟩ 
 f m f i2m2

�
V (R (t ′)) ��� f ′m′f i′2m′2


. (B6)

Similarly, by applying Eq. (A2) and carrying the summations over the magnetic quantum numbers, Eq. (B6) becomes

Si′f ′, i f
2,middle (rc) = (−1)1+Jδν′

i
νiδν fν

′
f
(−1) j f+ j′f

×

(2 j ′i + 1)(2 j ′

f
+ 1)(2 ji + 1)(2 j f + 1)


L1K1K

′
1L2K2K

′
2

(−1)L1W
(
j ′i j ′f ji j f , JL1

)
×DP

�
ε′i j
′
ik
′
i, εi jiki; L1K1

�
DP

(
ε f j f k f , ε

′
f j ′f k

′
f ; L1K ′1

) 
i2i
′
2


ρi2ρi′2

× (2 j2 + 1) (2 j ′2 + 1)DP
�
ε′2 j ′2k ′2, ε2 j2k2; L2K2

�
DP

�
ε2 j2k2, ε

′
2 j ′2k ′2; L2K ′2

�

×
∞

−∞

dt

∞
−∞

dt ′e
i(ωi′i+ωi′2i2

)t
e
−i(ω f ′f+ωi′2i2

)t′
GL1K1K

′
1L2K2K

′
2
(t, t ′) . (B7)
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As shown in Eq. (C5), the two dimensional integrations over t and t′ can be evaluated through the 2-D Fourier transforms of
FL1K1K

′
1L2K2K

′
2
(ω,ω′). Then, one obtains a general expression for Si′f ′, i f

2,middle as

Si′f ′, i f
2,middle (rc) = 2π(−1)1+Jδν′

i
νiδν fν

′
f
(−1) j f+ j′f

×

(2 j ′i + 1)(2 j ′

f
+ 1)(2 ji + 1)(2 j f + 1)


L1K1K

′
1L2K2K

′
2

(−1)L1W
(
j ′i j ′f ji j f , JL1

)
×DP

�
ε′i j
′
ik
′
i, εi jiki; L1K1

�
DP

(
ε f j f k f , ε

′
f j ′f k

′
f ; L1K ′1

) 
i2i
′
2


ρi2ρi′2

× (2 j2 + 1) �2 j ′2 + 1
�

DP
�
ε′2 j ′2k ′2, ε2 j2k2; L2K2

�
DP

�
ε2 j2k2, ε

′
2 j ′2k ′2; L2K ′2

�

× FL1K1K
′
1L2K2K

′
2

(ωi′i + ω f ′f

2
+ ωi′2i2

,ω f i − ω f ′i′

)
. (B8)

For the diagonal elements of S2,outer,i, S2,outer,f, and
S2,middle, their expressions become simpler because the
second arguments of the symmetric 2-D Fourier and Hilbert
transforms FL1K1K

′
1L2K2K

′
2

and HL1K1K
′
1L2K2K

′
2

are zero. With
Eqs. (C9) and (C10), one can directly obtain them from
Eqs. (B5) and (B8) by replacing these 2-D functions by their
corresponding 1-D partners. We note that to simplify the
notations, we have used the same symbols denoted for these
2-D and 1-D functions, but with different numbers of their
arguments.

APPENDIX C: SYMMETRIC 2-D
AND 1-D CORRELATION FUNCTIONS
AND THEIR FOURIER TRANSFORMS

As explained in our previous work,17 instead of
introducing the 2-D correlation functions GL1K1K

′
1L2K2K

′
2
(t, t ′)

defined by Eq. (B3), it is better to change the variables t and t′

to the variables of τ ≡ t − t′ and τ′ ≡ 1/2(t + t′) and to use their

symmetric partners GL1K1K
′
1L2K2K

′
2
(τ, τ′) defined by

GL1K1K
′
1L2K2K

′
2
(τ, τ′) = GL1K1K

′
1L2K2K

′
2

(
τ′ +

τ

2
, τ′ − τ

2

)
.

(C1)

One can therefore express the off-diagonal elements of
S2,outer,i, S2,outer,f, and S2,middle in terms of the symmetric
2-D Fourier transforms defined by

FL1K1K
′
1L2K2K

′
2
(ω,ω′)

=
1

2π

∞
−∞

∞
−∞

dτdτ′eiωτeiω
′τ′GL1K1K

′
1L2K2K

′
2
(τ, τ′). (C2)

Because GL1K1K
′
1L2K2K

′
2
(τ, τ′) are even functions of τ and τ′,

these Fourier transforms are real and even functions of ω
and ω′.

For example, the integrations over t and t′ appearing in
Eq. (B4) can be evaluated as

∞
−∞

dt

t
−∞

dt ′e
i

(
ωi′i′′+ωi2i

′
2

)
t−i

(
ωii′′+ωi2i

′
2

)
t′

GL1K1K
′
1L2K2K

′
2
(t, t ′) =

∞
−∞

dτ′
∞

0

dτe
iωi′iτ

′+i
(
ωi′i′′+ωii′′

2 +ωi2i
′
2

)
τ
GL1K1K

′
1L2K2K

′
2
(τ, τ′)

= πFL1K1K
′
1L2K2K

′
2

(
ωi′i′′ + ωii′′

2
+ ωi2i

′
2
,ωi′i

)
+ iπHL1K1K

′
1L2K2K

′
2

(
ωi′i′′ + ωii′′

2
+ ωi2i

′
2
,ωi′i

)
. (C3)

In Eq. (C3), HL1K1K
′
1L2K2K

′
2
(ω,ω′) are the Hilbert transforms of FL1K1K

′
1L2K2K

′
2
(ω,ω′) over the first argument ω,

HL1K1K
′
1L2K2K

′
2
(ω,ω′) = 1

π
P

∞
−∞

dω′′
1

ω − ω′′
FL1K1K

′
1L2K2K

′
2
(ω′′,ω′) . (C4)

HL1K1K
′
1L2K2K

′
2
(ω,ω′) are real, odd functions of ω and even functions of ω′.

Deriving the expression for two dimensional integrations over t and t′ appearing in Eq. (B7) can be handled with a similar
way. In this case, because both the integration ranges of t and t′ are from −∞ to +∞, the result is real,

∞
−∞

dt

∞
−∞

dt ′e
i(ωi′i+ωi′2i2

)t
e
−i(ω f ′f+ωi′2i2

)t′
GL1K1K

′
1L2K2K

′
2
(t, t ′) = 2πFL1K1K

′
1L2K2K

′
2

(ωi′i + ω f ′f

2
+ ωi′2i2

,ω f i − ω f ′i′

)
. (C5)
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It is worth mentioning that as one calculates the diagonal
matrix elements of S2,outer,i, S2,outer,f, and S2, middle, the
integrations over t and t′ becomes simpler. In these cases,
one introduces the symmetric 1-D correlation functions
GL1K1K

′
1L2K2K

′
2
(τ),

GL1K1K
′
1L2K2K

′
2
(τ) =

∞
−∞

dτ′GL1K1K
′
1L2K2K

′
2
(τ, τ′) . (C6)

It is obvious that the 1-D functions of GL1K1K
′
1L2K2K

′
2
(τ)

are even functions of τ. For simplifying notations, we use
the same symbols to represent the 2-D and 1-D correlation
functions. Meanwhile, their corresponding Fourier and Hilbert
transforms are defined by

FL1K1K
′
1L2K2K

′
2
(ω) = 1

√
2π

∞
−∞

dτeiωτGL1K1K
′
1L2K2K

′
2
(τ) ,

(C7)

and

HL1K1K
′
1L2K2K

′
2
(ω) = 1

π
P

∞
−∞

dω′
1

ω − ω′
FL1K1K

′
1L2K2K

′
2
(ω′) ,

(C8)

where P means the Cauchy principle value. It is easy to show
that there are simple relations between these 2-D and 1-D
transforms as

FL1K1K
′
1L2K2K

′
2
(ω,0) = 1

√
2π
FL1K1K

′
1L2K2K

′
2
(ω) , (C9)

and

HL1K1K
′
1L2K2K

′
2
(ω,0) = 1

√
2π
HL1K1K

′
1L2K2K

′
2
(ω) . (C10)

It is worth mentioning that these 2-D and 1-D functions play
crucial roles in calculating the relaxation matrix elements.
Meanwhile, calculating them for each collisional trajectories
governed by an accurate potential model is the most time-
consuming task in practical calculations.
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