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We thank Professor G. Zhang for reading our

article and taking the time to submit a formal com-

ment to the Journal of Applied Meteorology and

Climatology (Zhang 2015). After seeing how this

comment misinterprets the analysis presented in

Williams et al. (2014), it is our pleasure to have an

opportunity to clarify our work so that the commu-

nity can appreciate the differences between Professor

Zhang’s work using two-parameter constrained-gamma

(C-G) raindrop size distribution (DSD) models and

our work using three-parameter unconstrained DSD

models.

1. Introductory comments

First and foremost, a C-G distribution model, or a

m–L relationship, as introduced in Zhang et al. (2001,

2003) and improved in Cao et al. (2008), describes

curves that pass through clusters of points. Each curve

is a ‘‘best fit’’ curve that minimizes a mathematical

constraint, represents a family of gamma DSDs, passes

through the cluster of points, and is presented—in

Zhang et al. (2001, 2003) and Cao et al. (2008)—without

error bars or uncertainties. On the one hand, if these

papers had included error bars along with their best-fit

curves, then Williams et al. (2014) may not have been

written or may not have passed the peer-review process.

On the other hand, since these papers assumed that

DSDs are described with gamma distributions and did

not provide uncertainty estimates for their best-fit

curves, Williams et al. (2014) presented, first, a method

to estimate best-fit curves through physicallymeaningful

DSD quantities (e.g., sm and Dm) that are not con-

strained to follow gamma distributions and, second, a

method to deviate away from these best-fit curves that

uses the concept of joint probability distribution func-

tions (joint PDFs).

In Williams et al. (2014), the first analysis step

estimated a best-fit curve that passed through a cluster of

points without assuming a functional form of the DSD.

If the best-fit curve was constrained to conform to a

gamma distribution and the analysis was stopped at this

point, then the work of Williams et al. (2014) would
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conceptually be similar to the work presented in Zhang

et al. (2001, 2003) and Cao et al. (2008) with regard to

fitting a curve through a cluster of points while assuming

gamma-shaped DSDs. The innovation presented in

Williams et al. (2014), however, starts after estimating an

unconstrained best-fit curve through a cluster of points

by quantifying how to deviate from that best-fit curve by

using joint PDFs.

The concept of joint PDFs is visually expressed in

Fig. 1, with Figs. 1a–c containing the same information

that is contained in Figs. 5c, 6a, and 6c, respectively, of

Williams et al. (2014) except that the joint PDFs are

shown with box-and-whisker symbols rather than free-

flowing curves. The white, red, and blue dots represent

discrete values of the best-fit curve passing through

the cluster of points for individual values of Dm. The

box-and-whisker lines represent how the data deviate

away from the best-fit curve, with the thick lines rep-

resenting 61 standard deviation and the thin lines

representing the 5th and 95th percentiles. It is

important to note that Figs. 1a and 1b show ‘‘distri-

bution free’’ relationships that are based on observed

DSD moments without assuming a functional form of

the DSD shape. After it was concluded that a family of

gamma distributions could represent the DSD shape

[see p. 1289 in Williams et al. (2014) for more details],

raw observations were mapped into the gamma pa-

rameter space of (m, Dm) shown in Fig. 1c by using

Ulbrich (1983) nontruncated gamma-distribution

transformation equations. The graphics in Figs. 1a–c

illustrate an important message of Williams et al.

(2014)—namely, that, given a value of Dm, the dots

represent the expected value of s0
m, sm, and m and the

box-and-whisker lines represent how the data deviate

away from the expected value.

Each joint PDF shown in Figs. 1a–c is constructed

from data that are contained within a narrow range of

Dm (e.g., center value6 0.05mm), with Fig. 1d showing

the joint PDFs after a coordinate transformation into

the (m, L) domain is performed. To help to clarify the

FIG. 1. Joint PDFs for narrow ranges (60.05mm) of mean raindrop diameter Dm shown using box-and-whisker

symbols. (a) Joint PDFs of normalized mass spectrum standard deviation r(s0
m jDm), (b) joint PDFs of mass

spectrum standard deviation r(sm jDm), (c) joint PDFs of m shape parameter r(m jDm), and (d) joint PDF of mass

spectrum standard deviation r(sm jDm) mapped into the m-vs-L domain. Color tiles are frequency of occurrence in

logarithmic scale: the tile with the most occurrences has 0 dB, and each 50% decrease in occurrence has a 3-dB

decrease on the color scale. Circles represent the mean PDF value, tips of thick lines represent61 std dev, and tips

of thin lines represent 5th and 95th percentiles.
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transformation from the (m, Dm) domain to the (m, L)
domain, note that the blue and red dots have the

same m value in both Figs. 1c and 1d. In the context of

‘‘[d]escribing the shape of raindrop size distributions

using uncorrelated raindropmass spectrum parameters’’

[cf. title of Williams et al. (2014)], it is informative to

notice that joint PDFs in Figs. 1a–c represent the spread

of s0
m, sm, and m for narrow uncorrelated ranges of Dm.

In contrast, joint PDFs expressed in (m, L) space spread
over correlated values of m and L parameters. In

mathematical terms and assuming nontruncated gamma

distributions, this correlation is expected since the co-

ordinate transformation is a simple relationship [Eq.

(10) in Ulbrich 1983]:

L5 (m1 4)/D
m
, (1)

and, because Dm is held to within a very narrow range,

variations in m manifest as variations in L, yielding

highly correlated m and L parameters.

To help to illustrate that box-and-whisker lines are

derived from narrow ranges of Dm observations, Fig. 2

shows scatterplots forDm ranges centered at 1.0, 1.5, and

2.0mm with spread of60.05mm. Figure 2a presents the

scatter in the (m, Dm) domain, and Fig. 2b presents the

scatter in the (m, L) domain. The scatter in the (m, L)
domain is visually highly correlated and is quantified in

Table 1 by listing Pearson correlation coefficients for

r(Dm, s
0
m), r(Dm, sm), r(Dm,m), and r(m,L) using allDm

ranges containing at least 500 samples. By construction,

Dm is uncorrelated with s0
m, sm, and m, with correlation-

coefficient magnitudes of 0.23 or less. In contrast, m and

L are highly correlated, with correlation coefficients of

no less than 0.996. This result indicates that when data

are divided into narrow ranges of Dm the mathematical

parameters of m and L are highly correlated, implying

that errors in one parameter will be compensated by

errors in the other parameter as noted in Chandrasekar

and Bringi (1987). Also, Fig. 2 highlights that DSD

parameter orthogonality in one domain is not pre-

served after coordinate transformation into another

parameter domain.

These introductory comments are summarized with

three main thoughts. First, the C-G DSDmodel, or m–L
relationship (Zhang et al. 2001, 2003; Cao et al. 2008),

assumes, or restricts, raindrop size distributions to be

described with gamma distributions whereas sm–Dm

relationships can be developed from raw observations

without assuming a particular functional form, or shape,

of the raindrop size distribution (Williams et al. 2014).

Second, the work presented in Zhang et al. (2001, 2003)

andCao et al. (2008) constructs single best-fit curves that

FIG. 2. Scatterplots of data for mean diameterDm ranges centered at 1.0, 1.5, and 2.0mm, with spread of60.05mm,

(a) in the m-vs-Dm domain and (b) in the m-vs-L domain.

TABLE 1. Pearson correlation coefficients estimated for narrow

ranges of Dm. Columns contain the number of samples n, the Dm

center value (mm) with spread of 60.05mm, and correlation co-

efficients for r(Dm, s
0
m), r(Dm, sm), r(Dm, m), and r(m, L). Only

intervals with over 500 samples are included in this table.

n Dm r(Dm, s
0
m) r(Dm, sm) r(Dm, m) r(m, L)

795 0.70 0.01 0.22 20.03 0.996

1340 0.80 20.14 0.06 0.10 0.996

1904 0.90 0.02 0.23 20.10 0.996

2455 1.00 0.05 0.23 20.13 0.998

2694 1.10 0.03 0.20 20.07 0.998

2576 1.20 20.04 0.13 0.01 0.998

2332 1.30 0.02 0.17 20.07 0.998

2088 1.40 0.05 0.20 20.10 0.999

1822 1.50 0.00 0.16 20.05 0.998

1587 1.60 20.05 0.10 0.02 0.999

1204 1.70 20.03 0.13 0.00 0.999

1039 1.80 20.00 0.14 20.04 0.999

787 1.90 0.01 0.14 20.05 0.999

565 2.00 20.02 0.11 20.01 0.999
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pass through clusters of points without error bars or

uncertainty estimates. In contrast, Williams et al. (2014)

construct a best-fit curve that passes through a cluster of

points as a function of Dm and describe how the data

deviate away from that best-fit curve while keeping Dm

constant. Third, since orthogonality in one domain is not

preserved after coordinate transformation, joint PDFs

defined in Williams et al. (2014) within the (s0
m, Dm),

(sm, Dm), and (m, Dm) domains do not translate into

orthogonal joint PDFs in the (m, L) domain. The rest

of this reply addresses the four specific points of

Zhang (2015).

2. Point 1: Similarity of m–L and sm– Dm

relationships

This particular point can be broken down into two

separate concerns: 1) similarity of representing best-fit

curves using m–L and sm–Dm relationships and 2) rep-

resenting deviations from best-fit curves using joint

PDFs. With regard to the similarity of m–L and sm–Dm

relationships, we agree that, as long as m–L and sm–Dm

relationships represent best-fit curves passing through

clusters of points and one assumes that DSD shapes are

described with gamma distributions, these best-fit re-

lationships are similar. In fact, the coordinate trans-

formation is defined in Ulbrich (1983) for nontruncated

gamma distributions. This similarity between m–L and

sm–Dm relationships only applies to the best-fit curves

passing through a cluster of points assuming gamma-

shaped DSDs and does not apply to deviations from

those best-fit curves using joint PDFs as presented in

Williams et al. (2014).

With regard to the representation of deviations from

best-fit curves using joint PDFs, there is an error in the

derivation leading to Eq. (5b) of Zhang (2015) that

indicates a misunderstanding and misinterpretation of

the joint PDFs presented in Williams et al. (2014). The

derivation leading to Eq. (5a) of Zhang (2015) is correct

because the variable substitutions are valid for best-fit

curves, but these variable substitutions are not valid for

joint PDFs that represent deviations away from the ex-

pected value with a fixed value of Dm. In general, the

upper and lower bounds (supper_bound
m and slower_bound

m ) in

Eqs. (23) and (24) ofWilliams et al. (2014) represent the

spread of a joint PDF from the expected value in Eq.

(22) (sexpected_value
m ) for fixed values of Dm. Since the joint

PDF spread is relative to the expected value using the

same value of Dm, the derivation leading to Eq. (5b) of

Zhang (2015) must also keep Dm constant to represent

the deviation away from the best-fit curve with the same

value ofDm. To be specific, for the joint PDFs presented

in Williams et al. (2014), Eq. (1) of Zhang (2015) cannot

be used as a general variable substitution, and the un-

numbered equation before Eq. (5a) of Zhang (2015)

needs to be rewritten so that m is conditioned onDm and

is a function of both Dm and L:

mj
Dm

5 a2D2b
mL2 2 4, (2)

where Dm is held constant for each joint PDF repre-

senting deviations away from the best-fit curve evalu-

ated at Dm. Thus, in short, the mathematics leading to

Eq. (5b) of Zhang (2015) are invalid with regard to joint

PDFs presented in Williams et al. (2014) because Dm

must be held constant in constructing joint PDFs.

In summary, for point 1, assuming DSD shapes are

described with gamma distributions, there is similarity

between m–L and sm–Dm best-fit curves because these

curves and the points they pass through can be mapped

between (m, L) and (sm, Dm) domains using coordinate

transformations defined by Ulbrich (1983). In contrast,

deviations away from best-fit curves defined with joint

PDFs in Williams et al. (2014) do not simply map be-

tween (m, L) and (sm, Dm) domains. Joint PDFs are

defined with constant Dm values, and the coordinate

transformation must maintain constant Dm values to be

consistent with the work presented in Williams et al.

(2014). The invalid mathematical substitution leading to

Eq. (5b) of Zhang (2015) indicates a misinterpretation

of how joint PDFs are transformed between domains

and a misunderstanding of the way in which joint PDFs

represent deviations away from the best-fit curve pre-

sented in Williams et al. (2014).

3. Point 2: Initial data QC thresholds

This particular point can also be broken down into two

separate concerns: 1) quality control (QC) of dis-

drometer data and 2) using best-fit curves with two- or

three-parameter DSD models. For disdrometer data

QC, we agree that disdrometers have difficulty sampling

small and large raindrops such that disdrometer datasets

should retain as many valid spectra as possible. That is

why Williams et al. (2014) used as little data filtering as

possible before conducting any analysis, with the first

QC stage verifying that spectra represented rain sam-

ples. In response to this point, reexamination of the

disdrometer dataset revealed that requiring data to be in

three different diameter bins is superfluous. If a spec-

trum had 50 raindrops, reflectivity greater than 10dBZ,

and rain rate greater than 0.1mmh21, data were spread

over three or more diameter bins.

In the peer-review process, there was concern that

disdrometer small-drop truncation issues were affecting

the statistics, which prompted the second and third QC
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stages. The ratio Xmax 5 Dmax/Dm stems from the

analysis in Ulbrich (1983) (using the ratio Dmax/D0),

which shows that, as the ratio Dmax/D0 increases, the

errors associated with using nontruncated gamma-

function mathematics decrease. Figure 3b in Williams

et al. (2014) illustrates that small Xmax 5Dmax/Dm ratio

is more of an issue with spectra with smallDm and could

be due to disdrometer drop truncation issues—thus, the

introduction of the Xmax 5 Dmax/Dm . 1.5 threshold.

The third QC stage did not remove data but calculated

best-fit-curve power-law coefficients from spectra with

Dm . 1mm.

With regard to the second concern of using best-fit

curves with two- or three-parameter DSD models,

Zhang (2015) makes a compelling argument to use the

sorting and averaging with two parameters (SATP) fil-

tering method to estimate a best-fit curve passing

through a cluster of points because this filter is a biased

estimator that weights heavy-rain events more favorably

than light-rain events. We agree that, if one uses a two-

parameter DSD model, errors in the best-fit curve will

propagate into the solution and the filtering process

should retain the rain microphysics to match the re-

trieval purpose. If one is using a three-parameter DSD

model as in Williams et al. (2014), however, the best-fit

curve is not as critical because the best-fit curve provides

an initial value and joint PDFs in Williams et al. (2014)

describe a method to deviate off this best-fit curve. It is

the responsibility of each team of model developers to

determine how their model will deviate from the best-fit

curve.

In summary, disdrometer data need to be quality

controlled to ensure that they represent rain events.

Within the context of two-parameter DSD models, the

best-fit curve is very important because this constraint

describes a two-parameter DSD shape with a single

relationship. Within three-parameter unconstrained

DSD models, however, the best-fit curve is not as cru-

cial because the best-fit curve acts as an initial value

from which the model can deviate as warranted by

observations.

4. Point 3: Best-fit curves and deviations in
probabilistic algorithms

This particular point contains two concerns: 1)

whether a best-fit curve, by itself, can be used in prob-

abilistic algorithms and 2) whether deviations from the

best-fit curve can be used in probabilistic algorithms.

For the first concern, we agree that a best-fit curve

through a cluster of points, expressed in either the

(m, L) or (sm, Dm) domains, can be the expected value,

or initial value, in probabilistic algorithms. For the

second concern, we agree, within the C-G DSD frame-

work and as discussed in the first paragraph of Zhang

(2015), that probabilistic algorithms cannot deviate

m and L away from the constraining best-fit curve.

Although we agree with this C-G constraint, we find it

limiting in probabilistic algorithms that utilize obser-

vations from multiple sensors, we are concerned with

statistical correlations between m and L parameters as

discussed in the introductory comments, and therefore

in Williams et al. (2014) we provided a method to re-

lax this constraint by using unconstrained three-

parameter DSDs and joint PDFs in the (sm, Dm)

domain in order for probabilistic algorithms to deviate

away from the expected, or initial, value defined by the

best-fit curve.

In summary, for point 3, we agree that m–L re-

lationships provide an expected, or initial, value for

probabilistic rainfall retrieval algorithms that assume

gamma-distribution DSD models. Williams et al.

(2014), however, provide a method to relax that con-

straint within the (sm,Dm) domain so that probabilistic

algorithms can deviate the DSD shape away from the

shape defined by the best-fit curve.

5. Point 4: Typographical error in rain-rate
equations

Per the suggestion of Professor Zhang, a corrigendum

highlighting this typographical error was initiated in

January of 2015 and was published in the April 2015

issue of the Journal of Applied Meteorology and Cli-

matology (corrigendum to Williams et al. 2014).

6. Concluding remarks

Again, we thank Professor Zhang for showing interest

in our work and for taking the time to formally comment

on that work as presented in Williams et al. (2014). The

comment has enhanced the significance of the conclu-

sions of our original paper.
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