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Abstract. Hyperspectral imagery can provide very valuable information
on land cover classes. However, it also presents many challenges in
data analysis and interpretation as a result of the large amounts of data
collected. For example, conventional methods for land use and land
cover classifications may not be directly applicable. Such conventional
methods typically require a preprocessing step to transform high dimen-
sional data to a lower dimension, mostly by eliminating data redundancy.
For decades, principal component analysis (PCA) has been widely used
to decorrelate spectral bands for reducing dimensionality. It is a useful
technique if the spectral class structure of the transformed data is dis-
tributed along the first few axes. Otherwise, the transformed data may be
similar to the original data. In such cases, we have shown in an earlier
work that the wavelet decomposition technique is a better approach.
Wavelet decomposition can reduce hyperspectral data in the spectral
domain for each pixel. By carefully combining PCA and wavelet tech-
niques, we engender a new method that benefits from the strength of
both techniques. The intent of the hybrid method is to provide a tradeoff
between the accuracy and speed, as compared with PCA and wavelet
methods. The effectiveness of this method is demonstrated by using
hyperspectral data from the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) hyperspectral instrument. The experimental results show
that, for high reduction rates, the hybrid method is superior to pure PCA
and to pure wavelet-based techniques. © 2004 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1637907]

Subject terms: dimension reduction; principal component analysis; wavelet de-
composition; maximum likelihood.
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1 Introduction

Hyperspectral imaging spectrometer data provide a we
of information, which can be used to address a variety
Earth remote sensing applications. The rapid increase o
number of spectral channels for hyperspectral data crea
need for reducing data volume to tractable levels. The
mensionality of hyperspectral data can be reduced by
plying a linear transformation, such as principal compon
analysis~PCA!, and retaining only the significant compo
nents for further processing.1,2 The object of PCA is to find
a lower dimensional representation that accounts for
variance of the features. Although PCA is sufficient f
reducing data volume, the process is time consuming
does not emphasize spectral signature, which is the fun
mental concept of hyperspectral imagery for characteriz
objects on the Earth’s surface. Unlike PCA, wavelet d
composition focuses on reducing each individual spec
pixel in the spectral domain. Each reduced spectral p
preserves the peaks and valleys of the original spectrum
a smaller representation. On the other hand, such a t
nique as PCA seeks to form linear combinations of
bands based on the global covariance matrix; whereas
wavelet seeks merely a smaller subset of the original ba
350 Opt. Eng. 43(2) 350–362 (February 2004) 0091-3286/2004/$1
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based on a moving average of pixel vector values. Thus,
wavelet yields decomposed spectra that are smoother
the original spectra.3 But, because of the lack of relation
ship among neighborhood pixels in the spatial domain, a
because of the redundancy of wavelet coefficients, we
investigating a hybrid technique—a combination of wave
and PCA—to achieve dimension reduction of hyperspec
data. Experimental results were conducted using the
borne Visible Infrared Imaging Spectrometer~AVIRIS!
data. The results show that overall classification accur
for the hybrid technique is superior to the other two tec
niques.

The remainder of this work is organized as follows. Se
tion 2 briefly describes the PCA technique, and the mu
resolution wavelet decomposition as a new technique
hyperspectral reduction. Section 3 discusses the hy
wavelet-PCA technique, including analytical efficienc
Section 4 presents the experiments that were conduc
including the hyperspectral datasets that were used. Sec
5 shows and discusses experimental results and the im
of each method on classification accuracy, as well as c
putational efficiency. Section 6 concludes with brief r
marks.
5.00 © 2004 Society of Photo-Optical Instrumentation Engineers
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2 Overview of Reduction Techniques

2.1 Principal Component Analysis

PCA, also referred to as the Hotelling transform or t
Karhunen-Loeve transform, is a widely used dimension
duction technique in data analysis. To perform stand
PCA, there are generally phases of computations.1 These
include assembling of the covariance matrix of the image
be transformed, determining the eigenvalues and co
sponding eigenvectors of the covariance matrix, and fo
ing the components. The first few principal compone
~PCs! contain the most information/variance, and are g
erally linear combinations of information from sever
spectral classes. The remaining principal components c
tain much less information, usually less than 1% of the d
variance.

Let x be a pixel vector in the hyperspectral vector spa
then PCA is a linear transformationG, such that

y5Gx, ~1!

with the constraint that the covariance matrix in they space
is diagonal. Moreover,G will be recognized as the trans
pose, provided thatG is an orthogonal matrix, i.e.,G21

5Gt.

2.2 Multiresolution Wavelet Analysis

Wavelet transforms are the basis of many powerful to
that are now being used in remote sensing applicatio
e.g., compression, registration, fusion, and classificat
Using the Mallat algorithm,3 discrete wavelet transform
~DWTs! can be computed very quickly. The principle
our method is to apply a discrete wavelet transform to
perspectral data in the spectral domain and at each p
This not only reduces the data volume, but it also preser
the distinctions between spectral signatures.4 This charac-
teristic is related to the intrinsic property of wavelet tran
forms of preserving high- and low-frequency features d
ing the signal decomposition, therefore preserving
peaks and valleys found in typical spectra. One of the m
localized filters, DAUB4,5 which has only four coefficients
has been used.

Figure 1 shows the principle of the Mallat algorithm
two filters, the low-pass filter~L!, and its corresponding
high-pass filter~H! are applied to the signal, followed b
dyadic decimation removing every other element of the s
nal, thereby halving its overall length. This is done rec
sively by reapplying the same procedure to the result of

Fig. 1 The fast discrete wavelet transform, where cj represent the
smoothed coefficients and dj represent the detail coefficients; L is
the low-pass filter and H is the high-pass filter.
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L filter, as shown in Fig. 1. In the original vectorx of length
N52J from Fig. 1, thej’th iteration produces the smoothe
coefficients at scalej; cj5L jx for j 51,...,J. This applica-
tion of the low-pass filter~L! causescj to be an increas-
ingly smoother version of the original vector.

Examples of the decomposed spectral signature of c
for different wavelet decomposition levels are shown
Fig. 2. The wavelet technique reduces the effects of hi
frequency details by retaining only spectra obtained fr
the low-pass filter. One of the important issues with wave
reduction is to determine how many levels of decompo
tion can be applied while still yielding good classificatio
accuracy. Applying the inverse DWT to the coefficie
approximation3,6 at the lower level by inserting a vector o
zeros in place of the detail coefficients vector, we can
the reconstructed spectral data of its real approximatio
the next higher level. This process can be recursively
plied so that it yields a reconstructed signal of length eq
to the original spectral signature. In our earlier work, o
automatic wavelet spectral reduction algorithm4 was devel-
oped by measuring the similarity7,8 between the original
spectral signature and the reconstructed spectral app
mation using correlation~Corr!. Then, the global histogram
of this similarity measurement was computed as a mea
of the desired probability distribution for all pixels in th
scene. Based on a user’s specified threshold~Th!, the global
decomposed level was determined as the lowest level
preserves the best the information content of each pi
Details of this wavelet-based dimension reduction can
found in Ref. 4.

3 Hybrid Wavelet-PCA Reduction

3.1 Description of the Hybrid Algorithm

Similar to the methods presented in Sec. 2, our hyb
transformation is a preprocessing technique, which
moves high-frequency components and reduces band
band correlation, especially in the case of noisy data. T
hybrid transform combines both wavelet and PCA tec
niques. The transformation first performs an initial redu
tion using a wavelet decomposition, where the original h
perspectral data is compressed into a reduced-com
form. Then PCA is applied, thus significantly reducing t
computational load compared to the conventional P
technique. Usually, the wavelet method filters and s
samples each original spectrum into a reduced set of wa
let coefficients. In our algorithm, PCA decorrelates t
band-to-band spectral information contained in the wave
coefficients, and therefore yields a new smaller datase
an uncorrelated coordinate system. The two advantage
the hybrid technique are: 1. it takes into account local s
tial information among neighborhood class pixels, prope
that the wavelet is missing for classification purposes; a
2. it removes spectral correlation among wavelet coeffici
bands.

Due to tremendous hyperspectral data dimensionalit
it is difficult to perceive much from statistical values com
puted from hyperspectral data, i.e., mean vector, covaria
matrix.9 To show that these values are preserved by wav
decomposition, we use the visualization proposed by K
and Swain.9 In this representation, the correlation matr
~and therefore the covariance matrix! is shown by convert-
351Optical Engineering, Vol. 43 No. 2, February 2004
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Fig. 2 An example of Corn spectral signature and different levels of wavelet decomposition for the
low-pass component.
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ing absolute values of the interchannel correlations to g
values between 0 and 255. Tone is then proportional to
absolute value of the correlation~white51 or 21;
black50!.8 Figure 3 shows the global statistical correlati
coefficient image of the IndianPines’92 scene~described in
Sec. 4! for the original data and two different levels o
wavelet decomposition. This representation shows that
relation coefficient images in Figs. 3~b! and 3~c! look simi-
lar to the image produced from the original data@as shown
in Fig. 3~a!#, but they are smaller than that of the origin
data. It is also crucial to note that low correlations ex
away from the diagonal, while the diagonal blocks sh
high correlations. Furthermore, all values along the dia
Optical Engineering, Vol. 43 No. 2, February 2004
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nal are 1, since they measure the correlation of the d
from each band with itself.

In comparison to these characteristics of the wavelet
duction method shown in Fig. 3, our hybrid technique p
serves the usual characteristics of the conventional P
such that the higher order components with low varian
can be discarded without significant loss of informati
content. Additionally, the original hyperspectral image
can be reconstructed from the reduced representation u
an inverse principal component transform and an inve
discrete wavelet transform, although with some loss of
formation. Moreover, for visualization purposes, a co
composite image can be formed after the hybrid transfo
Fig. 3 Global correlation coefficient image of IndianPines’92 for different levels of wavelet decompo-
sition.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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in the same manner as in conventional PCA. Since p
wavelet reduction represents the data, yet with smaller
mensionality, it is difficult to form a three-color composi
for image display purposes, because any three arbit
wavelet bands use only a small percentage of the total
variance. By applying PCA after the wavelet decompo
tion, the most informative three features~the first three
PCs! obtained from the hybrid transform can be used. Sim
larly to the wavelet reduction technique,4 the hybrid tech-
nique can also be applied to handle a situation in which
number of training samples is too limited to permit the u
of all available features.

Figure 4 illustrates the flow diagram of the hybrid redu
tion technique. The hybrid algorithm gets the input fro
the user for the number of levels of decomposition@Level#
and the number of principal component@PCs# chosen. First,
the algorithm decomposes the original hyperspectral im
ery in the spectral domain for each individual pixel to pr
duce multiresolution wavelet-compressed spectra for
chosen level. Then PCA is applied to the wavelet coe
cients to produce the chosen number of components.

The principle of our method is to apply a discrete wav
let transform to hyperspectral data in the spectral dom
and at each pixel. As the wavelet transform includes b
convolution and decimation, convolution helps retain int
esting spectral features, while decimation helps reduce
data. This not only reduces the data volume, but it a
preserves the distinctions between spectral signatures.4

3.2 Computational Complexity

Multiresolution wavelet decomposition with a Mallat alg
rithm is very fast for reducing hyperspectral dimensiona
because of its pyramidal model and because we chos
only apply the low-pass filter. LetN be the length of the
original spectral signature that is equivalent to the num
of bands, and let the length of the original low-pass fil
~F! be L. For a filter of lengthL, wavelet decomposition

Fig. 4 A flow diagram of the hybrid wavelet-PCA reduction.
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requires in the order ofL operations per invocation. Afte
the first invocation of the low-pass filter~F!, we obtain half
the number of bandsN/2, then we apply the low-pass filte
again. Thus, each level processes half the number of pi
than the previous level. SinceL is fixed for any particular
wavelet filter, the wavelet-based reduction method yie
the order ofO(N) computations per pixel, whereN is the
number of bands.5 The inverse discrete wavelet transfor
~IDWT! can, likewise, be computed inO(N) computations
per pixel to reconstruct the real approximation to the ori
nal stage for the similarity measurement~correlation!. The
time complexity of the correlation metric~computed be-
tween the original spectral signature and its reconstruc
approximation! is O(N) operations per pixel. Therefore, fo
the wavelet reduction algorithm described in Ref. 4 t
order of complexity isO(MN), whereM is the number of
pixels per scene.

By comparison with the wavelet method, PCA is com
putationally expensive. The time complexity of the diffe
ent phases of PCA for anM pixel image ofN spectral bands
is as follows: 1. find mean vectorO(MN); 2. assemble
covariance matrixO(MN2); 3. use eigen analysis to gen
erate the transformation matrix performed as weighting
efficientO(N3) for the standard eigen problem; and 4. pe
form pixel-by-pixel linear transformation-forming
componentsO(RMN), whereM is the number of pixels of
the image data,N is the number of bands, andR is the
number of formed components (R<N). The overall com-
plexity of PCA isO(MN21N3).10

The great advantage of the hybrid technique compa
to conventional PCA is to save computation time. Tim
spent on each computational phase is reduced, especia
forming components. The computational complexity of t
hybrid method combines both complexities of the wave
and of the PCA methods. LetD be the number of decom
posed features from the wavelet that is equivalent to
new number of features~bands! for further processing of
PCA, D5N/2d, whered5number of levels of wavelet de
composition. Therefore, the overall complexity of the h
brid transform isO(MN1MD21D3). The computational
complexity of PCA will be decreased tremendously d
pending on the compression rate obtained from the wav
D/N.10 ~see Fig. 5!.

4 Experimental Approach

4.1 Hyperspectral Data Cube

The two hyperspectral datasets used for the experiments
as follows

IndianPines’92. This AVIRIS farmland scene was ac
quired on 12 June, 1992 in the northern part of Indiana
high altitude with a ground pixel size of 17317 m. AVIRIS
acquires images of very narrow, contiguous spectral ba
throughout the visible, near-IR, and mid-IR portions of t
spectrum~0.4 to 2.5mm!, in 224 bands at about 10-nm
wide intervals. We have used a dataset that consists of
3400 pixels by 192 bands. The 192 bands were selecte
discarding significant water absorption bands, especiall
about 1.4 and 1.9mm, and spectral overlaps bands resulti
from the use of four individual spectrometers in th
353Optical Engineering, Vol. 43 No. 2, February 2004
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AVIRIS instrument.11 The ground truth is shown in Fig
6~a!. Original noisy bands, especially water absorpti
bands, will lead to some principal components with hi
variance that may be misleading in the classification p
cess. The 192 bands used are therefore contiguous
equally spaced in the spectrum, except for the two ba
out of the 192 that were discarded due to water absorpt
neering, Vol. 43 No. 2, February 2004

pticalengineering.spiedigitallibrary.org/ on 04/25/2016 T
d
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For this scene, the ground truth covers 20% of the f
4003400 scene and is divided among 11 classes. The
classes are Buildings, Corn, Not Cropped, Oats, Past
Soybeans, Soybeans CleanTill EW rows, Soybeans Cle
Till NS rows, River, Wheat, and Woods, ranging from 59
to 1032 ground truth pixels per class. CleanTill refer to t
amount of very little residue from the previous year’s cr
Fig. 6 The reference data: (a) IndianPines’92 and (b) Salinas’98.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



ng
wn
s-
n

in

c-
as
a
has
con
ta,
t’s

es

nd
ere
wn
re-

e 2

ce-
each
cy

by
er-
ent

use

od
ML
ean
We
om-
nal
l of

al

ue,
en
elet

ing
tion
ised
an
nd

r of
ns

th

ils
wn

s-
al
nts
on
pres-
brid
as-
res-
um

ion
tee
er-
ar-
cy
ea-

Kaewpijit, Le Moigne, and El-Ghazawi: Feature reduction of hyperspectral imagery . . .

Downl
that is on the surface of the ground. A random traini
sample of 40% of the pixels was chosen from the kno
ground truth from each class. A maximum-likelihood cla
sifier was applied to the remaining 60% of the know
ground pixels for coverage of those classes.2,12 The number
of training and testing pixels for each class are given
Table 1.

Salinas’98. This AVIRIS dataset was acquired on 9 O
tober, 1998, south of the city of Greenfield in the Salin
Valley in California. It was taken at low altitude with
pixel size of 3.7 m. We are interested in a scene that
vegetables, bare soils, and vineyard fields. This scene
sists of 2173512 pixels by 192 bands of radiance da
discarding significant water absorption and instrumen
overlap bands. Its ground truth is shown in Fig. 6~b!. We
selected nine classes for testing as follows: Grap
vineyard, Broccoli-weed1, FallowIsmooth, Soil-
vineyardIdevelop, Fallow, Stubble, Celery, BrocoliIweed2,
and CornIsenesced, ranging from 18539 to 2010 grou
truth pixels per class. The random training samples w
chosen as 30% of the pixels for each class from the kno
ground truth. The trained classifier was applied to the
maining 70% of that coverage.12 The number of training
pixels and testing pixels for each class are given in Tabl

Table 1 Number of training and testing pixels for the IndianPines’92
scene.

Class name
Training data

number of pixels
Testing data

number of pixels

Buildings 496 745

Com 1415 2123

Not cropped 528 793

Oats 413 619

Pasture 1314 1970

Soybeans 828 1241

Soybeans-C-EW 2370 3556

Soybeans-C-NS 1076 1613

River 610 915

Wheat 1688 2533

Woods 2364 3545

Table 2 Number of training and testing pixels for the Salinas’98
scene.

Class name
Training data

number of pixels
Testing data

number of pixels

Grapes-vineyard 5562 12977

BrocoliIweeds1 603 1407

FallowIsmooth 803 1875

Soil-vineyardIdevelop 1861 4342

Fallow 593 1383

Stubble 1188 2771

Celery 1074 2505

BrocoliIweeds2 1118 2608

ComIsenesced 983 2295
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Since training samples were selected randomly, the pro
dure of selecting samples was repeated three times for
of the three scenes,2 and the median classification accura
resulting from the experiments is reported.

4.2 Supervised Classification

We have experimentally validated the hybrid technique
using remotely sensed image test suites from two hyp
spectral scenes as mentioned earlier, and the environm
for visualizing images~ENVI! as a tool for classification
assessment. The experiments performed in this work
the maximum likelihood classifier~ML !,13,14which is prob-
ably the most common supervised classification meth
used with remote sensing data. The effectiveness of the
depends on a reasonably accurate estimation of the m
vector and the covariance matrix for each spectral class.
used the same level of compression as the basis of c
parison among the three techniques: wavelet, conventio
PCA, and hybrid methods. For example, the second leve
decomposition~decimated by 4 from 192 bands of origin
data! is analogous to 48 principal components~PCs!, the
third level to 24 PCs, and so on. For the hybrid techniq
a given level of wavelet decomposition is computed, th
PCA is applied at the same compression rate as the wav
and conventional PCA, i.e., Level 1148 PCs. The effec-
tiveness of the reduction is demonstrated by determin
the classification accuracy when a supervised classifica
such as ML is used on the reduced data. The superv
classification algorithm is trained on labeled data, so it c
identify the class to which a pixel or a region belongs, a
thus provide a high-level characterization of the data.15,16In
practice, it has often been observed that if the numbe
training pixels is small, the addition of more dimensio
leads to a worse performance in the testing pixels~often
known as ‘‘curse of dimensionality’’!. It is estimated that a
minimum of 10N pixels per training class is necessary, wi
as many as 100N desired for reliable estimates, whereN is
the number of spectral bands.17 Therefore, we investigate
all three techniques with a minimum of 10N pixels ~per
training class! in both hyperspectral datasets. The deta
about the number of training and testing pixels are sho
in Tables 1 and 2.

5 Experimental Results

5.1 Impact on Classification Accuracy

In this work, the combination of wavelet and PCA tran
forms is done by first applying the wavelet to the origin
data, and then performing PCA on the wavelet coefficie
for all levels of decomposition. Then, the comparis
among the three techniques is made at the same com
sion rate. From Figs. 7 and 8, we can see that the hy
technique generally outperforms conventional PCA in cl
sification accuracy when compared at the same comp
sion rate. The pure wavelet technique gives the maxim
accuracy for higher data dimensionality~48 bands! for both
datasets. It is important to note that the higher informat
content of PCA for the hybrid technique is not a guaran
for higher classification accuracy, because PCA is p
formed after the wavelet transform. As we mentioned e
lier, the wavelet decomposition keeps only low-frequen
features and discards information on high-frequency f
355Optical Engineering, Vol. 43 No. 2, February 2004

erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Kaewpijit, Le Moigne, and El-Ghazawi: Feature reduction of hyperspectral imagery . . .

356 Optical Engi

Downloaded From: http://o
Fig. 7 Classification accuracy comparison of Salinas’98.
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tures. Therefore, the information content~i.e., data variance
percentage! obtained from the hybrid transform is produce
from only low-frequency features of wavelet coefficien
Tables 3 and 4 show the information content of the origi
data computed from conventional PCA; however, in t
case of the hybrid technique, the information content r
resents the total data variation of the wavelet coefficie
that are produced from the wavelet by discarding hig
frequency features.

Another explanation of the increased classification ac
racy of hybrid transform data compared to PCA data is t
the hybrid transform keeps a larger proportion of inform
tion content for the same rate of data reduction. For
ample, 48 PCs of 192 bands from conventional PCA is o
fourth of the input data, as compared to 48 PCs of 96 wa
let coefficient bands from the hybrid being one half of t
input data~wavelet coefficients!. The results show, as ex
pected, that classification accuracy increases with the n
ber of PCs. In these experiments, we chose a maximum
48 PCs, after which the classifier~ML ! performance de-
grades because of the discrepancy between the numb
tested pixels versus the number of trained pixels.1,4
neering, Vol. 43 No. 2, February 2004
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-
f
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By ‘‘best hybrid,’’ we mean the combined choice of th
number of levels of decomposition and the number of pr
cipal components that yield the maximum accuracy for t
compression rate. Experimental results show that the m
mum classification accuracy is usually obtained by us
the best hybrid with all reduction rates except for 48 ban
At 48 bands, the wavelet seems to provide better clas
cation accuracies than the hybrid, because the wavelet
serves the distinctions between spectral signatures, and
cause the nature of the classifiers, which are mostly pix
based techniques,17,18 is better suited for wavelets, whic
are pixel-based transformations. With this compression
~48 bands! and 11 land-cover classes of the IndianPin
scene, using the ML classification, the wavelet reduct
technique yields a classification rate of 80.5424% co
pared to 79.5248% with the hybrid transform an
78.8124% with conventional PCA, as shown in Fig. 9 a
Table 3. The same trend is obtained from the Salinas sc
98.6071 for the wavelet, 98.5822 for the hybrid, a
98.5169 for conventional PCA as shown in Fig. 7 and Ta
4.
Fig. 8 Timing comparison of the wavelet, PCA, and the hybrid.
erms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
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Fig. 9 Classification accuracy comparison of IndianPines’92.

Table 3 Information content and classification accuracy of the IndianPines’92 scene. Level 11PCA
means performing reduction for one level of wavelet decomposition and then applying PCA to its
wavelet coefficients. CA means classification accuracy. IC means information content.

Techniques

Extent of reduction
Reduction rate

48 bands 24 bands 12 bands 6 bands

Wavelet CA580.5424 CA579.0312 CA574.0396 CA566.4326

Conventional PCA CA578.8124 CA577.637 CA574.1414 CA570.5457

IC599.92 IC599.80 IC599.67 IC599.36

Hybrid

Level 11PCA CA579.5248 CA578.8226 CA576.5939 CA570.605

IC599.99 IC599.95 IC599.87 IC599.66

Level 21PCA CA579.6876 CA577.1434 CA570.6711

IC599.99 IC599.95 IC599.80

Level 31PCA CA576.6244 CA570.5236

IC599.99 IC599.90

Level 41PCA CA570.7831

IC599.97

Table 4 Information content and classification accuracy of the Salinas’98 scene. CA means classifi-
cation accuracy. IC means information content.

Techniques

Extent of reduction
Reduction rate

48 bands 24 bands 12 bands 6 bands

Wavelet CA598.6071 CA598.4672 CA598.206 CA596.7167

Conventional PCA CA598.5169 CA598.4361 CA597.5407 CA596.59

IC599.99 IC599.99 IC599.97 IC599.91

Hybrid

Level 11PCA CA598.5822 CA598.5231 CA597.8516 CA596.6079

IC5100 IC5100 IC599.99 IC599.93

Level 21PCA CA598.4765 CA597.8702 CA596.5955

IC5100 IC599.99 IC599.94

Level 31PCA CA598.007 CA596.8442

IC5100 IC599.96

Level 41PCA CA596.6608

IC599.99
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Table 5 The IndianPines test data: confusion matrix of the wavelet technique (Level 2).

Class
User’s acc.

(%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11
Row
total

Class 1 58.51 567 45 20 24 186 27 13 4 2 39 42 969

Class 2 77.87 40 1207 68 20 36 77 16 31 0 47 8 1550

Class 3 85.01 20 22 550 1 25 6 11 1 0 4 7 647

Class 4 65.35 0 7 4 445 25 7 1 2 0 190 0 681

Class 5 84.94 69 40 25 11 1528 32 2 1 0 10 81 1799

Class 6 64.45 7 248 22 1 38 805 64 14 0 47 3 1249

Class 7 75.83 0 221 29 12 0 251 3153 478 0 14 0 4158

Class 8 64.9 3 269 2 13 1 7 287 1080 0 2 0 1664

Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913

Class 10 89.04 17 22 57 84 55 22 9 2 0 2177 0 2445

Class 11 95.14 22 42 16 8 76 7 0 0 0 3 3404 3578

Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653

Producer’s
acc. (%)

76.11 56.85 69.36 71.89 77.56 64.87 88.67 66.96 99.78 85.95 96.02

Overall (%) 80.54
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Tables 5, 6, and 7 show the complete results with
confusion matrices for the testing areas of the Indi
Pines’92 scene with the ML classification, while Tables
9, and 10 show the complete results for the Salinas
scene at second levels of decomposition that are analo
to 48 PCs. In general, there is little difference in accura
for each class obtained among these techniques for the
nas’98 scene. However, in the IndianPines’92 scene, s
improvements in accuracy from the wavelet compared
conventional PCA can be observed for the Oats and S
beans classes. This trend can be applied also for the hy
compared to conventional PCA for the Not Cropped, Oa
and Pasture classes.
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5.2 Computational Efficiency

Figure 8 shows the comparison of efficiency in time amo
the three techniques. For the Best Hybrid~as shown in Fig.
8!, 48 bands of the best hybrid are produced from wave
level 1148 PCs; 24 bands are produced from wavelet le
2124 PCs; 12 bands are produced from wavelet le
2112 PCs; and 6 bands are produced from wavelet le
416 PCs. This figure shows that time spent for the wave
method is small compared to the conventional PCA and
best hybrid transform at 48 bands. Then it increases w
the number of bands decreases because of the recons
tion process to compute the similarity measurement.4 Con-
Table 6 The IndianPines test data: confusion matrix of PCA (48 PCs).

Class
User’s acc.

(%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11
Row
total

Class 1 59.52 550 39 21 25 175 23 11 3 0 33 44 924

Class 2 76.4 41 1191 69 28 44 59 25 43 0 53 6 1559

Class 3 82.94 24 15 530 0 19 11 20 2 0 11 7 639

Class 4 60.54 0 8 4 405 34 5 0 2 0 211 0 669

Class 5 84.03 73 53 35 11 1531 37 1 0 0 5 76 1822

Class 6 63.42 8 242 24 8 31 742 64 15 0 36 0 1170

Class 7 73.02 3 246 28 13 0 285 3036 524 0 23 0 4158

Class 8 58.63 1 261 2 21 0 45 389 1022 0 2 0 1743

Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913

Class 10 88.04 24 25 63 99 44 26 10 2 0 2157 0 2450

Class 11 94.62 21 43 17 9 92 8 0 0 2 2 3412 3606

Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653

Producer’s
acc. (%)

73.83 56.1 66.83 65.43 77.72 59.79 85.38 63.36 99.78 85.16 96.25

Overall (%) 78.81
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Table 7 The IndianPines test data: confusion matrix of the hybrid technique (Level 1148 PCs). Class
1: Buildings; Class 2: Corn; Class 3: Not Cropped; Class 4: Oats; Class 5: Pasture; Class 6: Soy-
beans; Class 7: Soybeans-C-EW; Class 8: Soybeans-C-NS; Class 9: River; Class 10: Wheat; and
Class 11: Woods.

Class
User’s acc.

(%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11
Row
total

Class 1 61.82 549 38 21 25 143 29 15 3 2 32 31 888

Class 2 76.84 40 1198 71 23 49 77 24 36 0 35 6 1559

Class 3 83.23 19 16 541 4 27 8 11 2 0 13 9 650

Class 4 61.36 0 5 4 416 27 5 0 1 0 220 0 678

Class 5 84.72 74 45 35 12 1563 37 1 1 0 7 70 1845

Class 6 62.56 7 265 18 6 27 752 76 13 0 38 0 1202

Class 7 73.78 2 238 29 12 1 277 3056 501 0 26 0 4142

Class 8 60.83 2 256 1 22 0 33 363 1056 0 3 0 1736

Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913

Class 10 89.05 28 15 58 92 47 15 10 0 0 2156 0 2421

Class 11 94.75 24 47 15 7 86 8 0 0 0 3 3429 3619

Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653

Producer’s
acc. (%)

73.69 56.43 68.22 67.21 79.34 60.6 85.94 65.47 99.78 85.12 96.73

Overall (%) 79.52
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ventional PCA is a time-consuming technique that is
slowest among the three techniques for all reduction ra
The time spent for PCA decreases, depending on the n
ber of formed components. In general, the time in the
brid technique is the highest for 48 bands and decrease
a smaller number of bands because this time is saved in
PCA portion of the algorithm.

The speed of the hybrid technique is especially imp
tant when managing massive amounts of remotely sen
hyperspectral data on board spacecraft.19,20 Figure 9 shows
that the classification accuracy is very close to that of
two other methods, but Fig. 8 clearly shows the advant
in the speed of the hybrid algorithm over the conventio
PCA. To speed up this application even further, the com
tation of these techniques using parallel processing ca
addressed. This was demonstrated by using a Beowulf
chine developed at NASA/Goddard, the highly parallel
tegrated virtual environment~HIVE!. In this work, we have
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implemented the hybrid algorithm on a subcluster based
Gateway 2000 PCs, which has 16 nodes, each of which
dual Pentium III Xeon~a total of 32 processors! intercon-
nected via a Myrinet network, and with a total of 8 Gbyt
of RAM and 72 Gbytes of disk.

The good data locality in the automatic wavelet tec
nique makes it more suitable for parallel processing. Thi
because processors can work on different pixels indep
dently without any need for interprocessor communicat
overhead. The automatic wavelet parallel algorithm equa
partitions the image pixels and maps each partition to
node. Each node has its own local partition of data to p
form automatic wavelet reduction. The hybrid techniq
does not lend itself very well to parallelism, because of
nature of global computations that requires sending and
ceiving data among nodes. These operations produce
of communication overheads.
Table 8 The Salinas test data: confusion matrix of the wavelet technique (Level 2).

Class User’s acc. (%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Row total

Class 1 98.8 12,909 0 52 6 2 26 15 2 54 13,066

Class 2 100 0 1402 0 0 0 0 0 0 0 1402

Class 3 100 0 0 1800 0 0 0 0 0 0 1800

Class 4 99.45 0 0 0 4169 0 0 0 0 23 4192

Class 5 98.29 6 0 18 0 1378 0 0 0 0 1402

Class 6 99.85 0 0 4 0 0 2745 0 0 0 2749

Class 7 100 0 0 0 0 0 0 2488 0 0 2488

Class 8 99.77 0 5 0 0 0 0 1 2606 0 2612

Class 9 90.46 62 0 1 167 3 0 1 0 2218 2452

Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163

Producer’s acc. (%) 99.48 99.64 96 96.02 99.64 99.06 99.32 99.92 96.64

Overall (%) 98.6
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Table 9 The Salinas test data: confusion matrix of PCA (48 PCs).

Class User’s acc. (%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Row total

Class 1 98.72 12,900 0 50 7 2 26 15 3 64 13,067

Class 2 100 0 1402 0 0 0 0 0 0 0 1402

Class 3 100 0 0 1801 0 0 0 0 0 0 1801

Class 4 99.47 0 0 0 4158 0 0 0 0 22 4180

Class 5 98.92 0 0 15 0 1378 0 0 0 0 1393

Class 6 99.78 0 0 6 0 0 2745 0 0 0 2751

Class 7 100 0 0 0 0 0 0 2488 0 0 2488

Class 8 99.77 0 5 0 0 0 0 1 2605 0 2611

Class 9 89.43 77 0 3 177 3 0 1 0 2209 2470

Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163

Producer’s acc. (%) 99.41 99.64 96.05 95.76 99.64 99.06 99.32 99.88 96.25

Overall (%) 98.51
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The parallel implementation of the automatic wave
spectral reduction, however, has shown that the paralle
gorithm is not only scalable, but has also brought the
ecution time of the wavelet computation to an exceptio
level using cost-efficient high-performance computers21

This was shown by applying the parallel implementation
compute the automatic wavelet reduction for two levels
decomposition~48 bands! on an eight processor Beowul
The parallel wavelet took only 7.04 s, while its sequen
version took 30.46 s. A better speedup~about 6.5 times
faster compared to the sequential version! of the parallel
automatic wavelet can be observed for five levels of
composition, which is the most time consuming for t
wavelet. The parallel hybrid technique took 10.87 s, wh
its sequential hybrid took 62.85 s. The parallel conventio
PCA took about 26.05 s out of 144.48 s~sequential time!.
These results were obtained on eight processor Beowul
Pentium Xeon processors. From the parallel implemen
tion with eight processors, it was shown that the para
wavelet generally is more scalable than the other two p
allel algorithms for the worst-case scenario of the us
360 Optical Engineering, Vol. 43 No. 2, February 2004
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data. Both the parallel hybrid and the parallel PCA alg
rithms, however, can reduce the overall execution time.

6 Conclusions

We present a new hybrid wavelet-PCA reduction of hyp
spectral data. Both analytical and experimental evaluati
of execution time and classification accuracy are c
ducted. The results show that the hybrid dimension red
tion technique is a very useful method for reducing dime
sionality of hyperspectral data, and can produce fas
results than currently used PCA techniques. The inten
the experiments is to show that the hybrid method produ
better classification accuracy than a pure wavelet met
and better speed than a PCA. Our experimental results
this particular dataset show that applying the wavelet fi
and then the PCA can provide slightly better classificat
accuracies than PCA for some particular cases. In gen
the best results for classification accuracy are obtai
when utilizing two levels of automatic wavelet decompo
tion. This can be explained by the fact that wavelet d
Table 10 The Salinas test data: confusion matrix of the hybrid technique (Level 1148 PCs). Class 1:
Grapes-vineyard; Class 2: BrocoliIweeds1; Class 3: FallowIsmooth; Class 4: Soil-vineyardIdevelop;
Class 5: Fallow; Class 6: Stubble; Class 7: Celery; Class 8: BrocoliIweeds2; and Class 9:
CornIsenesced.

Class User’s acc. (%) Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Row total

Class 1 98.81 12,903 0 50 7 4 25 13 2 54 13,058

Class 2 100 0 1402 0 0 0 0 0 0 0 1402

Class 3 100 0 0 1800 0 0 0 0 0 0 1800

Class 4 99.47 0 0 0 4164 0 0 0 0 22 4186

Class 5 98.71 1 0 17 0 1378 0 0 0 0 1396

Class 6 99.85 0 0 4 0 0 2745 0 0 0 2749

Class 7 100 0 0 0 0 0 0 2490 0 0 2490

Class 8 99.77 0 5 0 0 0 0 1 2606 0 2612

Class 9 89.84 73 0 4 171 1 1 1 0 2219 2470

Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163

Producer’s acc. (%) 99.43 99.64 96 95.9 99.64 99.06 99.4 99.92 96.69

Overall (%) 98.58
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represent a spectral distribution similar to the original o
but in a compressed form. It is also observed from
experiments that the automatic wavelet technique fits w
the ML classification process. Although the first level
decomposition better represents the original spectral di
bution, larger data dimensions cause a loss in classifier
formance.

Compared to a wavelet-based reduction method, the
brid method has slightly better classification accuracy
higher reduction rates than the wavelet technique. The c
putational cost of the sequential hybrid technique at
higher reduction rate is also the lowest one.

6.1 Future Ideas

There are several ideas that can be implemented to m
this work more effective and useful. A few of these ide
are as follows.

• Currently we are using orthogonal DWT to perfor
dimension reduction, which requires using images t
have power of 2 spectral bands. Investigating ways
remove this restriction is of great interest. One idea
to consider removing this limitation by using the bio
thogonal DWT, and understanding the associa
tradeoffs in accuracy, storage, and speed.

• We have used a DAUB4 filter as the mother wave
due to its simplicity and the fact that it provides goo
results for our remote sensing applications. It wou
be of interest to conduct a systematic study that c
siders different types of filters that can be used
dimension reduction, along with the associat
tradeoffs.
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