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Abstract. Hyperspectral imagery can provide very valuable information
on land cover classes. However, it also presents many challenges in
data analysis and interpretation as a result of the large amounts of data
collected. For example, conventional methods for land use and land
cover classifications may not be directly applicable. Such conventional
methods typically require a preprocessing step to transform high dimen-
sional data to a lower dimension, mostly by eliminating data redundancy.
For decades, principal component analysis (PCA) has been widely used
to decorrelate spectral bands for reducing dimensionality. It is a useful
technique if the spectral class structure of the transformed data is dis-
tributed along the first few axes. Otherwise, the transformed data may be
similar to the original data. In such cases, we have shown in an earlier
work that the wavelet decomposition technique is a better approach.
Wavelet decomposition can reduce hyperspectral data in the spectral
domain for each pixel. By carefully combining PCA and wavelet tech-
niques, we engender a new method that benefits from the strength of
both techniques. The intent of the hybrid method is to provide a tradeoff
between the accuracy and speed, as compared with PCA and wavelet

methods. The effectiveness of this method is demonstrated by using
hyperspectral data from the Airborne Visible Infrared Imaging Spectrom-
eter (AVIRIS) hyperspectral instrument. The experimental results show
that, for high reduction rates, the hybrid method is superior to pure PCA
and to pure wavelet-based techniques. © 2004 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1637907]

Subject terms: dimension reduction; principal component analysis; wavelet de-
composition; maximum likelihood.
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1 Introduction based on a moving average of pixel vector values. Thus, the
Hyperspectral imaging spectrometer data provide a Weanhwavel.et'ylelds decomposed spectra that are smoothgr than
of information, which can be used to address a variety of the original spectrd But, because of the lack of relation-
Earth remote sensing applications. The rapid increase of theShiP among neighborhood pixels in the spatial domain, and
number of spectral channels for hyperspectral data creates #ecause of the redundancy of wavelet coefficients, we are
need for reducing data volume to tractable levels. The di- investigating a hybrid technique—a combination of wavelet
mensionality of hyperspectral data can be reduced by ap-and PCA—to achieve dimension reduction of hyperspectral
plying a linear transformation, such as principal component data. Experimental results were conducted using the Air-
analysis(PCA), and retaining only the significant compo- borne Visible Infrared Imaging SpectrometéAVIRIS)
nents for further processirief. The object of PCA is to find data. The r(_asults show that overall classification accuracy
a lower dimensional representation that accounts for the for the hybrid technique is superior to the other two tech-
variance of the features. Although PCA is sufficient for niques.

reducing data volume, the process is time Consuming and The remainder of this work is organized as follows. Sec-
does not emphasize spectral signature, which is the funda-tion 2 briefly describes the PCA technique, and the multi-
mental concept of hyperspectral imagery for characterizing resolution wavelet decomposition as a new technique for
objects on the Earth’s surface. Unlike PCA, wavelet de- hyperspectral reduction. Section 3 discusses the hybrid
composition focuses on reducing each individual spectral wavelet-PCA technique, including analytical efficiency.
pixel in the spectral domain. Each reduced spectral pixel Section 4 presents the experiments that were conducted,
preserves the peaks and valleys of the original spectrum inincluding the hyperspectral datasets that were used. Section
a smaller representation. On the other hand, such a tech shows and discusses experimental results and the impact
nique as PCA seeks to form linear combinations of the of each method on classification accuracy, as well as com-
bands based on the global covariance matrix; whereas, theputational efficiency. Section 6 concludes with brief re-
wavelet seeks merely a smaller subset of the original bandsmarks.
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Level L filter, as shown in Fig. 1. In the original vectwof length
(X [ X | Xs | X | Xs | X | X5 | Xg | N=2" from Fig. 1, thg'th iteration produces the smoothed
L coefficients at scal§ ¢;=L'x for j=1,...J. This applica-
1 o el T T T tion of the low-pass filtefL) causesc! to be an increas-
L E E H ingly smoother version of the original vector.
2 @ @ Examples of the decomposed spectral signature of corn
L H for different wavelet decomposition levels are shown in
3 Fig. 2. The Wa\_/elet technjq_ue reduces the eﬁec’gs of high-
frequency details by retaining only spectra obtained from
Fig. 1 The fast discrete wavelet transform, where ¢/ represent the the low-pass filter. One of the important issues with wavelet
smoothed coefficients and &’ represent the detail coefficients; L is reduction is to determine how many levels of decomposi-
the low-pass filter and H is the high-pass filter. tion can be applied while still yielding good classification

accuracy. Applying the inverse DWT to the coefficient

) ] ) approximatiori® at the lower level by inserting a vector of
2 Overview of Reduction Techniques zeros in place of the detail coefficients vector, we can get
. . the reconstructed spectral data of its real approximation at
2.1 Principal Component Analysis the next higher level. This process can be recursively ap-
PCA, also referred to as the Hotelling transform or the plied so that it yields a reconstructed signal of length equal
Karhunen-Loeve transform, is a widely used dimension re- to the original spectral signature. In our earlier work, our
duction technique in data analysis. To perform standard automatic wavelet spectral reduction algorithwas devel-
PCA, there are generally phases of computatiomhese oped by measuring the similarft§ between the original
include assembling of the covariance matrix of the image to spectral signature and the reconstructed spectral approxi-
be transformed, determining the eigenvalues and corre-mation using correlatiofCorr). Then, the global histogram
sponding eigenvectors of the covariance matrix, and form- of this similarity measurement was computed as a measure
ing the components. The first few principal components of the desired probability distribution for all pixels in the
(PC9 contain the most information/variance, and are gen- scene. Based on a user’s specified thresti, the global
erally linear combinations of information from several decomposed level was determined as the lowest level that
spectral classes. The remaining principal components con-preserves the best the information content of each pixel.
tain much less information, usually less than 1% of the data Details of this wavelet-based dimension reduction can be

variance. found in Ref. 4.

Let x be a pixel vector in the hyperspectral vector space,
then PCA is a linear transformatid®, such that 3 Hybrid Wavelet-PCA Reduction
y=Gx, (1) 3.1 Description of the Hybrid Algorithm

Similar to the methods presented in Sec. 2, our hybrid
transformation is a preprocessing technique, which re-
moves high-frequency components and reduces band-to-
band correlation, especially in the case of noisy data. This
hybrid transform combines both wavelet and PCA tech-
. ) . niques. The transformation first performs an initial reduc-
2.2 Multiresolution Wavelet Analysis tion using a wavelet decomposition, where the original hy-
Wavelet transforms are the basis of many powerful tools perspectral data is compressed into a reduced-compact
that are now being used in remote sensing applications,form. Then PCA is applied, thus significantly reducing the
e.g., compression, registration, fusion, and classification. computational load compared to the conventional PCA
Using the Mallat algorithrd, discrete wavelet transforms technique. Usually, the wavelet method filters and sub-
(DWTs) can be computed very quickly. The principle of samples each original spectrum into a reduced set of wave-
our method is to apply a discrete wavelet transform to hy- let coefficients. In our algorithm, PCA decorrelates the
perspectral data in the spectral domain and at each pixel.band-to-band spectral information contained in the wavelet
This not only reduces the data volume, but it also preservescoefficients, and therefore yields a new smaller dataset in
the distinctions between spectral signatdra@is charac- an uncorrelated coordinate system. The two advantages of
teristic is related to the intrinsic property of wavelet trans- the hybrid technique are: 1. it takes into account local spa-
forms of preserving high- and low-frequency features dur- tial information among neighborhood class pixels, property
ing the signal decomposition, therefore preserving the that the wavelet is missing for classification purposes; and
peaks and valleys found in typical spectra. One of the most 2. it removes spectral correlation among wavelet coefficient
localized filters, DAUBZ4, which has only four coefficients,  bands.
has been used. Due to tremendous hyperspectral data dimensionalities,
Figure 1 shows the principle of the Mallat algorithm: it is difficult to perceive much from statistical values com-
two filters, the low-pass filtefL), and its corresponding puted from hyperspectral data, i.e., mean vector, covariance
high-pass filter(H) are applied to the signal, followed by matrix® To show that these values are preserved by wavelet
dyadic decimation removing every other element of the sig- decomposition, we use the visualization proposed by Kim
nal, thereby halving its overall length. This is done recur- and Swair?. In this representation, the correlation matrix
sively by reapplying the same procedure to the result of the (and therefore the covariance majrig shown by convert-

with the constraint that the covariance matrix in yhepace
is diagonal. MoreoverG will be recognized as the trans-
pose, provided thaG is an orthogonal matrix, i.eG*
=G
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Fig. 2 An example of Corn spectral signature and different levels of wavelet decomposition for the
low-pass component.

ing absolute values of the interchannel correlations to gray nal are 1, since they measure the correlation of the data
values between 0 and 255. Tone is then proportional to thefrom each band with itself.

absolute value of the correlatiofwhite=1 or —1; In comparison to these characteristics of the wavelet re-
black=0).8 Figure 3 shows the global statistical correlation duction method shown in Fig. 3, our hybrid technique pre-
coefficient image of the IndianPines’92 scddescribed in serves the usual characteristics of the conventional PCA,
Sec. 4 for the original data and two different levels of such that the higher order components with low variance
wavelet decomposition. This representation shows that cor-can be discarded without significant loss of information
relation coefficient images in Figs(t8 and 3c) look simi- content. Additionally, the original hyperspectral imagery
lar to the image produced from the original dgaas shown can be reconstructed from the reduced representation using
in Fig. 3(@], but they are smaller than that of the original an inverse principal component transform and an inverse
data. It is also crucial to note that low correlations exist discrete wavelet transform, although with some loss of in-
away from the diagonal, while the diagonal blocks show formation. Moreover, for visualization purposes, a color
high correlations. Furthermore, all values along the diago- composite image can be formed after the hybrid transform

Original

¥
Level2

4 'y

a.) b.) c.)

Fig. 3 Global correlation coefficient image of IndianPines’92 for different levels of wavelet decompo-
sition.
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requ.ires. in the _order of operations. per invocatio_n. After
the first invocation of the low-pass filt€F), we obtain half
the number of banddl/2, then we apply the low-pass filter
l again. Thus, each level processes half the number of pixels
than the previous level. Sindeis fixed for any particular
Riad tf‘rels)lz:"ld wavelet filter, the wavelet-based reduction method yields
[Levels, PCs] the order ofO(N) computations per pixel, wheng is the

Original Data number of bands.The inverse discrete wavelet transform
(IDWT) can, likewise, be computed id(N) computations

Decompose original data using per pixel to reconstruct 'ghe real approximation'to the origi-
avelet in spectral domain [Levels] nal stage for the similarity measuremeoorrelation. The
) time complexity of the correlation metriccomputed be-
Wavelet Coefficients tween the original spectral signature and its reconstructed
L approximation is O(N) operations per pixel. Therefore, for
Epply PC Transformation to h the wavelet redL_lctipn algorithm descr_ibed in Ref. 4 the
Wavelet Coefficients [PCs] order of complexity iO(MN), whereM is the number of
(See Figure 5) ) pixels per scene.
By comparison with the wavelet method, PCA is com-
Principal Components putationally expensive. The time complexity of the differ-
End ent phases of PCA for avl pixel image ofN spectral bands
is as follows: 1. find mean vectd®(MN); 2. assemble
covariance matrbO(MN?); 3. use eigen analysis to gen-
Fig. 4 A flow diagram of the hybrid wavelet-PCA reduction. erate the transformation matrix performed as weighting co-
efficientO(N®) for the standard eigen problem; and 4. per-
form  pixel-by-pixel  linear transformation-forming

in the same manner as in conventional PCA. Since pure
wavelet reduction represents the data, yet with smaller di- ; : :
mensionality, it is difficult to form a three-color composite the |kr)nage} ]::iataNdls the numlt:)ér ?\T b"fll_r;]ds’ ari IIIS the

for image display purposes, because any three arbitrarynum_ er ot forme °°m'2°”e;‘ 10(5 ). The overall com-
wavelet bands use only a small percentage of the total dataP!€Xity of PCA iSO(MN?+N). , ,

variance. By applying PCA after the wavelet decomposi- 1€ great advantage of the hybrid technique compared
tion, the most informative three featuréthe first three (O conventional PCA is to save computation time. Time
PC3 obtained from the hybrid transform can be used. Simi- SPent on each computational phase is reduced, especially in
larly to the wavelet reduction technigti¢he hybrid tech- forming components. The computational complexity of the

nique can also be applied to handle a situation in which the hybrid method combines both complexities of the wavelet
number of training samples is too limited to permit the use @nd of the PCA methods. L& be the number of decom-

of all available features. posed features from the wavelet that is equivale.nt to the
Figure 4 illustrates the flow diagram of the hybrid reduc- Ne€W numberdof featuregbands for further processing of
tion technique. The hybrid algorithm gets the input from PCA, D=N/2", whered=number of levels of wavelet de-
the user for the number of levels of decompositibevel] composition. Therefore, the overall complexity of the hy-
and the number of principal componéRCg chosen. First,  brid transform isO(MN+MD?+D?). The computational
the algorithm decomposes the original hyperspectral imag- complexity of PCA will be decreased tremendously de-
ery in the spectral domain for each individual pixel to pro- pending on the compression rate obtained from the wavelet
duce multiresolution wavelet-compressed spectra for the D/N.' (see Fig. 5.
chosen level. Then PCA is applied to the wavelet coeffi-
cients to produce the chosen number of components.
The principle of our method is to apply a discrete wave-
let transform to hyperspectral data in the spectral domain 4.1 Hyperspectral Data Cube
and at each pixel. As the wavelet transform includes both
convolution and decimation, convolution helps retain inter-
esting spectral features, while decimation helps reduce the
data. This not (_)n!y r_educes the data volum_e, but it also ;,qianPines
preserves the distinctions between spectral signafures.

component©(RMN), whereM is the number of pixels of

4 Experimental Approach

The two hyperspectral datasets used for the experiments are
as follows

'92. This AVIRIS farmland scene was ac-
quired on 12 June, 1992 in the northern part of Indiana at
. . high altitude with a ground pixel size of X7 m. AVIRIS

3.2 Computational Complexity acquires images of very narrow, contiguous spectral bands
Multiresolution wavelet decomposition with a Mallat algo- throughout the visible, near-IR, and mid-IR portions of the
rithm is very fast for reducing hyperspectral dimensionality spectrum(0.4 to 2.5um), in 224 bands at about 10-nm-
because of its pyramidal model and because we chose towide intervals. We have used a dataset that consists of 400
only apply the low-pass filter. Ll be the length of the X400 pixels by 192 bands. The 192 bands were selected by
original spectral signature that is equivalent to the number discarding significant water absorption bands, especially at
of bands, and let the length of the original low-pass filter about 1.4 and 1.&um, and spectral overlaps bands resulting
(F) be L. For a filter of lengthL, wavelet decomposition  from the use of four individual spectrometers in the

Optical Engineering, Vol. 43 No. 2, February 2004 353
Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/25/2016 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx



Kaewpijit, Le Moigne, and El-Ghazawi: Feature reduction of hyperspectral imagery . . .
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‘d’ levels of ! PC
decomposition ; Transformation
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Original Spectrum ‘d’ level wavelet
; (Size N) (Size N/2%

Fig. 5 Scheme of hybrid wavelet-PCA reduction.

AVIRIS instrument!! The ground truth is shown in Fig.  For this scene, the ground truth covers 20% of the full
6(a). Original noisy bands, especially water absorption 400x400 scene and is divided among 11 classes. The 11
bands, will lead to some principal components with high classes are Buildings, Corn, Not Cropped, Oats, Pasture,
variance that may be misleading in the classification pro- Soybeans, Soybeans CleanTill EW rows, Soybeans Clean-
cess. The 192 bands used are therefore contiguous andill NS rows, River, Wheat, and Woods, ranging from 5926
equally spaced in the spectrum, except for the two bandsto 1032 ground truth pixels per class. CleanTill refer to the
out of the 192 that were discarded due to water absorption.amount of very little residue from the previous year’s crop

Buildings /\-‘i \ .
- Corn / = m

i LT
. Oats r _-l
- Pasture ' . . l .

sors =

. oybeans | —
- Soybeans-CleanTill-EW
- Soybeans-CleanTill-NS 1 .
. River " ) ——-

. Wheat
. Woods

T

Not Cropped

T

®
N

- Grapes-vineyard

Brocoli_weeds1

. Fallow_smooth
- Soil-vineyard_develop

Fallow

. Stubble

Celery

. Brocoli_weeds2

. Corn_senesced

b.)

Fig. 6 The reference data: (a) IndianPines’92 and (b) Salinas’98.
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Table 1 Number of training and testing pixels for the IndianPines’92 Since training Samp|es were selected random]y, the proce-
Scene. dure of selecting samples was repeated three times for each
of the three scenésand the median classification accuracy

Training data Testing data - - .
Class name number of pixels number of pixels resulting from the experiments is reported.
Buildings 496 745 4.2 Supervised Classification
Com 1415 2123 We have experimentally validated the hybrid technique by
Not cropped 528 793 using remotely sensed image test suites from two hyper-
Oats 413 619 spectral scenes as mentioned earlier, and the environment
Pasture 1314 1970 for visualizing imagegENVI) as a tool for classification
Soybeans 828 1241 assessment. The experiments performed in this work use
Soybeans-C-EW 2370 3556 the maximum likelihood classifiéML ),"***which is prob-
Soybeans-C-NS 1076 1613 ably the most common supervised classification method
. used with remote sensing data. The effectiveness of the ML
River 610 915 e
Wheat 1688 o533 depends on a reasqnably accurate estimation of the mean
vector and the covariance matrix for each spectral class. We
Woods 2364 3545

used the same level of compression as the basis of com-
parison among the three techniques: wavelet, conventional
PCA, and hybrid methods. For example, the second level of
) .. decompositior(decimated by 4 from 192 bands of original
that is on the surface c_)f the ground. A random training data is analogous to 48 principal componerRCS, the
sample of 40% of the pixels was chosen from the known thjrd level to 24 PCs, and so on. For the hybrid technique,
ground truth from each class. A maximum-likelihood clas- 3 given level of wavelet decomposition is computed, then
sifier was applied to the remaining 60% of the known pca js applied at the same compression rate as the wavelet
ground pixels for coverage of those clas&The number  and conventional PCA, i.e., Level#8 PCs. The effec-

of training and testing pixels for each class are given in tjeness of the reduction is demonstrated by determining
Table 1. the classification accuracy when a supervised classification

. . . such as ML is used on the reduced data. The supervised
Salinas’98. This AVIRIS dataset was acquired on 9 Oc- S ; . : .
tober, 1998, south of the city of Greenfield in the Salinas classification algorithm is trained on labeled data, so it can

Valley in California. It was taken at low altitude with a identify the clasg; to which a pixel ora region belongs, and
; . ' . . thus provide a high-level characterization of the dat&.In
pixel size of 3.7 m. We are interested in a scene that has

coetables. bare soils. and vinevard fields. This scene Con_practice, it has often been observed that if the number of
Vi% f 21'}(512 i>l< I b \ggzyb ndl f.r dli nce dat training pixels is small, the addition of more dimensions
SISIS Of 2L/7¢olz PIXEIS Dy ands of radiance aala, 1,545 19 a worse performance in the testing pixefsen
discarding significant water absorption and instrument's

overap bands. s round i s Shown 1 Figbi e _ K10%" 28 cse o dinersonaity U s estaled bt
selected nine classes for testing as follows: Grapes- P P 9 Y,

vineyard, Broccoli-weed1, Fallowmooth,  Soil- as many as 100 desired for reliable estimatesl, thﬂds
vineyarddevelop, Fallow, Stubble, Celery, Brocetieed?, the number of _spectral_ banffs?l’herefore, we investigate
and Cornsenesced, ranging from 18539 to 2010 ground @l three techniques with a minimum of NOpixels (per
truth pixels per class. The random training samples were training clasp in both hyperspectral datasets. The details
chosen as 30% of the pixels for each class from the known about the number of training and testing pixels are shown
ground truth. The trained classifier was applied to the re- in Tables 1 and 2.

maining 70% of that coveragé.The number of training )

pixels and testing pixels for each class are given in Table 2.5 Experimental Results

5.1 Impact on Classification Accuracy

Table 2 Number of training and testing pixels for the Salinas’98 In this work, the combination of wavelet and PCA trans-
scene. forms is done by first applying the wavelet to the original
data, and then performing PCA on the wavelet coefficients
Training data Testing data for all levels of decomposition. Then, the comparison
Class name number of pixels  number of pixels among the three techniques is made at the same compres-
Grapes-vineyard 560 12977 sion rate. From Figs. 7 and 8, we can see that the hybrid

technique generally outperforms conventional PCA in clas-

Brocoli weeds1 603 1407 sification accuracy when compared at the same compres-
Fallow_smooth 803 1875 sion rate. The pure wavelet technique gives the maximum
Soil-vineyard_develop 1861 4342 accuracy for higher data dimensionalig8 bandsfor both
Fallow 593 1383 datasets. It is important to note that the higher information
Stubble 1188 2771 content of PCA for the hybrid technique is not a guarantee
Celery 1074 2505 for higher classification accuracy, because PCA is per-
Brocoli weeds2 1118 2608 formed after the wavelet transform. As we mentioned ear-
Com_senesced 983 2295 lier, the wavelet decomposition keeps only low-frequency

features and discards information on high-frequency fea-
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Fig. 7 Classification accuracy comparison of Salinas’98.

tures. Therefore, the information conténé., data variance By “best hybrid,” we mean the combined choice of the
percentageobtained from the hybrid transform is produced number of levels of decomposition and the number of prin-
from only low-frequency features of wavelet coefficients. cipal components that yield the maximum accuracy for that
Tables 3 and 4 show the information content of the original compression rate. Experimental results show that the maxi-
data computed from conventional PCA; however, in the mum classification accuracy is usually obtained by using

case of the hybrid technique, the information content rep- the pest hybrid with all reduction rates except for 48 bands.
resents the total data variation of the wavelet coefficients a; 48 pands. the wavelet seems to provide better classifi-
that are produced from the wavelet by discarding high- ca4ion accuracies than the hybrid, because the wavelet pre-

freil;%?ﬁgrfgiulj;;ion of the increased classification accu- > “o> the distinctions between spectral signatures, and be-
h cause the nature of the classifiers, which are mostly pixel-

racy of hybrid transform data compared to PCA data is that . 18 ; . )
the hybrid transform keeps a larger proportion of informa- based techniqués;™®is better suited for wavelets, which

tion content for the same rate of data reduction. For ex- € pixel-based transformations. With this compression_ rate
ample, 48 PCs of 192 bands from conventional PCA is one (48 bands and 11 land-cover classes of the IndianPines
fourth of the input data, as compared to 48 PCs of 96 wave- scene, using the ML cla§§|f|cgt|on, the wavelet reduction
let coefficient bands from the hybrid being one half of the technique yields a classification rate of 80.5424% com-
input data(wavelet coefficients The results show, as ex- Pared to 79.5248% with the hybrid transform and
pected, that classification accuracy increases with the num-78.8124% with conventional PCA, as shown in Fig. 9 and
ber of PCs. In these experiments, we chose a maximum of Table 3. The same trend is obtained from the Salinas scene;
48 PCs, after which the classifi¢ML) performance de- 98.6071 for the wavelet, 98.5822 for the hybrid, and
grades because of the discrepancy between the number 098.5169 for conventional PCA as shown in Fig. 7 and Table
tested pixels versus the number of trained pixéls. 4.

Timer - IndianPines'92

160

144.48

63 o Wawelet

)

© m Conven-PCA
ig_' O Best Hybrid

48 Bands 24 Bands 12 Bands 6 Bands
Reduction Rate

Fig. 8 Timing comparison of the wavelet, PCA, and the hybrid.
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Table 3 Information content and classification accuracy of the IndianPines’92 scene. Level 1+PCA
means performing reduction for one level of wavelet decomposition and then applying PCA to its
wavelet coefficients. CA means classification accuracy. IC means information content.

Extent of reduction
Reduction rate

Techniques

48 bands 24 bands 12 bands 6 bands

Wavelet
Conventional PCA

Level 1+PCA
Level 2+PCA
Hybrid

Level 3+PCA

Level 4+PCA

CA=80.5424 CA=79.0312 CA=74.0396 CA=66.4326
CA=78.8124 CA=77.637 CA=74.1414 CA=70.5457

1C=99.92 IC=99.80 1IC=99.67 IC=99.36
CA=79.5248 CA=78.8226 CA=76.5939 CA=70.605
1C=99.99 IC=99.95 1C=99.87 IC=99.66
CA=79.6876 CA=77.1434 CA=70.6711
1IC=99.99 1C=99.95 IC=99.80
CA=76.6244 CA=70.5236
1C=99.99 IC=99.90
CA=70.7831
IC=99.97

Table 4 Information content and classification accuracy of the Salinas’98 scene. CA means classifi-

cation accuracy. IC means info

rmation content.

Extent of reduction
Reduction rate

Techniques 48 bands 24 bands 12 bands 6 bands
Wavelet CA=98.6071 CA=98.4672 CA=98.206 CA=96.7167
Conventional PCA CA=98.5169 CA=98.4361 CA=97.5407 CA=96.59
1C=99.99 IC=99.99 1C=99.97 IC=99.91
Level 1+PCA CA=98.5822 CA=98.5231 CA=97.8516 CA=96.6079
IC=100 IC=100 1C=99.99 IC=99.93
Level 2+PCA CA=98.4765 CA=97.8702 CA=96.5955
Hybrid IC=100 1C=99.99 IC=99.94
Level 3+PCA CA=98.007 CA=96.8442
IC=100 IC=99.96
Level 4+PCA CA=96.6608
IC=99.99
83
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Fig. 9 Classification accuracy comparison of IndianPines’92.
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Table 5 The IndianPines test data: confusion matrix of the wavelet technique (Level 2).

User’s acc. Row
Class (%) Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class 10 Class 11 total
Class 1 58.51 567 45 20 24 186 27 13 4 2 39 42 969
Class 2 77.87 40 1207 68 20 36 77 16 31 0 47 8 1550
Class 3 85.01 20 22 550 1 25 6 11 0 4 7 647
Class 4 65.35 0 7 4 445 25 7 1 0 190 0 681
Class 5 84.94 69 40 25 11 1528 32 2 0 10 81 1799
Class 6 64.45 7 248 22 1 38 805 64 14 0 47 3 1249
Class 7 75.83 0 221 29 12 0 251 3153 478 0 14 0 4158
Class 8 64.9 3 269 2 13 1 7 287 1080 0 2 0 1664
Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913
Class 10 89.04 17 22 57 84 55 22 9 2 0 2177 0 2445
Class 11 95.14 22 42 16 8 76 7 0 0 0 3 3404 3578
Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653
Producer’s 76.11 56.85 69.36  71.89 77.56 64.87 88.67 66.96 99.78 85.95 96.02
acc. (%)
Overall (%) 80.54

Tables 5, 6, and 7 show the complete results with the 5.2 Computational Efficiency

confusion matrices for the testing areas of the Indian- .. ; - o
; . 2 < . Figure 8 shows the comparison of efficiency in time among
Pines’92 scene with the ML classification, while Tables 8 . . B
X - .an the three techniques. For the Best Hyh@d shown in Fig.
9, and 10 show the complete results for the Salinas'98 ), 48 bands of the best hybrid are produced from wavelet

scene at second levels of decomposition that are analogou )
to 48 PCs. In general, there is little difference in accuracy '€V€! 1+48 PCs; 24 bands are produced from wavelet level

for each class obtained among these technigues for the Sali2T24 PCs; 12 bands are produced from wavelet level
nas'98 scene. However, in the IndianPines’92 scene, some?+12 PCs; and 6 bands are produced from wavelet level
improvements in accuracy from the wavelet compared to 4+6 PCs. This figure shows that time spent for the wavelet
conventional PCA can be observed for the Oats and Soy-method is small compared to the conventional PCA and the
beans classes. This trend can be applied also for the hybridoest hybrid transform at 48 bands. Then it increases when
compared to conventional PCA for the Not Cropped, Oats, the number of bands decreases because of the reconstruc-
and Pasture classes. tion process to compute the similarity measurente®on-

Table 6 The IndianPines test data: confusion matrix of PCA (48 PCs).

User’s acc. Row
Class (%) Class1 Class 2 Class 3 Class4 Class5 Class6 Class7 Class8 Class9 Class 10 Class 11 total
Class 1 59.52 550 39 21 25 175 23 11 3 0 33 44 924
Class 2 76.4 41 1191 69 28 44 59 25 43 0 53 6 1559
Class 3 82.94 24 15 530 0 19 11 20 2 0 11 7 639
Class 4 60.54 0 8 4 405 34 5 0 2 0 211 0 669
Class 5 84.03 73 53 35 11 1531 37 1 0 5 76 1822
Class 6 63.42 8 242 24 8 31 742 64 15 0 36 0 1170
Class 7 73.02 3 246 28 13 0 285 3036 524 0 23 0 4158
Class 8 58.63 1 261 2 21 0 45 389 1022 0 2 0 1743
Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913
Class 10 88.04 24 25 63 99 44 26 10 2 0 2157 0 2450
Class 11 94.62 21 43 17 9 92 8 0 0 2 2 3412 3606
Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653
Producer’s 73.83 56.1 66.83 65.43 77.72 59.79 85.38 63.36 99.78 85.16 96.25
acc. (%)
Overall (%) 78.81
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Table 7 The IndianPines test data: confusion matrix of the hybrid technique (Level 1+48 PCs). Class
1: Buildings; Class 2: Corn; Class 3: Not Cropped; Class 4: Oats; Class 5: Pasture; Class 6: Soy-
beans; Class 7: Soybeans-C-EW; Class 8: Soybeans-C-NS; Class 9: River; Class 10: Wheat; and
Class 11: Woods.

User’s acc. Row
Class (%) Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class 10 Class 11 total
Class 1 61.82 549 38 21 25 143 29 15 3 2 32 31 888
Class 2 76.84 40 1198 71 23 49 77 24 36 0 35 6 1559
Class 3 83.23 19 16 541 4 27 8 11 2 0 13 9 650
Class 4 61.36 0 5 4 416 27 5 0 1 0 220 0 678
Class 5 84.72 74 45 35 12 1563 37 1 1 0 7 70 1845
Class 6 62.56 7 265 18 6 27 752 76 13 0 38 0 1202
Class 7 73.78 2 238 29 12 1 277 3056 501 0 26 0 4142
Class 8 60.83 2 256 1 22 0 33 363 1056 0 3 0 1736
Class 9 100 0 0 0 0 0 0 0 0 913 0 0 913
Class 10 89.05 28 15 58 92 47 15 10 0 0 2156 0 2421
Class 11 94.75 24 47 15 7 86 8 0 0 0 3 3429 3619
Column total 745 2123 793 619 1970 1241 3556 1613 915 2533 3545 19,653
Producer’s 73.69 56.43 68.22 67.21 79.34 60.6 85.94  65.47 99.78 85.12 96.73
acc. (%)
Overall (%) 79.52

ventional PCA is a time-consuming technique that is the implemented the hybrid algorithm on a subcluster based on
slowest among the three techniques for all reduction rates.Gateway 2000 PCs, which has 16 nodes, each of which is a
The time spent for PCA decreases, depending on the num-dual Pentium Ill Xeon(a total of 32 processorsntercon-

ber of formed components. In general, the time in the hy- nected via a Myrinet network, and with a total of 8 Gbytes
brid technique is the highest for 48 bands and decreases folpf RAM and 72 Gbytes of disk.

a smaller number of bands because this time is saved inthe  The good data locality in the automatic wavelet tech-

PCA portion of the algorithm. nique makes it more suitable for parallel processing. This is

tan-lt—r\]/ShZ?ler?nir?; tir;]e rxgggi\}gcgr?qlgbﬁtéso?Sr[()e(ra‘r(\:cl)?g?/ 'g‘epnc;ré (Pecause processors can work on different pixels indepen-
ging Y dently without any need for interprocessor communication

hyperspectral data on board spacectft.Figure 9 shows overhead. The automatic wavelet parallel algorithm equally

that the classification accuracy is very close to that of the . . . -
two other methods, but Fig. 8 clearly shows the advantage Partitions the image pixels and maps each partition to a

in the speed of the hybrid algorithm over the conventional N0de. Each node has its own local partition of data to per-
PCA. To speed up this application even further, the compu- form automatic wavelet reduction. The hybrid technique
tation of these techniques using parallel processing can bedoes not lend itself very well to parallelism, because of its
addressed. This was demonstrated by using a Beowulf ma-nature of global computations that requires sending and re-
chine developed at NASA/Goddard, the highly parallel in- ceiving data among nodes. These operations produce a lot
tegrated virtual environmerfHIVE). In this work, we have of communication overheads.

Table 8 The Salinas test data: confusion matrix of the wavelet technique (Level 2).

Class User’s acc. (%) Class1l Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Row total
Class 1 98.8 12,909 0 52 6 2 26 15 2 54 13,066
Class 2 100 0 1402 0 0 0 0 0 0 0 1402
Class 3 100 0 0 1800 0 0 0 0 0 0 1800
Class 4 99.45 0 0 0 4169 0 0 0 0 23 4192
Class 5 98.29 6 0 18 0 1378 0 0 0 0 1402
Class 6 99.85 0 0 4 0 0 2745 0 0 0 2749
Class 7 100 0 0 0 0 0 0 2488 0 0 2488
Class 8 99.77 0 5 0 0 0 0 1 2606 0 2612
Class 9 90.46 62 0 1 167 3 0 1 0 2218 2452
Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163
Producer’s acc. (%) 99.48 99.64 96 96.02 99.64 99.06 99.32 99.92 96.64

Overall (%) 98.6
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Table 9 The Salinas test data: confusion matrix of PCA (48 PCs).

Class User's acc. (%) Classl Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Row total
Class 1 98.72 12,900 0 50 7 2 26 15 3 64 13,067
Class 2 100 0 1402 0 0 0 0 0 0 0 1402
Class 3 100 0 0 1801 0 0 0 0 0 0 1801
Class 4 99.47 0 0 0 4158 0 0 0 0 22 4180
Class 5 98.92 0 0 15 0 1378 0 0 0 0 1393
Class 6 99.78 0 0 6 0 0 2745 0 0 0 2751
Class 7 100 0 0 0 0 0 0 2488 0 0 2488
Class 8 99.77 0 5 0 0 0 0 1 2605 0 2611
Class 9 89.43 77 0 3 177 3 0 1 0 2209 2470
Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163
Producer’s acc. (%) 99.41 99.64 96.05 95.76 99.64 99.06 99.32 99.88 96.25

Overall (%) 98.51

The parallel implementation of the automatic wavelet data. Both the parallel hybrid and the parallel PCA algo-
spectral reduction, however, has shown that the parallel al-rithms, however, can reduce the overall execution time.
gorithm is not only scalable, but has also brought the ex-
ecution time of the wavelet computation to an exceptional _
level using cost-efficient high-performance compuférs. 6 Conclusions
This was shown by applying the parallel implementation to We present a new hybrid wavelet-PCA reduction of hyper-
compute the automatic wavelet reduction for two levels of spectral data. Both analytical and experimental evaluations
decomposition(48 bands on an eight processor Beowulf. of execution time and classification accuracy are con-
The parallel wavelet took only 7.04 s, while its sequential ducted. The results show that the hybrid dimension reduc-
version took 30.46 s. A better speed(gbout 6.5 times  tion technique is a very useful method for reducing dimen-
faster compared to the sequential vergiof the parallel sionality of hyperspectral data, and can produce faster
automatic wavelet can be observed for five levels of de- results than currently used PCA techniques. The intent of
composition, which is the most time consuming for the the experiments is to show that the hybrid method produces
wavelet. The parallel hybrid technique took 10.87 s, while better classification accuracy than a pure wavelet method
its sequential hybrid took 62.85 s. The parallel conventional and better speed than a PCA. Our experimental results for
PCA took about 26.05 s out of 144.48sequential timg this particular dataset show that applying the wavelet first
These results were obtained on eight processor Beowulfs ofand then the PCA can provide slightly better classification
Pentium Xeon processors. From the parallel implementa- accuracies than PCA for some particular cases. In general,
tion with eight processors, it was shown that the parallel the best results for classification accuracy are obtained
wavelet generally is more scalable than the other two par- when utilizing two levels of automatic wavelet decomposi-
allel algorithms for the worst-case scenario of the used tion. This can be explained by the fact that wavelet data

Table 10 The Salinas test data: confusion matrix of the hybrid technique (Level 1+48 PCs). Class 1:
Grapes-vineyard; Class 2: Brocoli_ weedsl; Class 3: Fallow_smooth; Class 4: Soil-vineyard_develop;
Class 5: Fallow; Class 6: Stubble; Class 7: Celery; Class 8: Brocoliweeds2; and Class 9:
Corn_senesced.

Class User’s acc. (%) Class1l Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Row total
Class 1 98.81 12,903 0 50 7 4 25 13 2 54 13,058
Class 2 100 0 1402 0 0 0 0 0 0 0 1402
Class 3 100 0 0 1800 0 0 0 0 0 0 1800
Class 4 99.47 0 0 0 4164 0 0 0 0 22 4186
Class 5 98.71 1 0 17 0 1378 0 0 0 0 1396
Class 6 99.85 0 0 4 0 0 2745 0 0 0 2749
Class 7 100 0 0 0 0 0 0 2490 0 0 2490
Class 8 99.77 0 5 0 0 0 0 1 2606 0 2612
Class 9 89.84 73 0 4 171 1 1 1 0 2219 2470
Column total 12,977 1407 1875 4342 1383 2771 2505 2608 2295 32,163
Producer’s acc. (%) 99.43 99.64 96 95.9 99.64 99.06 99.4 99.92 96.69

Overall (%) 98.58
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represent a spectral distribution similar to the original one, 10
but in a compressed form. It is also observed from the

experiments that the automatic wavelet technique fits well ;.

the ML classification process. Although the first level of
decomposition better represents the original spectral distri-
bution, larger data dimensions cause a loss in classifier per-
formance.

Compared to a wavelet-based reduction method, the hy-13.
brid method has slightly better classification accuracy at 14.

higher reduction rates than the wavelet technique. The com-
putational cost of the sequential hybrid technique at the
higher reduction rate is also the lowest one.

6.1 Future Ideas

There are several ideas that can be implemented to maker7.

this work more effective and useful. A few of these ideas
are as follows.

e Currently we are using orthogonal DWT to perform

12.

15.

16.

19.

. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “A wavelet-based

PCA reduction for hyperspectral imagery,” Rroc. 2002 Intl. Geosci.
Remote Sens. Symp. (IGARSS'@G2yonto, Canada.

X. Jia and J. A. Richards, “Efficient maximum likelihood classifica-
tion for imaging spectrometer data setffEE Trans. Geosci. Remote
Sens32(2), 274-281(1994).

J. A. Gualtieri, S. R. Chettri, R. F. Cromp, and L. F. Johnson, “Sup-
port vector machine classifiers as applied to AVIRIS dafymma-

ries 8th JPL Airborne Earth Sci. Workshopeb. 8—11, 1999.

Research System InENVI User's Guideg(1999.

X. Jia and J. A. Richards, “Segmented principal components transfor-
mation for efficient hyperspectral remote-sensing image display and
classification,” IEEE Trans. Geosci. Remote Se§(1), 538-542
(1999.

R. O. Duda and P. E. HaRattern Classification and Scene Analysis
John Wiley and Sons, New Yord973.

T. M. Lillesand and R. W. KiefefRemote Sensing and Image Inter-
pretation John Wiley and Sons, Inc., New Yofk994).

P. H. Swain and S. M. DaviRemote Sensing: The Quantitative Ap-
proach McGraw-Hill, Inc., New York(1978.

18. H. H. Szu, J. Le Moigne, N. S. Netanyahu, and C. C. Hsu, “Integra-

tion of local texture information in the automatic classification of
Landsat images,Proc. SPIE3078 116—-127(1997).
T. El-Ghazawi, P. Charlemwat, and J. Le Moigne. “Wavelet-based

dimension reduction, which requires using images that
have power of 2 spectral bands. Investigating ways to
remove this restriction is of great interest. One idea is
to consider removing this limitation by using the bior-
thogonal DWT, and understanding the associated
tradeoffs in accuracy, storage, and speed.

* We have used a DAUBA4 filter as the mother wavelet
due to its simplicity and the fact that it provides good
results for our remote sensing applications. It would
be of interest to conduct a systematic study that con-
siders different types of filters that can be used for
dimension reduction, along with the associated
tradeoffs.
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