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[1] Data assimilation is increasingly being used to merge remotely sensed land surface
variables such as soil moisture, snow, and skin temperature with estimates from land
models. Its success, however, depends on unbiased model predictions and unbiased
observations. Here a suite of continental-scale, synthetic soil moisture assimilation
experiments is used to compare two approaches that address typical biases in soil moisture
prior to data assimilation: (1) parameter estimation to calibrate the land model to the
climatology of the soil moisture observations and (2) scaling of the observations to the
model’s soil moisture climatology. To enable this research, an optimization infrastructure
was added to the NASA Land Information System (LIS) that includes gradient-based
optimization methods and global, heuristic search algorithms. The land model calibration
eliminates the bias but does not necessarily result in more realistic model parameters.
Nevertheless, the experiments confirm that model calibration yields assimilation estimates
of surface and root zone soil moisture that are as skillful as those obtained through scaling
of the observations to the model’s climatology. Analysis of innovation diagnostics
underlines the importance of addressing bias in soil moisture assimilation and confirms that
both approaches adequately address the issue.
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1. Introduction
[2] Land data assimilation systems merge satellite or in

situ observations of land surface fields (such as soil mois-
ture, snow and skin temperature) with estimates from land
surface models. Observations are often discontinuous in
space and time, and their incorporation into the modeled
estimates helps generate spatially complete and temporally
continuous estimates of land surface fields. The process of
combining observations and model forecasts is typically
carried out by weighting each on the basis of their respec-
tive errors. The uncertainty in model states results from
model structural deficiencies, errors in model parameter
specifications and input forcings. Similarly, observational
data also suffer from errors caused by instrument noise and
errors associated with the retrieval models. A key assump-
tion in most data assimilation techniques is that the errors
in observations and model forecasts are strictly random and
that on average, the observations and model estimates agree

with the true estimates. In reality, however, biases are
unavoidable and it is difficult to attribute the bias to the
model or the observations. Nevertheless, the proper treat-
ment of such systematic errors is critical for the success of
data assimilation systems [Dee and da Silva, 1998].

[3] A number of prior studies have described techniques
to address the treatment of bias errors in data assimilation
systems. Dee [2005] characterizes the data assimilation
systems as either ‘‘bias blind’’ or ‘‘bias aware’’ on the basis
of their treatment of systematic errors. The bias-blind sys-
tems are designed to correct random, zero-mean errors
and assume the use of unbiased observations relative to
the model-generated background. For soil moisture, the
absolute levels of continental-scale estimates from land
surface models and satellite observations differ signifi-
cantly [Reichle et al., 2004, 2007], which implies a need
for ‘‘bias-aware’’ approaches to soil moisture assimilation.
An often used method to address such biases is to rescale
the observations prior to data assimilation in such a way
that the observational climatology matches that of the land
model [Reichle and Koster, 2004; Drusch et al., 2005;
Crow et al., 2005; Slater and Clark, 2006; Reichle et al.,
2007; Draper et al., 2009; Kumar et al., 2009; Reichle
et al., 2010; Liu et al., 2011; Draper et al., 2011]. Put dif-
ferently, these so-called a priori scaling approaches assimi-
late normalized deviates or percentiles instead of the raw
observations. A priori scaling is easy to implement as a pre-
processing step to the data assimilation system and does
not make assumptions about whether the climatology of
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the model or that of the observations is more correct.
Although the resulting analyses are produced in the mod-
el’s climatology, they can be scaled back to the observatio-
nal climatology, if needed. However, since the computation
of the climatologies is conducted as a preprocessing step,
the corrections cannot easily be adjusted to dynamic changes
in bias.

[4] Dynamically bias-aware assimilation systems, on the
other hand, incorporate specific assumptions about the na-
ture of biases and are specifically built to estimate and cor-
rect them. These strategies typically attribute the bias to
either the model or the observations and use the analysis
increments in the data assimilation system to estimate the
bias. Variants of such dynamic bias correction strategies
have been used in soil moisture assimilation studies [De
Lannoy et al., 2007a, 2007b] and for land surface tempera-
ture assimilation by Bosilovich et al. [2007] and Reichle
et al. [2010]. In these studies, the observations are assumed
to be unbiased, and the bias is attributed to model exclu-
sively. In reality, however, the retrievals from different sen-
sors may be biased against each other [Reichle et al., 2007;
Trigo and Viterbo, 2003]. The key advantage of the
dynamic bias estimation and correction approaches is their
ability to adapt to transient changes in bias.

[5] In this paper, we explore an alternative strategy for a
priori bias correction that has not been used for continen-
tal-scale soil moisture assimilation: the a priori calibration
of land surface model (LSM) parameters. We use optimiza-
tion algorithms to estimate model parameters that minimize
the bias between model forecasts and observations. Similar
to the a priori scaling methods discussed above, the a priori
calibration approach complements the state update steps of
the data assimilation system. In the latter, the model fore-
cast is modified only when observations are present. In the
absence of observational information, the model will revert
back to its original climatology. Adjusting model parame-
ters offers a way to bring the model’s climatology in line
with that of the observations, including at times and loca-
tions where observations are intermittently absent. Like a
priori scaling, a priori model calibration does not adjust
dynamically to changes in model or observation bias.

[6] Model parameters have long been recognized as a
key source of errors in model predictions, and many LSM
studies have focused on the application of techniques to
estimate them [Duan et al., 1992; Burke et al., 1997;
Gupta et al., 1999; Hogue et al., 2005; Liu et al., 2004,
2005; Santanello et al., 2007; Peters-Lidard et al., 2008;
Lambot et al., 2009; Gutman and Small, 2010; Nearing
et al., 2010]. These studies estimate LSM parameters using
independent observations of variables such as soil mois-
ture, streamflow and surface temperature. In addition, data
assimilation studies have also recognized the need to
update and estimate model parameters for improving the
model’s predictive skills. A number of studies have exam-
ined the potential of parameter estimation in conjunction
with state estimation in sequential data assimilation sys-
tems [Boulet et al., 2002; Moradkhani et al., 2005a,
2005b; Qin et al., 2009; Yang et al., 2009; Nie et al.,
2011; Montzka et al., 2011; DeChant and Moradkhani,
2011]. These approaches, known as joint estimation or state
augmentation methods, estimate the model parameters con-
currently with the model states. Such approaches, however,

have difficulties in handling the relative time invariance of
parameters (compared to model states) and very large pa-
rameter spaces [Liu and Gupta, 2007]. De Lannoy et al.
[2007a] note that in some situations it may be better to esti-
mate the bias separately rather than correct it using state
augmentation methods. An approach that employs the si-
multaneous use of optimization and data assimilation was
described by Vrugt et al. [2005], where the model parame-
ters are estimated through the recursive calibration over
a data assimilation instance. This method considers the esti-
mation of model parameter sets for generating the best
possible forecasts, when model states are also adjusted
through sequential data assimilation. The advantages and
limitations of these joint state and parameter estimation
approaches are discussed in detail by Liu and Gupta
[2007].

[7] Here we compare, in the context of data assimilation,
the approach of bias mitigation through the estimation of
model parameters against a priori bias correction strategies
that rescale the observations to conform to the model’s cli-
matology. The parameter estimation is performed in a
‘‘batch calibration’’ mode, where a set of observational
data is used to estimate time-invariant model parameters
with the objective of minimizing the climatological differ-
ences between the model and the observations. The model
with the calibrated parameters is subsequently employed in
the data assimilation system to assimilate the raw, unscaled
observations. In contrast, the scaling approaches essentially
assimilate the anomaly information instead of the raw
observations. We investigate these methods with a soil
moisture assimilation case study. A new generation of sat-
ellite soil moisture retrievals are becoming available from
the recently launched Soil Moisture and Ocean Salinity
(SMOS) [Kerr et al., 2010] and the planned Soil Moisture
Active Passive (SMAP) [Entekhabi et al., 2010b] missions.
The results from our study are directly relevant to the effec-
tive utilization of these new observations in land data
assimilation systems.

[8] The experiments presented in this paper are con-
ducted using the NASA Land Information System (LIS)
[Kumar et al., 2006; Peters-Lidard et al., 2007], which is a
multiscale modeling system for hydrologic applications
developed with the goal of integrating satellite- and
ground-based observational data products and advanced
land surface models and techniques to generate improved
estimates of land surface conditions. LIS includes a suite of
subsystems to support land surface modeling for a variety
of applications, including a comprehensive sequential data
assimilation system, based on the NASA Global Modeling
and Assimilation Office’s infrastructure [Reichle et al.,
2009; Kumar et al., 2008b]. More recently, a generic opti-
mization subsystem has been developed within LIS, with
the goal of combining the use of optimization and data
assimilation in an integrated framework. This new exten-
sion to LIS will be described in detail below and was used
to facilitate the experiments discussed here.

[9] The paper is organized as follows. The design and
capabilities of the optimization subsystem within LIS are
presented first (section 2). This is followed by the descrip-
tion of the experiment setup that evaluates the use of pa-
rameter estimation in data assimilation (section 3). The
results from the data assimilation integrations are presented
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in section 4. Finally, section 5 discusses the conclusions
from the study.

2. Optimization Subsystem in LIS
[10] LIS is designed as an object-oriented framework,

where all functional extensions (such as land surface mod-
els, data assimilation algorithms, meteorological inputs,
observational data, etc.) are implemented as abstract, exten-
sible components [Kumar et al., 2006, 2008a]. A large suite
of modeling extensions have been incorporated in LIS
using this design paradigm. The optimization subsystem in
LIS is designed in a similar interoperable manner.

2.1. Optimization Abstractions

[11] Generically, an optimization instance can be stated
as a problem of determining unknown parameters by mini-
mizing or maximizing an objective function subject to a
number of constraints. The optimization subsystem in LIS
defines three functional abstractions on the basis of this
generic form, shown in Figure 1: (1) objective function,
(2) decision/parameter space, and (3) algorithm used to
solve the optimization problem. In the instance of parame-
ter estimation, the decision space is defined by the list of
LSM parameters (or a subset thereof). The objective func-
tion object represents the function or criteria to be maxi-
mized or minimized. Examples include the minimization of
squared residuals and the maximization of likelihood meas-
ures. Finally, the optimization algorithm abstraction repre-
sents the actual search strategy used to find the optimal
solution. The interconnections between these three generic
pieces are handled within the LIS core, which is the unit
that enables the integrated use of various extensible compo-
nents in LIS. Custom implementations of each of these
three abstractions constitute a specific instance of an opti-
mization problem.

[12] Similar to the design of the LIS data assimilation
subsystem [Kumar et al., 2008b], the data exchanges

between these abstractions are handled through the con-
structs of the Earth System Modeling Framework (ESMF)
[Hill et al., 2004]. ESMF provides a standardized, self-
describing format for data exchange between these compo-
nents. Three search algorithms of varying complexity are
implemented in this infrastructure: (1) Levenberg-Marquardt
(LM) [Levenberg, 1944; Marquardt, 1963], (2) shuffled
complex evolution from the University of Arizona (SCE-
UA) [Duan et al., 1992, 1993], and (3) genetic algorithm
(GA) [Holland, 1975]. LM is a gradient-based search tech-
nique and is suited only for deterministic convex optimiza-
tion problems, whereas SCE-UA and GA are more suited
for difficult combinatorial optimization problems such as
LSM parameter estimation.

2.2. Genetic Algorithm

[13] In this article, we employ GA for estimating LSM
parameters. GAs are stochastic search techniques that use
heuristics-based principles of natural evolution and genet-
ics. The algorithm works by employing a population of
individuals (or candidate solutions), each of which is repre-
sented by a set of values of the problem’s variables that
need to be estimated (also called decision space). By apply-
ing operations that are based on natural evolution concepts,
such as selection, recombination and mutation, the popula-
tion evolves toward better solutions over several genera-
tions (or iterations).

[14] Figure 2 depicts a flowchart showing the sequence
of GA operations during optimization. A fitness value that
reflects the quality of the solution and its ability to satisfy
constraints and objectives of the problem is associated with
each potential solution. The selection operator simulates
the ‘‘survival of the fittest’’ behavior by preferentially
selecting the solutions with higher fitnesses to be present in
the subsequent populations. As a result, solutions with
good traits survive and solutions with bad traits are elimi-
nated. Each pair of selected solutions then undergoes the
recombination step where two new solutions are generated

Figure 1. Optimization abstractions in the NASA Land Information System (LIS): (1) objective func-
tion, (2) decision/parameter space, and (3) optimization algorithm (LM, Levenberg-Marquardt ; GA,
genetic algorithm; SCE-UA, shuffled complex evolution from the University of Arizona). Dotted lines
represent interconnections between the optimization abstractions enabled by the LIS core. Black boxes
represent data exchanges between the three components through the Earth System Modeling Framework
(ESMF) objects.
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by combining the ‘‘genes’’ of the parent solutions. The
mutation operator is used to infuse the population with
gene values that may not be present in the population. The
recombination and mutation rates define the probability of
crossover between any two pairs and the probability of
a gene undergoing mutation, respectively. To ensure that
the best solution in any generation is not lost through
these probabilistic recombination and mutation operations,
a strategy named elitism is used. Elitism ensures that the
best solution from the previous generation is compared
with the worst solution in the current generation, replacing
the current generation’s solution, if better. These steps are
repeated through several iterations (or generations) until
the specified convergence criteria is met.

[15] GAs do not rely upon local or gradient information
and are able to deal with complexities in the search space
such as the presence of local optima and discontinuities.

GAs are also well suited to handle discrete decision varia-
bles and nonlinearity in the simulation models effectively.
The problem-independent structure of the algorithm has
enabled its application in many areas of science and
engineering [Goldberg, 1989]. GAs, however, require the
evaluation of several simulation runs to obtain the best
solution, making them computationally intensive. The
high-performance computing tools in LIS are employed for
mitigating this limitation (section 4.3).

3. Experimental Setup
3.1. Experiment Overview

[16] In section 3.1, we describe a suite of synthetic data
assimilation experiments that examines parameter estima-
tion as an a priori bias mitigation scheme. In addition,
two variants of the a priori scaling method are used:

Figure 2. Sequence of GA operations. An example of the population evolution is shown on the right,
with a population size of 10 potential solutions (s1, s2, . . . , s10). The gray bars indicate the fitness values
of the individual solutions. An example of the selection step shows the choice of s7 after comparing s2
and s7. After the selection step, the GA operations of recombination, mutation, and elitism are con-
ducted, and a new population of solutions is generated. The algorithm continues until the convergence
criteria are met.

W03515 KUMAR ET AL.: BIAS CORRECTION IN SOIL MOISTURE DATA ASSIMILATION W03515

4 of 16



standard-normal deviate scaling [Crow et al., 2005] and cu-
mulative distribution function (CDF) matching [Reichle
and Koster, 2004]. The experiment setup is similar to that
of Kumar et al. [2009], but only two land surface models
are used here. The Noah land surface model (version 2.7.1
[Ek et al., 2003]) employs the four-layer soil model of
Mahrt and Pan [1984] with thicknesses (listed from top
to bottom) of 10, 30, 60, and 100 cm. In the catchment
LSM [Koster et al., 2000], the vertical soil moisture profile
is determined through deviations from the equilibrium
soil moisture profile between the surface and the water
table. Soil moisture in the 0–2 cm surface layer and in the
0–100 cm root zone layer is diagnosed from the modeled
soil moisture profile. The catchment LSM typically employs
hydrologically defined catchments (or watersheds) as basic
computational units. In this study, however, the catchment
LSM is used on a regular latitude-longitude grid to facilitate
the model intercomparison.

[17] Using these land surface models, we conducted a
suite of synthetic ‘‘fraternal twin’’ assimilation experi-
ments. The basic structure of the experiments is as follows:
First, a soil moisture simulation is conducted with the
catchment LSM to generate the assumed ‘‘true’’ state of the
land surface, referred to as the control (or ‘‘truth’’) run.
Second, the observations to be assimilated are generated
from this truth run by introducing realistic retrieval errors.
Third, a suite of data assimilation integrations are con-
ducted by assimilating these synthetic observations into the
Noah land surface model, using different bias mitigation
strategies. The Noah model integration without any data
assimilation is referred to as the ‘‘open loop’’ simulation.
The assimilation integrations are conducted using a one-
dimensional ensemble Kalman filter (EnKF) algorithm (see
Reichle and Koster [2003] for details on 1D versus 3D fil-
tering). The performance of the assimilation approaches is
evaluated by comparing against the known true fields (from
the catchment LSM integration).

3.2. Experiment Details

[18] All model simulations are conducted on a gridded
domain that roughly covers the continental United States
(CONUS, from 30.5�N, 124.5�W to 50.5�N, 75.5�W) at 1�

spatial resolution, using a 30 min model time step. Surface
meteorological boundary conditions from the Global Data
Assimilation System (GDAS; the global meteorological

weather forecast model of the National Centers for Envi-
ronmental Prediction [Derber et al., 1991]) are used to
drive the LSMs. The models are cycled three times through
the period from 1 January 2000 to 1 January 2006 to ensure
that internal model states are in equilibrium with the forc-
ing meteorology and parameters. The initial conditions
generated from this ‘‘spin-up’’ process are used in the data
assimilation and open loop integrations except those that
use the optimized parameters. The optimization-based inte-
grations use the soil moisture initial conditions estimated
through calibration (section 3.3). All model and assimila-
tion integrations are conducted over the above mentioned
6 year period.

[19] Each open loop or assimilation experiment with the
Noah LSM consists of 12 ensemble members [Kumar
et al., 2008b], and the mean of the ensemble is used in the
evaluations. In order to maintain an ensemble of model
fields representing the uncertainty in soil moisture, pertur-
bations are applied to select meteorological and model
prognostic fields. The parameters used for these perturba-
tions are based on previous work [Reichle et al., 2007;
Kumar et al., 2009] and are listed in Table 1. Zero-mean,
normally distributed additive perturbations are applied to
the downward longwave radiation forcing, and lognormal
multiplicative perturbations with a mean value of 1 are
applied to the precipitation and downward shortwave fields
(Table 1). Time series correlations are imposed via a first-
order regressive model (AR(1)) with a time scale of 24 h.
No spatial correlations are applied since this study uses the
one-dimensional version of the EnKF. Cross correlations
are imposed on the perturbations of radiation and precipita-
tion fields using the values specified in Table 1.

[20] In addition to the forcing perturbations, the Noah
model prognostic variables for soil moisture are perturbed
with additive noise that is vertically correlated (Table 1).
For the perturbations to the model prognostics we impose
AR(1) time series correlations with a 12 h time scale. The
perturbation settings do not introduce systematic biases in
the open loop integrations relative to a standard, unper-
turbed, single-member model integration (not shown).

[21] A set of preprocessing steps are applied to the syn-
thetic retrievals generated from the catchment LSM inte-
gration. To account for difficulties in retrieving soil
moisture products from microwave sensors, the synthetic
observations are masked out when the green vegetation

Table 1. Parameters for Perturbations to Meteorological Forcings and Model Prognostic Variables in the Ensemble Kalman Filter
Assimilation Experiments

Variable
Perturbation

Type
Standard
Deviation

Cross Correlations With Perturbations

SW ; LW ; PCP sm1 sm2 sm3 sm4

Meteorological Forcings
Downward shortwave (SW ;) multiplicative 0.3 1.0 �0.5 �0.8
Downward longwave (LW ;) additive 50 W m�2 �0.5 1.0 0.5
Precipitation (PCP) multiplicative 0.50 �0.8 0.5 1.0

Noah LSM Soil Moisture States
Total soil moisture

Layer 1 (sm1) additive 6.0E-3 m3 m–3 1.0 0.6 0.4 0.2
Layer 2 (sm2) additive 1.1E-4 m3 m–3 0.6 1.0 0.6 0.4
Layer 3 (sm3) additive 0.60E-5 m3 m–3 0.4 0.6 1.0 0.6
Layer 4 (sm4) additive 0.40E-5 m3 m–3 0.2 0.4 0.6 1.0
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fraction values exceed 0.7 and when snow or precipitation
are present. Random Gaussian noise with an error standard
deviation of 0.03 m3 m–3 (volumetric soil moisture) is added
to the catchment model surface soil moisture values to
mimic measurement uncertainties. This error standard devi-
ation is chosen as an estimate of the expected error level in
surface soil moisture retrievals from upcoming spaceborne
L band radiometers [Kerr et al., 2010; Entekhabi et al.,
2010b].

[22] Five different data assimilation integrations are
conducted using these synthetic observations (Table 2):
DA-NOSC, using unscaled observations without any bias
correction, DA-STDN, using a priori scaled observations
based on standard normal deviate scaling, DA-CDF, using
a priori scaled observations based on CDF matching,
DA-OPT1, using unscaled observations with a calibrated
model, where the model parameters were estimated using a
single year of batch calibration (year 2000), and DA-OPT6,
using unscaled observations with a calibrated model, where
model parameters were optimized using all 6 years (2000–
2006) of observations.

[23] The approaches that employ a priori scaling of
observations (DA-STDN and DA-CDF) represent the com-
monly followed approaches of correcting biases prior to
data assimilation by scaling the observations into the model
climatology. The DA-CDF experiment follows the strategy
of Reichle and Koster [2004] and matches the CDF of the
observations to that of the model soil moisture. First, the
observation and model CDFs are computed independently
for each grid cell using the 6 year period. Next, the obser-
vations are rescaled, separately for each grid cell, such that
their climatology matches that of the model soil moisture.
In theory, this approach corrects all moments of the distri-
bution regardless of its shape, although in practice the cor-
rection of higher-order moments is naturally limited by the
sample size. While the climatological differences between
the model and the observations may change with season
[Drusch et al., 2005], our experiment DA-CDF is based on
CDFs derived with data from all seasons lumped together
as done by Reichle et al. [2007]. The standard normal devi-
ate-based scaling used in the DA-STDN experiment is a
simpler approach that matches only the first and second
moments of the observation and model distributions but
breaks the scaling down by calendar month to account for
possible seasonal changes in the climatological differences.
This approach is used, for example, by Crow et al. [2005]).
For a given calendar month k and a given grid cell i, the
scaling parameters are the multiyear mean (�

m
i;k and �

o
i;k for

model and observations, respectively) and multiyear stand-
ard deviation (�m

i;k and �o
i;k for model and observations,

respectively). For all observations �i from this particular
calendar month (time subscript omitted), the scaled obser-
vations �i

0 are then given by

�i
0 ¼ �m

i;k þ ð�i � �
o
i;kÞ

�m
i;k

�o
i;k

(1)

[24] In contrast, the calibration-based integrations (DA-
OPT1 and DA-OPT6) assimilate raw (unscaled) observa-
tions and rely on the calibrated model parameters to
mitigate bias in the data assimilation system. Note that in
the four experiments with bias correction, the information
from the observation set is employed twice. In DA-STDN
and DA-CDF, the observations are used once for deriving
the climatology and then for assimilation, when the scaled
observations are assimilated. Similarly, in DA-OPT1 and
DA-OPT6, the same set of observations is employed twice,
once for the calibration of the model climatology and then
again for the subsequent data assimilation. We do not sepa-
rate the periods of model calibration and data assimilation
in experiments DA-OPT1 and DA-OPT6 in order to pro-
vide an equivalent comparison to DA-STDN and DA-CDF.

[25] Note that a priori scaling and model calibration are
intended to address the relative bias between the model and
the observations. The data assimilation system then works
with a set of observations that are unbiased relative to the
model background. In this sense, the synthetic experiment
used here represents the issues in a ‘‘real’’ data assimilation
system. The long-term mean and variability of satellite, in
situ, and model soil moisture estimates differ from each
other because of representativeness differences (horizontal
and vertical), limited sensor calibration, retrieval model
assumptions, and model deficiencies, implying that, in a
climatological sense, none of the data sets is necessarily
more correct than any other [Reichle and Koster, 2004;
Reichle et al., 2007]. Consequently, our use of the truth
label for the synthetic observations does not necessarily
imply that satellite-based retrievals are unbiased.

3.3. Optimization Formulation for Parameter
Estimation

[26] In experiments DA-NOSC, DA-STDN, and DA-CDF
we use the Noah LSM with its native parameters that
are mostly based on look-up tables (as functions of vegeta-
tion and soil categories), the same parameters that are used

Table 2. Overview of Model and Assimilation Integrations

Model Description

OL Noah model integration without assimilation (open loop)
OPT1 Noah model integration without assimilation and with model parameters optimized to reproduce 1 year (2000) climatology of synthetic

soil moisture observations
OPT6 Noah model integration without assimilation and with model parameters optimized to reproduce 6 years (2000–2006) climatology of

synthetic soil moisture observations
DA-NOSC Noah assimilation integration without bias correction using unscaled observations
DA-STDN Noah assimilation integration using a priori scaling of observations based on standard normal deviates
DA-CDF Noah assimilation integration using a priori scaling of observations based on cumulative distribution function (CDF) matching
DA-OPT1 Noah assimilation integration using OPT1 model parameters and unscaled observations
DA-OPT6 Noah assimilation integration using OPT6 model parameters and unscaled observations
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in the operational environments at the National Centers for
Environmental Prediction (NCEP) and the Air Force
Weather Agency (AFWA). For experiments DA-OPT1 and
DA-OPT6, by contrast, we estimate spatially distributed
representations of Noah model parameters through GA
optimization (section 4.1).

[27] Table 3 lists the parameters included in the decision
space in the optimization simulations based on the work by
Hogue et al. [2005]. The decision space includes a number
of vegetation and soil properties along with the initial soil
moisture states. The initial set of potential solutions in GA
is generated by randomly sampling from the range of each
parameter as specified in Table 3. A population size of 50
is used in the GA simulations.

[28] The objective function at each grid point is defined
as the inverse of absolute difference in the mean soil mois-
ture values of the observation and the model (equation (2)),
where Ji is the fitness value for grid cell i and �

o
i and �

m
i are

the mean soil moisture values from the observations (from
catchment LSM) and simulated from Noah model, respec-
tively, for grid cell i. The mean soil moisture values �

o
i and

�
m
i are computed at each grid point i by averaging the avail-

able soil moisture values over the course of the model sim-
ulation. The denominator of the objective function thus
represents the absolute soil moisture climatology difference
between the observations and the model.

Ji ¼
1

jð�o
i � �

m
i Þj

 !
(2)

This objective function is maximized independently for
each grid cell i. The optimization explores the decision
space to maximize the fitness function values, subject to
the allowed range of values for each parameter (Table 3).

[29] The GA integrations use an elitism strategy to ensure
that the current best solution is not overwritten during GA
evolution. A mutation rate of 0.005 and a recombination
rate of 0.9 was employed. The algorithm was found to con-
verge after approximately 200 generations, when the fitness
of the best solution was found not to improve in the last 30
generations. These GA parameters (including the mutation
and recombination rates) are chosen largely from experi-
ence and the success of the optimization simulations pre-
sented in section 4.1 suggest that they are reasonable.

4. Results
[30] The results presented in section 4 focus first on the

optimization simulations, that is, the model calibration con-
ducted prior to the DA-OPT1 and DA-OPT6 assimilation
integrations. Following this discussion, the different bias
mitigation strategies are evaluated within the context of
soil moisture data assimilation.

4.1. Optimization Simulations

[31] Two separate optimization simulations are con-
ducted: (1) using a single year of observational data (OPT1;
observations from year 2000) and (2) using observations
from all 6 years (OPT6; years 2000–2006). First, we com-
pare the Noah model integrations using these two sets
of LSM parameters with the open loop simulation that

Table 3. List of Noah Land Surface Model Parameters Used in the Optimization Runsa

Variable Description Minimum Value Maximum Value

smcmax porosity 0.30 0.55
psisat saturated matric potential 0.01 0.70
dksat saturated hydraulic conductivity (m s�1) 0.05E-5 3.00E-5
dwsat saturated soil diffusivity 5.71E-6 2.33E-5
bexp the ‘‘b’’ parameter 3.0 9.0
quartz soil quartz content 0.10 0.90
rsmin minimum stomatal resistance (m) 40 1000
rgl parameter used in solar radiation term of canopy resistance 30 150
hs parameter used in vapor pressure deficit term of canopy resistance 36.35 55
z0 roughness length (m) 0.01 0.99
lai leaf area index 0.05 6.00
cfactr canopy water parameter 0.1 2.0
cmcmax canopy water parameter (m) 1E-4 2E-3
sbeta parameter used in the computation of vegetation effect on soil heat flux �4 �1
rsmax maximum stomatal resistance (m) 2000 10,000
topt optimum transpiration air temperature (K) 293 303
refdk reference value for saturated hydraulic conductivity (m s�1) 5E-7 3E-5
fxexp bare soil evaporation exponent 0.2 4.0
refkdt reference value for surface infiltration parameter 0.1 10.0
czil parameter used in the calculation of roughness length of heat 0.05 0.8
csoil soil heat capacity for mineral soil component 1.26E6 3.5E6
frzk ice threshold 0.10 0.25
snup snow depth threshold that implies 100% snow cover (m) 0.02 0.08
sh2o1 initial liquid soil moisture for soil layer 1 (m3 m–3) 0.05 0.50
sh2o2 initial liquid soil moisture for soil layer 2 (m3 m–3) 0.05 0.50
sh2o3 initial liquid soil moisture for soil layer 3 (m3 m–3) 0.05 0.50
sh2o4 initial liquid soil moisture for soil layer 4 (m3 m–3) 0.05 0.50
smc1 initial total soil moisture for soil layer 1 (m3 m–3) 0.05 0.50
smc2 initial total soil moisture for soil layer 2 (m3 m–3) 0.05 0.50
smc3 initial total soil moisture for soil layer 3 (m3 m–3) 0.05 0.50
smc4 initial total soil moisture for soil layer 4 (m3 m–3) 0.05 0.50

aThe columns show the variable names, a brief description, and the range of values (maximum and minimum values) of the parameters used in the
optimization system.
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employs the default values from the look-up table. Figure 3
presents maps of time series mean (climatological) differ-
ences in surface soil moisture (which is essentially the
inverse of the objective function used in the optimization
simulations). As discussed in section 3.3, the maps are
computed by subtracting the mean Noah LSM soil moisture
values for each of the integrations shown in Figure 3 from
the corresponding mean catchment LSM surface soil mois-
ture estimates. In computing these mean fields, we only
include the times and locations for which (synthetic) obser-
vations are available (section 3.2). Further, only grid points
with at least 600 observations for the evaluation period are
considered in the analysis of the results.

[32] Figure 3 demonstrates that using the optimized pa-
rameters leads to reducing the systematic differences in cli-
matologies between the model and observations, throughout
the domain. These maps indicate that the Noah open loop

integration generates on average (but not uniformly) drier
soil moisture values compared to the catchment LSM. The
use of optimized parameters helps to correct the bias. Both
OPT1 and OPT6 integrations improve this systematic
underestimation in the open loop by providing closer
matches to the catchment (truth) estimates, as seen in
Figures 3b and 3c. The domain-averaged soil moisture cli-
matology difference is reduced from 0.034 m3 m–3 (for
OL) to 0.006 m3 m–3 for OPT1 and to �0.003 m3 m–3 for
OPT6. If absolute values of climatology differences are
used, the improvements from OPT1 and OPT6 are even
more pronounced; the domain-averaged absolute differ-
ence reduces from 0.047 m3 m–3 for OL to 0.010 m3 m–3

for OPT1 and 0.009 m3 m–3 for OPT6. The estimation of
model parameters thus enables the correction of systematic
biases and leads to a closer match between the soil moisture
climatologies of the model (Noah) and the synthetic obser-
vations (catchment).

[33] Figure 4 shows maps of the parameters used in the
open loop integration (prescribed using look-up tables) and
the calibrated values from the OPT6 integration. Out of the
parameters listed in Table 3 we focus on three key parame-
ters : porosity (�s), saturated matric potential ( s) and satu-
rated hydraulic conductivity (Ks). The spatial patterns in
the look-up table–based parameters are similar to each
other, because they are determined on the basis of the soil
texture map. In contrast, the optimized parameters show
more spatial variability because they are not constrained to
soil types or vegetation categories. Compared to the default
parameters, the optimized parameters in general show
higher values of �s,  s, and Ks over the domain. This is
consistent with the optimization objective of correcting the
dry bias in the open loop integration, as higher values of �s,
 s, and Ks would allow for more water to be held in the soil
and more infiltration into the soil, and correspondingly
higher soil moisture values. Similar spatial trends are also
observed in other parameters (not shown).

[34] Although these spatial trends are consistent with the
patterns in soil moisture simulations, the intent here is not to
judge the veracity or physical realism of the estimated pa-
rameters. Instead, our goal is to study how bias mitigation
through parameter estimation helps in the subsequent data
assimilation performance. Though the typical approach in
land surface models is to employ look-up table–based pa-
rameters that are derived from limited data samples [e.g.,
Rawls et al., 1982; Cosby et al., 1984], these representations
suffer from numerous issues, including lack of spatial repre-
sentativeness of the data sets on which they are based, errors
in extrapolating the point-scale to the modeling scales, and
the large within–soil class variation of properties that is on
par with the variation across different texture classes
[Schaap, 2004; Braun and Schadler, 2005; Doherty and
Welter, 2010; Gutman and Small, 2010]. Further, the physi-
cal realism and mismatch issues of the parameters are diffi-
cult to assess at large spatial scales because validating in
situ measurements of surface and root zone soil moisture
that match the scale of the model grid cells are not available.

[35] In short, there is significant uncertainty associated
with the default parameters, typically regarded as the truth.
The optimization formulation in this article samples from
the ranges of parameters (Table 3) representing the full
spectrum across all look-up table categories. Additional

Figure 3. Comparison of the surface soil moisture climatol-
ogy difference fields between the catchment LSM truth and
(a) OL (b) OPT1, and (c) OPT6 (see Table 2). The gray color
represents grid cells excluded from the computations. Titles
indicate domain-averaged values. The units are m3 m–3.
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look-up table category-based constraints can be introduced
on these parameter ranges to ensure that the estimated pa-
rameters conform to the traditional, category-based (e.g.,
soil texture based) notions of physical realism. Algorithms
and approaches that incorporate notions of ‘‘equifinal’’ sol-
utions [e.g., Gupta et al., 1999; Hogue et al., 2006] may
offer more effective ways to represent parameter uncer-
tainty and to ensure physical consistency since they gener-
ate a range of plausible model fits. The use of such
methods is left for a future work. Here the parameter
sets generated by the optimization simulations OPT1 and
OPT6 may represent mismatches with regard to the typical
category-based definitions.

4.2. Data Assimilation Experiments

[36] Section 4.2 presents the results from data assimilation
experiments that employ different strategies for bias cor-rec-
tion (section 3.2). Since the suite of experiments in-clude
simulations that assimilate both unscaled (experiments

DA-NOSC, DA-OPT1, and DA-OPT6) and scaled observa-
tions (experiments DA-STDN and DA-CDF), we primarily
use the anomaly time series correlation coefficient (R), to
quantify the skill of the model simulations.

[37] The anomaly time series for each grid point is esti-
mated as follows: The monthly mean climatology values
are subtracted from the daily average raw data, so that the
anomalies represent the daily deviations from the mean
seasonal cycle. The skill contribution from correctly identi-
fying the mean seasonal variation is therefore excluded.
The anomaly R values are computed, separately for each
grid point, as the correlation coefficients between the daily
anomalies from the assimilation estimates and the corre-
sponding truth data. Only anomalies at times and locations
for which observations are assimilated contribute to the
computation of the R values. Similar to the comparisons in
section 4.1, only grid points with at least 600 assimilated
observations during the evaluation period are included in
the evaluations.

Figure 4. (a, b) Porosity (�s, unitless), (c, d) saturated matric potential ( s, unitless), and (e, f) satu-
rated hydraulic conductivity (Ks, in units of m s�1) from (left) look-up tables and (right) estimated
through optimization OPT6. The gray color represents grid cells for which parameters were not
estimated.
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[38] Figure 5 shows the comparison of the anomaly
R values for surface soil moisture from different model
integrations. Overall, the assimilation experiments perform
better than the open loop simulation, and the assimilation
skill systematically improves from experiment DA-NOSC
to experiment DA-OPT6. The domain-averaged skill of
the Noah model integration without any data assimilation
(OL) is 0.47. When observations are assimilated without
bias correction (DA-NOSC), the domain-averaged skill
improves to 0.63. The assimilation skill is further improved
in the integrations that employ a priori scaling of observa-
tions, with domain-averaged skill values of 0.71 and 0.73
for DA-STDN and DA-CDF, respectively. For the climato-
logical differences encountered in this synthetic experiment,
the use of higher-order moments in the CDF matching tech-
nique slightly outperforms the seasonally varying scaling pa-
rameters used in DA-STDN. Finally, surface soil moisture

skill values of 0.73 and 0.75 are obtained for experiments
DA-OPT1 and DA-OPT6, respectively, when assimilation
integrations are conducted with optimized parameters that
conform to the catchment LSM (truth) climatology.

[39] The assimilation of surface soil moisture retrievals
is often used as a way to generate superior estimates of
related states such as root zone soil moisture [Reichle et al.,
2007; Kumar et al., 2009]). Figure 6 presents a comparison
of the root zone soil moisture skill estimates from different
model integrations. Similar to the behavior observed for
surface soil moisture, the skill of root zone estimates from
using the calibrated model is comparable to the skills from
a priori scaling approaches. The domain-averaged open
loop root zone skill estimate is 0.45 and it improves to 0.54
when assimilation is performed without bias correction
(DA-NOSC). The skill further improves to 0.62 and 0.63
through the use of a priori scaling of observations for

Figure 5. Surface soil moisture skill in terms of anomaly time series correlation coefficients. See Table 2
for definition of experiments. The gray color represents grid cells excluded from the computations.
Domain-averaged values are given above each plot.
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integrations DA-STDN and DA-CDF, respectively. Finally,
the use of a calibrated model together with the assimilation
of unscaled observations provides domain-averaged skill
values of 0.62 and 0.63 for integrations DA-OPT1 and
DA-OPT6, respectively. For root zone soil moisture, the
relative advantage of the a priori calibration strategy
(DA-OPT1, DA-OPT6) over the a priori scaling methods
(DA-STDN, DA-CDF) is minimal. The 95% confidence
intervals of the domain-averaged anomaly R values are in
the range of 0.008 to 0.01, verifying that the improvements
obtained through data assimilation in both surface and root
zone soil moisture are statistically significant.

[40] In a separate analysis (not shown), we also exam-
ined the skill improvements in surface fluxes (latent,
sensible and ground heat) from the data assimilation inte-
grations. The assimilation runs with bias correction (DA-
STDN, DA-CDF, DA-OPT1, and DA-OPT6) were found
to marginally improve the surface flux skill values over
the open loop and DA-NOSC integrations, with a priori

scaling and a priori calibration yielding comparable
results.

[41] Figures 5 and 6 also indicate that soil moisture skill
values improve consistently across the domain in the data
assimilation integrations. To further illustrate this fact,
Figure 7 shows probability density functions (PDFs) for
surface and root zone soil moisture skill values across the
modeling domain. Compared to the PDF for the OL inte-
gration, the PDFs from data assimilation integrations show
narrower distributions that are skewed toward higher skill
values because of the improved soil moisture estimates
from assimilation. For surface soil moisture, the PDF for
DA-NOSC is shifted toward higher R values, but shows
only a marginal reduction in the spread compared to the
PDF for OL skill (The standard deviation of the PDF
reduces from 0.156 to 0.142). The runs based on a priori
scaling (DA-STDN and DA-CDF) yield a greater reduction
in the OL spread (standard deviation of 0.121 and 0.093,
respectively) and a further shift toward higher skill values.

Figure 6. Same as Figure 5, but for root zone soil moisture.
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The DA-OPT1 and DA-OPT6 integrations provide simi-
larly reduced variability in skill estimates (that is, consist-
ent improvements) across the domain with standard
deviations in PDFs of 0.113 and 0.091, respectively. Com-
parable but more muted trends are observed for root zone
soil moisture, where the variability in skill values also
reduces, gradually from the OL to DA-OPT6. In summary,
Figure 7 indicates that a priori calibration and a priori scal-
ing yield comparable improvements in surface and root
zone skill.

[42] The anomaly R metric is indifferent to any bias in
the mean or the amplitude of variations. By contrast, the
RMSE is highly sensitive to biases. As mentioned earlier,
the long-term mean bias with respect to the true conditions
is difficult (if not impossible) to determine for continental-
scale soil moisture. To supplement the anomaly R skill val-
ues presented above, we now assess the ‘‘unbiased’’ RMSE
(ubRMSE) values, which are computed from the time series
after removal of the long-term mean bias [Entekhabi et al.,
2010a]. Table 4 provides a comparison of the domain-
averaged ubRMSE values from different model simula-
tions, which shows similar trends to those seen with the

anomaly R metric. For surface soil moisture, the domain-
averaged ubRMSE for the OL integration is 0.052 m3 m–3,
which reduces to 0.041 m3 m–3 for DA-NOSC. The scaling-
based DA runs DA-STDN and DA-CDF improve these
estimates to 0.038 and 0.037 m3 m–3, respectively. The
optimization-based runs DA-OPT1 and DA-OPT6 provide
comparable skills to the scaling-based runs with domain-
averaged ubRMSE values of 0.037 and 0.036 m3 m–3,
respectively. The root zone soil moisture skill values follow
similar trends. The domain-averaged ubRMSE for OL is
0.039 m3 m–3, and it improves to 0.037 m3 m–3 in the DA-
NOSC simulation. Both a priori scaling- and optimization-
based approaches provide systematic, statistically significant
improvements (relative to OL) with domain-averaged
ubRMSE of 0.035, 0.034, 0.033, and 0.033 m3 m–3 for inte-
grations DA-STDN, DA-CDF, DA-OPT1, and DA-OPT6,
respectively.

[43] An important aspect of a priori bias mitigation
approaches is the fact that they require an a priori estimate
of the climatology of the observations. Reichle and Koster
[2004] demonstrate that for the a priori scaling approach, a
single year of observations may be sufficient if some spatial
averaging over neighboring grid cells is employed to
reduce sampling noise. In this context, it is encouraging
that the assimilation skill values from the DA-OPT1 and
DA-OPT6 integrations are comparable, with DA-OPT6
generating an additional domain-averaged improvement of
only 0.02 over DA-OPT1 for surface and root zone soil
moisture. In other words, most of the benefit of the a priori
calibration method can be achieved with just 1 year’s worth
of observations, provided the climatology can be reason-
ably approximated from the available data year, which is
the case here (not shown). This suggests that using a short
time period for calibration can still be an effective strategy,
which is especially important for new types of satellite mis-
sions when the period of available data is relatively short.

[44] Further, note that the objective function formulation
(equation (2)) is designed to only correct the first moment
of the model and observation distributions, whereas the a
priori scaling approaches are designed to correct multiple
moments of the distributions. Nevertheless, the assimilation
skills from the a priori scaling and a priori optimization
approaches are already comparable, indicating that further
skill improvements may be achieved using objective func-
tion formulations designed to correct multiple moments of
the distributions.

4.3. Computational Considerations

[45] Data assimilation with bias mitigation through a
priori calibration (DA-OPT1, DA-OPT6) improves surface

Figure 7. Probability density functions of skill (anomaly R)
values across the domain from different model integra-
tions for (a) surface soil moisture and (b) root zone soil
moisture.

Table 4. Comparison of Domain-Averaged Unbiased RMSE
(ubRMSE) Metric Values From Different Model Integrationsa

Experiment
Surface Soil

Moisture (m3 m�3)
Root Zone Soil

Moisture (m3 m�3)

OL 0.052 6 0.001 0.039 6 0.001
DA-NOSC 0.041 6 0.001 0.037 6 0.001
DA-STDN 0.038 6 0.001 0.035 6 0.001
DA-CDF 0.037 6 0.001 0.034 6 0.001
DA-OPT1 0.037 6 0.001 0.033 6 0.001
DA-OPT6 0.036 6 0.001 0.033 6 0.001

aAll with 95% confidence intervals.
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and root zone soil moisture estimates compared to bias
mitigation through a priori scaling (DA-STDN, DA-CDF).
It should be noted, however, that the estimation of the
optimization parameters through batch calibration has
an associated computational cost. The scalable computing
infrastructure in LIS helps in reducing this overhead through
parallel computation using multiple processors. The OPT6
integration requires 200 iterations of LIS runs over the
2000–2006 period, which translates to wall clock times of
approximately a week, using 128 processors. In comparison,
the OPT1 integration requires approximately a day (using
128 processors). The comparable skill of the short calibra-
tion-based run (DA-OPT1) relative to the long calibration-
based run (DA-OPT6) indicate that the high computational
cost associated with batch calibration can be considerably
reduced by using a shorter time period of observations that
adequately represents the overall climatology. The dimen-
sionality of the decision space can be reduced by selecting
a smaller number of parameters that are likely to be more
sensitive to the soil moisture simulations. The reduction in
the dimensionality of the decision space vector will also aid
toward reducing the computational cost associated with opti-
mization simulations.

4.4. Innovation Metrics

[46] In section 4.4, we examine the filter innovations
(observation minus model forecast residuals) from the
assimilation experiments. This analysis provides insights
into the performance of the data assimilation integrations
[Reichle et al., 2002; Crow and Van Loon, 2006; Reichle
et al., 2007; Kumar et al., 2008b]. Strictly speaking, the
EnKF provides optimal estimates only if several assump-
tions hold, including linear system dynamics with model
and observation errors that are Gaussian and mutually and
serially uncorrelated. If these assumptions hold, then the
distribution of normalized innovations (normalized with
their expected covariance) follows a standard normal distri-
bution, Nð0; 1Þ [Gelb, 1974]. The deviations from the
expected mean and variance of the normalized innovation
distribution provides a measure of the degree of subopti-
mality with which the assimilation system performs.

[47] Unsurprisingly, the integration without a priori bias
mitigation exhibits the largest innovation biases, reflecting
strong biases between the (synthetic) observations and the
corresponding model forecasts (not shown). The a priori
scaling (DA-STDN, DA-CDF) and a priori calibration
approaches (DA-OPT1, DA-OPT6) clearly mitigate theses
biases (not shown). Figure 8 presents maps of the variance
of the normalized innovations. For the bias-blind assimila-
tion integration (DA-NOSC), the variance of the normalized
innovations is on average 2.38 and far exceeds the target
value of 1, which reflects the strong underestimation of the
actual errors by the assimilation system because it ignores
the bias. Adding a priori bias mitigation strategies brings the
variance of the normalized innovations much closer to the
target value of 1. On the basis of this metric, the assimilation
using the CDF-based a priori scaling (DA-CDF) operates
closer to optimality than the simpler strategy that uses only
the first and second order rescaling (DA-STDN). Likewise,
variance of the normalized innovations is closer to the target
value of 1 when all years are used in the a priori calibration
(DA-OPT6) rather than just 1 year (DA-OPT1).

Figure 8. Variance of normalized innovations from differ-
ent assimilation experiments. The gray color represents grid
cells excluded from the computations. Domain-averaged
values are given above each plot.
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5. Summary
[48] Data assimilation methods such as the EnKF require

that the errors in the model and the observations are strictly
random. As a result, the presence of systematic or bias
errors needs to be addressed separately within the data
assimilation system. In this study, we evaluate a number of
bias mitigation strategies in the context of assimilating sur-
face soil moisture retrievals. Specifically, we examine the
use of land model parameter estimation as a bias correction
strategy prior to data assimilation. This strategy is compared
to the approach of scaling the assimilated observations to
the land model’s climatology prior to data assimilation. The
study is conducted using a fraternal twin experiment setup,
where synthetic observations generated using the catchment
LSM are assimilated into the Noah LSM. Five different
data assimilation experiments are conducted, each using a
different strategy to correct (or not) for bias prior to data
assimilation. The resulting soil moisture estimates are eval-
uated against the corresponding synthetic truth fields from
the catchment LSM.

[49] Our results indicate that a priori land model calibra-
tion is an effective strategy for bias mitigation in soil mois-
ture assimilation. The domain-averaged skill estimates (in
terms of anomaly R values) for the Noah open loop simula-
tion without any data assimilation are 0.47 for surface soil
moisture and 0.45 for root zone soil moisture. These skill
estimates improve to 0.63 for surface soil moisture and
0.54 for root zone soil moisture. when assimilation is con-
ducted without any bias correction (DA-NOSC). When
observations are assimilated after rescaling to the model
climatology, the assimilation skill improves further. Two
approaches for a priori scaling are considered: (DA-STDN)
using standard normal deviates and (DA-CDF) by matching
the CDFs of the observations to that of the model. Assimi-
lation using these a priori scaling approaches yields do-
main-averaged skill values of 0.71 and 0.73 for surface soil
moisture and 0.62 and 0.63 for root zone soil moisture,
respectively. Similar improvements in the surface and root
zone soil moisture estimates are observed with the assimi-
lation runs that employ optimized model parameters but
ingest unscaled observations. Two sets of optimized param-
eters are used in the experiments: (DA-OPT1) parameters
estimated from a single year of calibration and (DA-OPT6)
parameters estimated from 6 years of calibration. When
data assimilation is conducted using parameters from a sin-
gle year of calibration, skill estimates of 0.73 for surface
soil moisture and 0.62 for root zone soil moisture are
obtained. The use of the 6 year based parameters further
improves these skill measures to 0.75 for surface soil mois-
ture and 0.63 for root zone soil moisture.

[50] It was also observed that spatial variability in the
skill scores across the domain is reduced with the use of
optimized parameters, resulting in more spatially consistent
skill enhancements. The skill improvements in surface
fluxes were found to be comparable for data assimilation
following a priori scaling and a priori calibration. Similar
trends in skill scores are also observed if the unbiased
RMSE metric is used instead of anomaly R for evaluating
the results. Finally, the analysis of innovation diagnostics
also demonstrates that without the use of suitable bias cor-
rection, the assimilation system performs in a less than

optimal manner and that all four bias mitigation strategies
adequately address the bias issue.

[51] In the suite of synthetic experiments presented in
this article we are in effect calibrating the Noah surface soil
moisture climatology to that of the catchment LSM. It must
be stressed that this approach is chosen not because one
model (catchment) is more correct than the other (Noah). A
similar argument holds when satellite soil moisture retriev-
als are assimilated. In that case, the climatology of the
retrievals is not necessarily more correct than that of the
model. However, when brightness temperatures are assimi-
lated in radiance space instead of the retrievals, the model
should be calibrated to the observed brightness temperature
climatology. The long-term biases can be mitigated through
calibration and the remaining shorter-term biases can be
addressed with a priori scaling. The combined use of these
strategies will be examined in future radiance-based data
assimilation experiments.

[52] Though effective, the approach of using parameter
estimation for bias correction also suffers from the limita-
tions of the a priori scaling approaches. Since the parame-
ters are estimated in advance of data assimilation, any
subsequent changes in model behavior will not be captured,
unlike in the dynamic bias estimation algorithms. The opti-
mization formulation does not constrain the estimated pa-
rameters to conform to the traditional, look-up table–based
definitions of parameters. Here no attempt was made to
ensure the physical realism of the estimated parameters.
The calibration might also require additional constraints
to ensure that the behavior of related variables is not
adversely affected. Note, however, that we have found that
the estimates of the latent and sensible heat fluxes were
comparable for the assimilation integrations with bias cor-
rection (DA-STDN, DA-CDF, DA-OPT1, and DA-OPT6).
Furthermore, our results suggest that using model parame-
ter estimation could be a viable strategy for bias mitigation
in cases of relatively short (i.e., 1 year) satellite records.
This result is important for expediting the use of soil mois-
ture retrievals becoming available from SMOS and SMAP.

[53] The study also demonstrates the advanced capabil-
ities of the NASA LIS framework, including the develop-
ment of a new subsystem for optimization. This extension
encapsulates a range of advanced search algorithms suited
for both convex and nonconvex optimization problems.
In this particular study, the genetic algorithm, a heuristic
search technique based on principles of evolutionary com-
puting, is employed for estimating model parameters. The
optimization infrastructure within LIS is currently being
enhanced with a suite of uncertainty estimation algorithms
based on Bayesian methods. In contrast to the optimization
techniques that have already been implemented in LIS and
generate a single solution for parameters, the newer uncer-
tainty estimation tools infer distributions of parameters
based on the observational information. These parameter
distributions can then be used to condition the ensembles
used in the data assimilation system. The joint use of optimi-
zation and data assimilation tools presented here and future
LIS advancements will enable the increased exploitation of
observational data for improving hydrological modeling.
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