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[1] Surface soil temperature estimates at approximately 0.05 m depth are needed to
retrieve soil moisture from the planned Soil Moisture Active Passive (SMAP) L-band
(1.4 GHz) satellite. Numerical weather prediction (NWP) systems as operated by various
weather centers produce global estimates of soil temperature. In this study in situ data
collected over the state of Oklahoma are used to assess surface (soil) temperature from three
NWP systems: (1) the integrated forecast system from the European Center for Medium
range Weather Forecasts (ECMWF), (2) the modern-era retrospective analysis for research
and applications (MERRA) from the NASA Global Modeling and Assimilation Office, and
(3) the global data assimilation system used by the National Center for Environmental
Prediction (NCEP). The results are presented by hour of day with specific attention directed
to the SMAP early morning overpass time at around 6 A.M. local time, and the period of
1 April to 1 October 2009. It was found that the NWP systems estimate the 0.05 m soil
temperature at this time of day with an overall root mean square error of 1.9 to 2.0 K. It is
shown that this error can be reduced to 1.6 to 1.8 K when differences between the modeling
and measurement depth are accounted for by synchronizing each NWP set to match the
mean phase of the in situ data and adjusting the amplitude in accordance with heat flow
principles. These results indicate that with little calibration all products meet the SMAP
error budget criteria over Oklahoma.
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1. Introduction
[2] Numerical weather prediction (NWP) models devel-

oped by various weather centers produce estimates of a
wide range of land, atmosphere, and ocean variables. Some
of these variables are tied directly to the intended applica-
tions of the models, while others are intermediate variables
that have not been carefully scrutinized for accuracy and
reliability. Here we examine a rarely evaluated product,
surface soil temperature.

[3] The motivation for this particular investigation is the
need for accurate surface soil temperature products to
retrieve surface soil moisture from low-frequency passive
microwave observations. Of particular concern is the
planned National Aeronautics and Space Administration
(NASA) satellite called Soil Moisture Active Passive
(SMAP) [Entekhabi et al., 2010a], which will require
global estimates of surface soil temperature as a dynamic
ancillary resource.

[4] The type of soil moisture retrieval algorithm that will
be used by SMAP requires the effective temperature of the
emitting soil layer, a value related to the physical tempera-
ture of all soil layers and weighted by the proximity to the
surface and their dielectric properties [Wilheit, 1978]. Until
recently, all passive microwave satellite soil moisture prod-
ucts were derived from multifrequency sensors with the
lowest frequency either at C-band (�6 GHz) or X-band
(�10 GHz) [Jackson et al., 2010; Li et al., 2010; Njoku
et al., 2003; Owe et al., 2008]. For these frequencies the
soil moisture sensing depth is relatively shallow (�0.01–
0.02 m). These same sensor systems have all included a
Ka-band (�37 GHz) vertically polarized sensor and
researchers had been able to establish good relationships
between this channel and the effective temperature for
C- and X-band based emission [Holmes et al., 2009]. As a
result, there has not been a need for ancillary surface tem-
perature data.

[5] However, the existing multifrequency platforms have
limitations in how much soil moisture information they can
provide, and as a result a new generation of lower fre-
quency L-band (1.4 GHz) satellites are in various stages of
development and implementation. These offer an improved
depth of sensing, reduced vegetation attenuation, and in
the case of SMAP improved spatial resolution products.
The first of these is the European Space Agency Soil Mois-
ture Ocean Salinity (SMOS) satellite [Kerr et al., 2001]
launched in 2009, which currently uses modeled soil

1Hydrology and Remote Sensing Lab, USDA Agricultural Research
Service, Beltsville, Maryland 20705, USA.

2Global Modeling and Assimilation Office, NASA GSFC, Greenbelt,
Maryland 20771, USA.

3Oklahoma Climatological Survey, University of Oklahoma, Norman,
Oklahoma 73072, USA.

Copyright 2012 by the American Geophysical Union
0043-1397/12/2011WR010538

W02531 1 of 14

WATER RESOURCES RESEARCH, VOL. 48, W02531, doi:10.1029/2011WR010538, 2012

http://dx.doi.org/10.1029/2011WR010538


temperature from the European Center for Medium range
Weather Forecasts (ECMWF) as an input to the soil mois-
ture retrieval scheme. The next L-band satellite is NASA’s
Aquarius/SAC-D satellite [Le Vine et al., 2007] launched in
June 2011. In addition to an L-band radiometer this satellite
also includes a Ka-band radiometer from Argentina’s
National Space Activities Commission (CONAE) which
can be used for estimating soil temperature. The third satel-
lite is the NASA’s Soil Moisture Active Passive (SMAP)
mission (2014 launch), which will have a higher spatial re-
solution but no onboard source of soil temperature informa-
tion [Entekhabi et al., 2010a]. For SMAP it will thus be
necessary to provide soil temperature as a dynamic ancil-
lary data set. Some requirements for this data set are that it

[6] 1. includes the temperature of the soil at a depth of
0.05 m below the surface,

[7] 2. has a spatial resolution of at least 0.25 deg so that
the resolution requirements for soil moisture are not
compromised,

[8] 3. closely matches the overpass time of SMAP, at
6 A.M./P.M. local time,

[9] 4. will be available within a few hours of the satellite
observation, so that the latency goals for soil moisture
retrievals can be achieved, and

[10] 5. meets the error budget of SMAP. In the error
budget for achieving the target surface soil moisture accu-
racy of 0.04 m3 m�3, the SMAP project has assigned an
absolute root mean square error of 2 K to the temperature
input [O’Neill et al., 2010].

[11] One approach to providing the effective temperature
for SMAP is to use analysis or forecast output from global
NWP systems that are run operationally or in research
mode at weather centers such as ECMWF, the National
Center for Environmental Prediction (NCEP), or NASA’s
Global Modeling and Assimilation Office (NASA/GMAO).
This approach would satisfy the requirements for spatio-
temporal resolution and latency noted above. The remain-
ing error budget requirement is the focus of this
investigation. It should also be noted that in NWP systems
that the latency can be traded off against accuracy; recog-
nizing that the accuracy of NWP-based soil temperatures
presumably degrades with forecast lead time.

[12] To date, very little analysis has been performed to
assess the accuracy of the NWP soil temperature data prod-
ucts. In addition, the relationship between the soil tempera-
ture provided by the NWP system and that required for
passive microwave radiative transfer modeling and soil
moisture retrieval, specifically at L-band, requires further
study.

[13] A benefit of using L-band for soil moisture remote
sensing is the deeper depth that contributes to the measure-
ment. Theoretical models predict that the thickness of the
soil layer that contributes 63% of the soil emission at
L-band for an incidence angle of 50 deg varies between
0.015 m for a wet soil to 0.15 m for a dry soil [Ulaby et al.,
1986]. Regardless of the actual wetness, this represents
a larger part of the root zone than the previous generation
of instruments measured. At the same time, this deeper
sensing depth means that the originating layer cannot be
assumed to have a homogeneous temperature profile and
will require the need for the parameterization of the effec-
tive temperature to account for the dependence of the

sensing depth on soil moisture. Simple parameterizations
exist that are based on the weighting of the temperature of
a surface layer, typically at 0.05 m depth, and a deeper soil
layer, typically at 0.5 m depth [Choudhury et al., 1982;
Holmes et al., 2006; Wigneron et al., 2001].

[14] Related to this discussion of L-band effective depth
is the uncertainty regarding the actual depth of the soil
layer that the available soil temperature products represent.
The daily temperature cycle is determined by the surface
energy balance between the net radiation forcing, the latent
and sensible heat fluxes into the atmospheric boundary
layer, and the ground heat flux into the soil. Although the
incoming solar radiation reaches its maximum at solar
noon, the net energy input into the soil remains positive for
some hours longer resulting in a continued warming of the
soil layers. The skin temperature, as measured by thermal
infrared sensors, is generally found to reach its maximum
at 60 to 90 min after solar noon [Betts and Ball, 1995;
Fiebrich et al., 2003]. The further away a specific soil layer
is from the surface, the longer the lag between its daily
maximum temperature and solar noon. This is also gener-
ally true for the air temperature, as it is warmed from the
surface, but the near-surface air temperature profile is
largely determined by turbulent dynamics.

[15] The length of the time lag between soil temperature
at two different depths is determined by the vertical dis-
tance between the two depths and the thermal properties of
the medium. As shown by Van Wijk and de Vries [1963]
this phase shift is accompanied by an exponential reduction
in amplitude of the daily temperature cycle with increasing
depth. The combined effect of the phase shift and ampli-
tude reduction makes it difficult to compare temperature
estimates from different depths directly. As will be shown
in this paper, it is possible to synchronize measurements
from different sources and minimize the uncertainty related
to differences in measurement (or model) depths. This
method not only enables the comparison of various temper-
ature products, but may also facilitate the modeling of the
effective soil temperature for L-band.

[16] In order to perform a robust assessment of the NWP
soil temperature products it would be useful to have high
quality and consistent in situ observations for a wide range
of climate, vegetation, and soil conditions. This network
would also take into consideration scale differences
between the NWP products and point samples. There are
no data sets that meet all of these criteria. The Oklahoma
mesonet [McPherson et al., 2007] is one of the few, if not
the only, network that may meet most of these require-
ments. In this investigation, we use in situ data from
the Oklahoma mesonet to assess the near surface soil tem-
perature output from the three NWP systems hosted at
ECMWF, NCEP, and GMAO. The analysis is focused on
2009, the latest year for which all data are available to us
for the entire growing season. In order to facilitate the sta-
tistical analysis of the temperature records, the NWP soil
temperature data are synchronized to match the phase of
the in situ data while proportionally adjusting the amplitude
of its underlying harmonics. This procedure removes a
large part of the systematic differences between the data
sets and can be applied to any pair of data sets, without an-
cillary information. The results will be discussed in terms
of the requirements for the L-band microwave retrievals.
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2. Materials
2.1. Time and Location

[17] This study analyzes soil temperature data at a
15 min resolution for a year of data over the entire state of
Oklahoma. Although the analysis is performed for both
2004 and 2009, the focus will be on data from the year
2009, as this is the most recent full year for which data are
available and for which the NWP model versions are clos-
est to current specifications. The location was determined
by the availability of Oklahoma mesonet data (section 2.2)
and also because of the dynamics of temperature and mois-
ture in this region. Oklahoma spans the geographical region
of 33–37�N (�400 km), and 94–103�W (�800 km). The
climate ranges from subtropical-Mediterranean (Koppen
climate classification Cfa) to dryer semiarid, or steppe cli-
mate (BSk) toward the western panhandle of the state.
Accordingly, the vegetation ranges from short grassland
and shrubs in the west, to pastureland and forests in the
east (see Figure 1). The annual average temperature in the
center of the state is about 16�C, with an average air tem-
perature of 3�C in January and 27�C in July.

2.2. Ground Data

[18] The Oklahoma mesonet [McPherson et al., 2007;
Illston et al., 2008] is a statewide network of meteorologi-
cal stations. At each location the soil temperature is meas-
ured with thermistor probes installed horizontally at depths
of 0.05, 0.1, and 0.3 m under native sod and at depths of
0.05 and 0.1 m under bare soil. Although the sampling rate
is 30 s, only the average over 15 min is reported with an ac-
curacy of 0.5�C for a temperature range of �30 to 55�C.
Various automated and manual quality control checks are
performed by the Oklahoma mesonet, including a site visit
at least three times a year [Shafer et al., 2000]. For this
study all data that are not labeled ‘‘good’’ were removed
from the analysis. This leaves us with 106 stations for
which at least 100 days of soil temperature data were avail-
able during 2009. An additional comparison of the 0.05 and

0.1 m temperature records was performed to establish that
there was consistency between these depths. Stations with
clear discontinuities that can be attributed to a change in
sensor depth after reinstallation during the site visit were
identified and only the measurements after such an event
are used in this study. In all, 5 of the 106 stations were
removed from the analysis completely.

[19] The purpose of this paper is to evaluate how well the
0.05 m soil temperature can be estimated from NWP prod-
ucts. Of the two types of mesonet soil temperature data,
under native sod or bare soil, the measurements under the
vegetated plot were expected to be a better approximation
of the mean soil temperature at 0.05 m for the grid cell since
most of the land surface is covered by vegetation. For this
reason only the two shallowest measurements under native
sod will be used, and are referred to as T5 and T10 with the
subscript indicating the nominal measurement depth in cen-
timeters. The 101 stations that were available for this study
cover 63 half degree grid boxes within 33–37�N, 94–103�S,
and their locations are indicated in Figure 1. For each of
these 63 grid boxes, one station was selected to represent
the in situ data for that box (detailed in section 3.3). For the
27 grid boxes that contain more than one station a second
station is selected to replicate the experiment and validate
the results. The remaining 11 of 101 stations are included in
the analysis of the in situ observations (section 3.3). The
names of all stations used in this study are listed in Table 1.
The exact location and specific information for each site
can be found on http://www.mesonet.org/.

2.3. Numerical Weather Prediction Products

[20] Three NWP products, ECMWF, NCEP, and
MERRA, are evaluated in this study. The NCEP and
ECMWF outputs represent operational near real time
(NRT) products, whereas MERRA is a reanalysis product
generated with the system that was operational at GMAO
during 2010. All three centers are able to provide NRT
products very similar to the ones evaluated in this paper.

Figure 1. Mesonet station locations indicated on top of a land cover classification for Oklahoma (from the
2001 national land cover database for the United States: NLCD 2001, www.mrlc.gov [Homer et al., 2007]).
Mesonet station locations of the Primary set are indicated by an �, the Replication set with a blue þ, and the
stations that failed our quality control are indicated with a red x. Other stations that are only used in Figure 3
are indicated with blue dots.
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These products are currently considered for use by the
SMAP mission. The general features of the three NWP
products are summarized in Table 2. Sections 2.3.1 through
2.3.3 provide additional detail.

2.3.1. ECMWF Analysis and Forecasting System
[21] The ECMWF analysis and forecasting system,

called the integrated forecasting system (IFS), includes a
comprehensive earth-system model, the deterministic
atmospheric (DA) model. The spatial resolution of the DA
improved over time; for 2004, IFS version CY25R1 has an
average distance between grid points of 39 km, from 2006
onwards this was improved to 25 km and in January 2010
to 16 km. The routine global atmospheric analyses are pro-
duced at the synoptic hours 0 and 12 h UTC, and output is
provided at 6-hourly intervals. More details about ongoing
resolution improvements can be found at: http://
www.ecmwf.int/products/data/operational_system/.

[22] The surface processes are described by TESSEL,
the tiled ECMWF scheme for surface exchanges over land.
In 2007 this land surface model was changed to improve
the description of hydrological processes with HTESSEL
[Balsamo et al., 2009]. The tiles are based on static land
cover information. The skin temperature is defined for each
tile, and is in thermal contact with a single four-layer soil
profile (or one layer if snow is present). The soil heat
budget follows a Fourier diffusion law, modified to take
into account the thermal effects of soil water phase
changes. The soil temperature represents the layer from 0
to 0.07 m and is analyzed at 00, 06, 12, 18 UTC using
screen level (2 m) air temperature increments [Mahfouf
et al., 2000].

2.3.2. Modern-Era Retrospective Analysis for
Research and Applications

[23] The modern-era retrospective analysis for research and
applications (MERRA) is generated by the NASA GMAO

(http://gmao.gsfc.nasa.gov/research/merra, [Rienecker et al.,
2011]). The MERRA products are generated using Version
5.2.0 of the GEOS-5 DAS [Goddard Earth Observing Sys-
tem (GEOS) Data Assimilation System (DAS)] with the
model and analysis each at 0.5 by 0.67 deg resolution in
latitude and longitude, respectively, and with a 6-hourly
analysis cycle. Two-dimensional diagnostics, describing
the radiative and physical properties of the surface, are
available as hourly averages. Currently, MERRA data are
available from 1979 and are updated through the present
with approximately two month latency. MERRA is a frozen
system but resembles the GMAO quasi-operational analy-
sis with near real time availability that currently runs at a
0.25 deg resolution.

[24] The surface processes are described by the NASA
catchment land surface model [Ducharne et al., 2000;
Koster et al., 2000]. Each MERRA grid cell contains sev-
eral irregularly shaped catchments, called tiles. Within
each tile, surface exchange processes and skin temperatures
are represented separately for subtiles that are characterized
by one of three unique hydrological states: saturated, un-
saturated, and wilting. The subtile areal fractions are mod-
eled dynamically based on the total amount of water in
the tile. The skin temperature of a grid cell is then
obtained by area-weighted averaging of the skin tempera-
tures of all subtiles within the grid cell. The subtile skin
temperatures are prognostic variables of the model and
represent a bulk surface layer with a small but finite heat
capacity. For all vegetation classes except broadleaf ever-
green trees (which are not present in Oklahoma), this bulk
surface layer represents the vegetation canopy and a skin
layer at the top of the soil column (effective layer depth
<1 mm). Below the bulk surface layer, a single deeper
soil temperature profile for each tile is modeled with a
heat diffusion equation using six layers, with layer depths
(from top) of 0.10, 0.20, 0.39, 0.76, 1.51, and 10.00 m.

Table 1. List of 106 Mesonet Stations With at Least 100 Days of Soil Temperature Data for the Year 2009a

Primary set (63) Ada, Altus, Alva, Antlers, Apache, Ardmore, Arnett, Beaver, Blackwell, Boise City, Broken Bow, Burneyville, Butler,
Camargo, Chandler, Cherokee, Cheyenne, Chickasha, Clayton, Cloudy, Claremore, Cookson, Durant, El Reno, Erick,
Eufaula, Foraker, Grandfield, Hectorville, Hinton, Hollis, Hooker, Idabel, Kenton, Ketchum Ranch, Kingfisher, Lahoma,
Marena, May Ranch, Medicine Park, Miami, Marshall, Newkirk, Nowata, Norman, Oilton, Okemah, Pauls Valley,
Pawnee, Porter, Pryor, Putnam, Ringling, Shawnee, Slapout, Spencer, Stuart, Tipton, Tishomingo, Vinita, Walters,
Webbers Falls, Westville

Replication set (27) Acme, Breckinridge, Bristow, Centrahoma, Fairview, Freedom, Haskell, Hobart, Inola, Jay, Lane, Madill, Newport,
Oklahoma City East, Oklahoma City North, Oklahoma City West, Perkins, Seiling, Skiatook, tigler, Stillwater, Vanoss,
Washington, Waurika, Weatherford, Wilburton, Wynona

Rest set (11) Bixby, Lake Carl Blackwell, Fittstown, Mangum, Minco, Ninnekah, Talihina, Watonga, Woodward, Okmulgee, Red Rock
Removed by our QC (5) Bessie, Byars, Copan, Guthrie, Wister

aStations with insufficient data are not listed. The stations of the primary set are used in the main analysis. The replication set is used for the replication
exercise. The rest set is only used in Figure 3.

Table 2. Specifications of NWP Products

NWP Center/Model ECMWF/IFS GMAO/MERRA NCEP/GDAS

Output interval (UTC) 6-hourly (0z/6z/12z/18z) Hourly average centered on the half h 6-hourly (0z/6z/12z/18z), þ 3 h forecasts
Spatial resolution
2004 39 km 0.5 � 0.67 deg 0.469 deg (T254)
2009 25 km 0.5 � 0.67 deg 0.313 deg (T382)
Regridding to 0.5 deg Linear average Bilinear interpolation Bilinear interpolation
Parameters T(skin) T(0–0.07 m) T(skin) T(0–0.1m) T(skin) T(0–0.1 m)
Name after phase

synchronization to T5

TEC
skin TEC

soil TME
skin TME

soil TNC
skin TNC

soil
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In this study we analyzed the gridded skin temperatures
and the temperature of the first soil layer (0–0.1 m) over
land. This last parameter was only available from a land-
only reprocessing of the MERRA data for the year 2009
[Reichle et al., 2011].

2.3.3. NCEP Global Data Assimilation System (GDAS)
[25] GDAS is NCEP’s operational forecast system [Ek

et al., 2003] (http://www.emc.ncep.noaa.gov/GFS/). The
land surface model, for the year 2004, was the Oregon State
University (OSU) LSM, with 2 soil layers (0–0.1 m and
0.1–2 m). It has an average distance between grid points of
50 km, but this has been increased to 27 km as of 27 July
2010. The LSM was replaced with the NCEP Noah LSM
starting in 31 May 2005, and included an increase in soil
layers from two to four by dividing the second soil layer in
three. Both the skin temperature and the 0–0.1 m soil tem-
perature are analyzed in this study. The 6-hourly analysis
is supplemented with 3 h forecasts to provide output at
3-hourly intervals.

2.4. Spatial Scales and Recording Times

[26] The analysis was performed at 0.5 by 0.5 deg reso-
lution after regridding the NWP data to a common regular
grid. The regridding method was tailored to the native reso-
lution of each set ; the MERRA and NCEP data were
regridded by means of a bilinear interpolation; the higher
resolution ECMWF data was averaged to the lower target
resolution.

[27] In the analysis, a single ground station is selected to
represent the ‘‘truth’’ for each grid box. Obviously there is
a large-scale discrepancy between the spatial resolution of
the NWP data and the single point observation. The effect
of this difference should be mitigated in the overall analysis
by the size of the in situ network that allows for 63 separate
grid boxes to be evaluated, which averages out some of the
potential bias. In addition, the analysis is repeated for a sec-
ond group of stations for the 27 grid cells that are sampled
by more than one station.

[28] The times associated with the NWP outputs are
defined in coordinated universal time (UTC). The more
sparsely sampled NWP soil temperature series are interpo-
lated to the 15 min interval of the in situ data by means of a
piecewise cubic spline interpolation. As shown by Aires
et al. [2004], this interpolation method preserves the ampli-
tude and the time of maximum and minimum temperatures
of the underlying cycle. The observation times of the meso-
net data are recorded in central standard time (CST), which
is 6 h behind UTC for Oklahoma and has its meridian at
90�W. It is very important in this study that we assure that
all observations are aligned relative to the position of the
sun, to facilitate the assessment at the overpass times of the
sunsynchronous satellite SMAP. To illustrate, the morning
overpass of SMAP will occur at about 6:23 A.M. local so-
lar time (LST) at the latitude of Oklahoma (for a descend-
ing equator overpass at 6 A.M. [Johnson et al., 1994]).
However, in CST this will be at 6:43 A.M. in eastern Okla-
homa, and at 7:13 A.M. at the end of the western panhan-
dle. For this reason, all time stamps are converted to LST
by adding the time correction factor, longitude/360, to the
time in UTC (for the time in decimal days). For practical
reasons, the small deviations throughout the year (of up to

15 min) that are caused by the eccentricity of the Earth’s
orbit and the Earth’s axial tilt are not corrected for.

3. Methods
3.1. Performance Metrics

[29] The soil temperature products were systematically
compared to the in situ data for different periods of the
year and for different hours of the day. Two bias independ-
ent performance metrics are used; the Pearson’s correlation
(�) and the standard error of estimate (SEE):

SEE ¼ �true

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
; (1)

where �true is the (time series) standard deviation of soil
temperature. Note that we are using the standard deviation
of the in situ data to approximate �true instead of the stand-
ard deviation of the model data (�est), which is not the tra-
ditional approach. Assuming that the standard deviation of
the in situ data is an unbiased estimate of �true, the SEE
represents only the random error and indicates the lowest
attainable error level in an application framework when all
systematic differences are removed. In practice, the sys-
tematic differences will not always be known and two met-
rics that quantify the absolute error will be more relevant :
the root mean square error (RMSE) and the unbiased RMSE
(ubRMSE). These well known metrics can be expressed
in terms of �true, �est, �, and mean bias (b) [Entekhabi et al.,
2010b]. For the discussion in the present paper it is useful
to rewrite those expressions in terms of SEE:

ubRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEE2 þ ð�true�� �estÞ2

q
; (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ubRMSE2 þ b2

p
: (3)

[30] The relationships between these three performance
metrics (equations (1) to (3)) show that SEE � ubRMSE �
RMSE and may serve to quantify a decreasing level of bias
removal (in the same units as the variable being assessed).

[31] Equation (2) shows that the lowest ubRMSE is
obtained when �est ¼ �true�. Considering that in a real
application � will always be below unity, this implies that
the lowest ubRMSE (and RMSE) is obtained when the esti-
mated variability is lower than the true variability. This fea-
ture of the RMSE metrics is discussed in more detail by
Gupta et al. [2009]. Because the � values in temperature
comparisons are generally high (between 0.9 and 0.95), this
effect will be limited to favoring an underestimation of �est

by 5% to 10%.
[32] The performance metrics are affected by the accu-

racy of the in situ data, and how representative the sites are
for their 0.5 � 0.5 deg pixel. For example, an unrepresenta-
tive ground site can result in both a constant systematic
bias (offset) and a proportional error (slope), both of which
will directly affect the RMSE.

3.2. Soil Temperature Dynamics

[33] The diurnal and seasonal cycles of heating of the
land surface result in distinct periodic temperature varia-
tions that propagate downward below the surface. Assuming
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only conductive heat transfer and a long-term average tem-
perature that is constant with depth, the propagation of the
temperature waves to deeper layers can be described by an
exponential decrease in amplitude (A) and an increase in
phase shift (d’) (e.g., Van Wijk and de Vries [1963]). Both
modulations are parameterized as a function of vertical dis-
tance (dz) and damping depth (zD) :

d’ ¼ �dz

zD
; (4)

Az2 ¼ Az1exp
dz

zD

� �
; (5)

where dz (dz ¼ z2 � z1) is positive in the upward direction.
The damping depth is an expression of the thermal proper-
ties of the medium, in particular the thermal diffusivity
(a, m2 s�1), and indicates the distance (zD) over which the
amplitude of the wave is reduced by 63%:

zD ¼
ffiffiffiffiffiffiffiffi
2a

2�f

s
; (6)

where f (1 s�1) is the frequency of the temperature wave.
[34] The thermal properties in a soil are mainly deter-

mined by soil moisture content and soil type. To assess the
impact of these factors on the variability and size of the
phase shift, the thermal diffusivity was calculated for a
range of soil types from sand to silt and clay according to
Peters-Lidard et al. [1998]. The damping depth for a har-
monic with a period of a day is calculated according to
equation (6), and the associated phase shift over 0.05 m
vertical distance then follows from equation (4). The simu-
lation results are displayed in Figure 2, and the results relat-
ing to the main soil types as found in Oklahoma are
indicated in the legend. Based on these simulations the
phase shift is nearly constant at soil moisture levels above

0.10 m3 m�3, with values ranging between 70 and 100 min
depending on soil type. The increase in thermal conductiv-
ity with moisture content is matched by an increase in heat
capacity, making the thermal diffusivity insensitive to soil
moisture in this range. At low moisture levels on the other
hand, the diffusivity is so low that the heat dissipates only
slowly in the soil and large vertical gradients are sustained,
resulting in the large phase shifts of up to 180 min in the
dry range of Figure 2. Over the year and between different
localities the propagation of temperature harmonics into
the soil may thus be described by a single set of equations
that is only weakly affected by variations in soil moisture,
if the soil is not very dry.

3.3. Phase Synchronization and
Amplitude Adjustment

[35] Because soil temperature harmonics change with
depth, soil temperature records from different depths can-
not be compared directly. Even a slight vertical misalign-
ment will result in an artificial increase in the error as
calculated between the two records. The calculated error
will then not only depend on the accuracy of the assessed
records, but also on the time of day and represented soil
depths. To better compare two temperature records, we can
apply the heat flow principles as described in section 3.2 to
remove the phase difference and reduce the bias in ampli-
tude. Following equation (4), the relative distance (the ver-
tical distance between input and target depth, divided by
the damping depth) can be replaced by d’, the phase shift
between the mean daily temperature harmonic of two tem-
perature series. This phase shift captures in a single number
the integrated effect of the soil thermal properties and can
be calculated between any two time series of soil tempera-
ture (see below). The temperature at the target depth is then
estimated by applying both the phase shift and the expo-
nential amplitude decay to the underlying harmonics of the
original temperature record. Decomposing the temperature
signal in the underlying harmonics is done in a way similar
to the classic Fourier analysis as described by Van Wijk
and De Vries [1963]. The exact approach used here is
described in Appendix A.

[36] The phase synchronization method was first tested
on the in situ data as follows. We estimate the temperature
at the depth of the shallow record (T5) from the deeper sen-
sor measurements (T10). This new estimate, labeled T5–10,
is based on the observed mean phase difference d’ between
T5 and T10:

T5�10 ¼ f ðT10; d’Þ: (7)

[37] The phase of each record is determined by optimiz-
ing ’ so that the RMSE is minimized between the mean di-
urnal cycle and the sine function Tsim:

Tsim ¼ T þ A sin ½ðt � ’Þ2�� �=2�; (8)

where T and A are the mean and amplitude of the diurnal
cycle. A value of ’ ¼ 0 would have a maximum at local so-
lar noon. Figure 3 shows the fitted values of ’ for T5 in the
top panel. There is poor phase coherence with a range of ’
from 3 to 5 h. The standard deviation is 30 min for a mean
phase shift of 4 h and 10 min. If all sensors were installed

Figure 2. Theoretical phase shift of the temperature
harmonic with a period of a day over a 0.05 m vertical dis-
tance. The gray area indicates the range of values for a po-
rosity of 0.45 m3 m�3, and quartz contents from 0 to 100%.
The three main soil types as found in Oklahoma are indi-
cated as well : Sandy loam (62% sand, 10% clay), loam
(43% sand, 15% clay), and silt loam (26% sand, 13% clay).
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at the same depth, a narrower distribution of ’ would be
expected. But installing and maintaining the temperature
sensors at a constant shallow depth is difficult. The topsoil
can be affected by rainfall, freeze-thaw heaving, vegeta-
tion, and animal activity, which can all lead to erosion or
sedimentation of several centimeters. Therefore, we cannot
assume that T5 represents exactly the 0.05 m soil depth.
Furthermore, there may be differences in vegetation density
between the measurement sites that can cause an apparent
damping of the temperature harmonics. Both effects may
explain the poor phase coherence of the temperature
records as found for T5 (Figure 3, top panel).

[38] If the sensors for T5 and T10 are installed vertically
above each other, disturbances at the surface should not
affect the distance between them. However, settling of the
sensors after installation may still affect the distance
between the sensors. The phase difference between the
0.05 and 0.1 m (nominal) in situ temperature records is
shown in Figure 3 (middle panel). The mean d’ of 85 min
fits comfortably within the theoretical range as given in
section 3.2 (Figure 2), and the bulk of the stations have a
phase shift that is within the expected range for wet soils
and a vertical difference of 0.05 m (70 to 100 min).

[39] When we group the stations by soil type into three
groups the differences in mean phase again confirm the pre-
dictions of the theoretical model. The sandy loam group
has the lowest average d’ of 78 min. The phase shift
increases for the loam group (d’ ¼ 86 min) and the silt
loam group (d’ ¼ 90 min). It is clear, however, that the
soil texture differences alone cannot explain the wide range

of phase differences as measured at the stations. Therefore,
the variation in phase shift between the stations is largely
attributed to deviations in the actual vertical distance
between the sensors from the nominal 0.05 m.

[40] Using these values for d’ we estimate the tempera-
ture at the depth of T5 from T10 for each site (T5–10). The
RMSE as calculated between T5–10 and T5 for each site is
generally well below the stated accuracy for the probes
(0.5 K), see the lower panel of Figure 3. Some stations
have a higher RMSE, which we attribute to a change in the
relative depth of the sensors over the year. To minimize
possible errors in the in situ measurements, two stations
(Bessie and Guthrie) with an overall RMSE of more than
0.8 K were discarded from further analysis, in addition to
three other stations that were removed outright because of
large discontinuities in the data set (see Table 1).

[41] Figure 4 shows the daily cycle of the aggregated
performance metrics for the selected stations. The top panel
of Figure 4 illustrates the effect of the temperature phase
synchronization. The original temperature record (T10: red
dash), as measured at a nominal depth of 0.1 m, has a
smaller amplitude for the daily temperature cycle than the
in situ measurement at 0.05 m (T5: black x), and the daily
maximum occurs 85 min later. The mean diurnal cycle of
the phase synchronized record (T5–10: blue line) is virtually
indistinguishable from that of the actual in situ measure-
ments at 0.05 m. As a result, all performance metrics
improve dramatically from the case when no synchroniza-
tion is applied (middle panel), to the phase synchronized
results (lower panel). The RMSE of T10 (versus T5; middle

Figure 3. (Top) Phase shift from local solar noon of the daily harmonic of in situ soil temperature (T5),
(middle), phase difference between the T5 and T10 in situ soil temperatures, and (bottom) RMSE for the
estimated in situ soil temperature at 0.05 m (T5–10). In the top and bottom graph stations that are selected
as the primary set are indicated in yellow, the replicaton set in green, the rest set in orange, and the sta-
tions with RMSE >0.9 in blue. In the middle graph the stations are grouped by soil texture class.
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panel, red line) has minima of �0.4 K at 8 A.M./P.M. but
spikes to 1.6 K at other times of the day. Applying the
phase synchronization reduces this error throughout the
day, as is evident from the RMSE of T5–10 (versus T5)
which ranges between 0.3 and 0.4 K (lower panel, blue
line).

[42] The phase synchronization method uses only the d’
determined from the mean diurnal temperature cycle as
measured over the growing season; it implicitly assumes
constant soil thermal properties throughout the year. De-
spite this simplification, the RMSE of T5–10 (versus T5) is
well below the stated accuracy of the probes (0.5 K)
throughout the day. Therefore the phase synchronization
method will be used in the following analysis to match the
phase of each NWP product with that of the in situ data.

3.4. Implementation of Phase Synchronization for
NWP Soil Temperature Products

[43] The uncertainty about the actual depth of the in situ
sensors, as shown in section 3.3, complicates a robust
assessment of NWP temperature products. In order to max-
imize the phase coherence of the validation target, the sta-
tion with the phase of T5 closest to the average of all
stations was selected if more than one station was available
for a particular grid box.

[44] The mean phase difference between the T5 in situ
data and the NWP output is then determined. The NWP data
set is corrected for this mean phase shift to create a data set
for which the phase of the mean daily cycle is in line with
that of T5. This operation does not affect the temporal and
spatial differences in phase of the NWP data. The assess-
ment of the NWP temperature will be based on both the
original and these synchronized data sets. The synchron-
ized sets should be regarded as the current best estimate of
the 0.05 m temperature to be obtained from these NWP
models.

[45] As a test on how well the phase synchronization can
reproduce the NWP model physics we modeled the NWP
soil temperature from the NWP skin temperature using the
phase shift and amplitude adjustment approach. For exam-
ple, we estimated the MERRA 0–0.1 m soil temperature
from the MERRA skin temperature. When compared to the
actual MERRA 0–0.1 m temperatures, the resulting esti-
mates have an RMSE of between 0.2 and 0.4 K and an R2

above 0.997 throughout the day showing that the phase
synchronization reproduces the MERRA soil physics with
great accuracy, even though the amplitude is underesti-
mated by 10%.

[46] The same procedure for NCEP and ECMWF yields
higher RMSE values of 0.6 at night to 1.2 K during the
day. The lower accuracy of estimating the NCEP and
ECMWF soil temperatures can be explained by the lower
output interval (3 and 6 h, respectively) as opposed to the
hourly output from MERRA. We confirmed this explana-
tion by subsampling MERRA at 6-hourly intervals and
found that the characterization of the higher frequency dy-
namics through the cubic spline interpolation becomes
much poorer, which in turn complicates the phase synchro-
nization and increases the RMSE. For applications such as
SMAP, all NWP centers should be able to provide output at
a custom sampling frequency. However, higher sampling
was not available for all products in this paper. We there-
fore approximate the higher sampling by averaging the skin
and soil temperatures before performing the interpolation.
Because the phase difference between skin and soil temper-
atures is 2 to 4 h, this averaging effectively doubles the
sampling frequency of the temperature series. For this rea-
son we include the average of the skin and soil tempera-
tures from each model as an additional data product in the
following analysis (where the average is computed prior to
phase synchronization). As will be shown below, this aver-
age temperature provides the best performance.

4. Intercomparison of NWP Products
[47] Surface (soil) temperature products from different

NWP models that are most relevant to the SMAP mission
were compared. These are the (1) ECMWF’s operational
integrated forecast system, (2) GMAO’s MERRA, and (3)
the global data assimilation system (GDAS) as used by
NCEP (section 2.3). Table 2 is an overview of the general
specifications of these products. All products are resampled
to a 0.5 by 0.5 deg box (see section 2.4) and synchronized
to match the phase of the in situ data as described in section
3.4, and hereinafter referred to as TEC, TME, and TNC to
indicate the NWP model, and with either the subscript skin
to indicate the skin temperature, soil for the temperature of

Figure 4. Results of phase synchronization method by
hour of day. (a) Mean diurnal cycle of in situ measurements
(red: T10; black x: T5) and the estimated T5–10 (blue). (b)
SEE (top of gray shading), ubRMSE (top of black shading),
and RMSE (solid line) when T10 is compared with T5; (c)
same as but for T5–10 versus T5. Note that the stated accu-
racy of the sensors is 0.5 K. Note that in (b) and (c)
ubRMSE is only marginally greater than SEE.
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the models first soil layer, and avg for the average of the
skin and soil temperatures (section 3.4).

4.1. General Characteristics of the NWP Temperature
Products

[48] As a first step these products are compared to the in
situ data in terms of mean, amplitude, and phase of the
average diurnal cycle for April through October 2009.
These results give an indication of the characterization of
the daily temperature cycle by each model, and are listed in
Table 3.

[49] The theoretical considerations on the relationship
between the phase and the depth of temperature measure-
ments, as detailed in section 3.2, may help us to interpret
the phase difference with in situ data of the NWP tempera-
ture products. Based on theory and the empirical evidence
of the in situ data (section 3.3) it was found that a phase
difference of 85 min corresponds to a 0.05 m vertical dis-
tance in soil temperature measurements. It was further
found that the in situ data have, on average, a peak temper-
ature at 4 h and 6 min after solar noon (section 3.3).
Assuming that the mean sensor depth is equal to the nomi-
nal depth of 0.05 m we can then interpret the phase differ-
ence between the NWP temperature products and the in
situ data T5.

[50] 1. The phase difference with T5 for all NWP skin
temperatures (Table 3) exceeds the 85 min that is expected
for just the 0.05 m soil layer, which may be expected for a
skin temperature corresponding to the top of a vegetation
layer (with its own heat capacity). MERRA’s Tskin has the
largest phase difference with T5, it peaks just an hour after
noon. The Tskin of ECMWF and NCEP are 1 h 45 min and
2 h after solar noon, respectively.

[51] 2. The phase of the soil temperature product shows
a greater variety between the three models. The phase of
MERRA’s Tsoil is almost exactly the same as that of T5 and
therefore corresponds to the center of the soil layer
(0–0.10 m). Likewise; the 43 min phase difference for
ECMWF’s Tsoil agrees with the center of that models first

soil layer (0–0.07 m). The phase of NCEP’s Tsoil, more
than 2 h after the in situ data, would correspond to a depth
of 0.14 m which is well below the NCEP topsoil tempera-
ture layer (0–0.1 m).

[52] 3. Averaging the skin and soil temperatures results
in phase differences of between 86 and 115 min. This is a
smaller variation than recorded for the individual products
and corresponds to a soil depth at the top of the soil (0 m).

[53] From this analysis it is clear that the NWP soil tem-
perature data sets relate to quite different soil (or vegeta-
tion) model layers. Besides the misalignment in phase
these differences in model depth result in large biases in
amplitude of the diurnal temperature variation. By applying
the phase synchronization the effect of these depth-related
differences can be reduced significantly. For example, for
MERRA’s Tavg the bias in amplitude is reduced from 2.7
times to 1.5 times the amplitude of the T5 in situ data.

[54] Judging by bias in mean and in amplitude, the mean
daily cycle over the period is best described by the
synchronized Tavg for each model. Particularly TNC

avg has
only a small mean bias and just a 14% overestimation of
the mean daily amplitude. In contrast, TME

avg and TEC
avg still

have a 50% to 70% overestimation of the daily amplitude
after the synchronization.

[55] As an input to soil moisture retrieval algorithms
based on sunsynchronous satellites, the accuracy of the
temperature estimate at a specific time of day is of impor-
tance. For this reason the performance metrics are calcu-
lated by time of day and are presented in section 4.2.
Section 4.3 will then analyze the results at the time of the
morning overpass of SMAP (�6.23 A.M. LST over Okla-
homa). The robustness of these results will be tested by
analyzing several replication experiments in section 4.4.

4.2. Diurnal Variation in Performance Metrics

[56] The diurnal variation in performance metrics is stud-
ied in more detail for the Tavg of each model since these
performed better then the individual Tskin and Tsoil. Figure 5
shows for each NWP model the mean daily cycle of the
phase-synchronized Tavg (blue lines) in comparison to the
in situ data (black lines). Also shown are the unsynchron-
ized NWP products (red dashed lines); all of which overes-
timate the amplitude of the daily temperature cycle. This
overestimation is only partly removed by the phase syn-
chronization. But more importantly, the bias in the early
morning is reduced to less than 1 K.

[57] Figure 5 also displays the diurnal variation in the
performance metrics as discussed in section 3.1. The sec-
ond row of the figure displays the coefficient of determina-
tion for both the original (red) and the synchronized
products (blue). The size of the improvement in correlation
coefficient is directly related to the phase difference
between the original product and in situ data. After the
phase synchronization the three products all have a high
correlation of between R2 ¼ 0.91–0.94 in the night and
early morning.

[58] For the synchronized products the three perform-
ance metrics (SEE, ubRMSE, and RMSE) are displayed in
the third row of Figure 5. TEC

avg and TME
avg have an SEE of

around 1.3 K during the night through 9 A.M. in the morn-
ing. During the day the SEE reaches values of 2 K.

Table 3. Characterization of the Mean Daily Temperature Cycle
by NWP Temperature Estimates Versus In Situ Measurements for
1 April to 1 October 2009

Tskin Tavg Tsoil

Phase Synchronization No Yes No Yes No Yes

ECMWF
d’ (minutes relative to in situ) �138 �12 �104 �9 �43 �3
Mean bias (K) 2.0 1.5 2.0 1.7 2.0 1.9
Amplitude bias

ANWP/AInSitu (K K�1)
3.9 1.9 2.9 1.7 2.1 1.7

MERRA
d’ (minutes relative to in situ) �169 �14 �115 �10 �1 2
Mean bias (K) 1.5 1.0 1.2 0.9 1.0 1.0
Amplitude bias

ANWP/AInSitu (K K�1)
3.8 1.6 2.7 1.5 1.9 1.8

NCEP
d’ (minutes relative to in situ) �128 �12 �86 �9 148 9
Mean bias (K) 1.0 0.6 0.5 0.2 0.0 0.4
Amplitude bias

ANWP/AInSitu (K K�1)
3.2 1.7 1.8 1.1 0.7 1.3
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Although TNC
avg does not reach as low a value of SEE, its

performance is slightly more stable over the day.
[59] As discussed in section 3.1, the RMSE is a combina-

tion of SEE, bias, and bias in standard deviation and is
shown in the third row of Figure 5 (blue lines). The RMSE
values calculated for TEC

avg and TME
avg are very similar, varying

from a low of �1.6 K in the morning to a high between 3
and 4 K in the afternoon. The accuracy of TNC

avg is more sta-
ble over the course of the day, varying only from 1.8 to 2.5
K, which can be attributed to this product being able to
accurately estimate the daily amplitude in temperature.

[60] In summary, the synchronized products all have a
high correlation with the in situ measurement throughout
the day. Even though TEC

avg and TME
avg overestimate the daily

amplitude significantly, their early morning errors are
lower than TNC

avg . On the other hand, the accurate estimate of

the diurnal cycle makes TNC
avg the best choice during the day.

4.3. Results for 6 A.M. Local Time

[61] For the narrow time window of concern to the
SMAP mission (6:23 A.M. LST for Oklahoma) the results
are now examined in greater detail. The metrics at this time
of day, aggregated for the region as a whole, are listed in

Table 4. The standard error for TEC
avg is 1.3 K, with almost

no bias. The RMSE is 1.6 K, with only 5 of the 63 grid cells
having an error above the target accuracy of 2 K. The
results for TME

avg are very similar, trailing in RMSE by a nar-
row margin of 0.1 K and with nine cells with an error above
2 K. Table 4 also shows that without removing the phase
difference and the corresponding amplitude adjustments,
the RMSE would be significantly higher (2.1 K for TEC

avg and

2.4 K for TME
avg ).

[62] Looking at the individual products of ECMWF we
see that the RMSE for both the TEC

skin and TEC
soil is only a little

higher than for the averaged product, but that the number
of grid cells with errors above 2 K increases from 5 to 13
and 12, respectively. For MERRA the same analysis shows
that even though the TME

soil did not require phase synchroni-
zation, its results are poorer than for the TME

skin that needed a
phase adjustment of almost 3 h (RMSE of 2.0 K versus
1.8 K).

[63] The RMSE for TNC
avg at 6 A.M. is 1.8 K, with 12 of

the 63 grid cells with an error above 2 K. This shows that
the accurate description of the mean diurnal cycle of the in
situ data by TNC

avg does not result in the lowest error at

6 A.M. For TNC
skin the effect of the phase synchronization is a

Figure 5. Daily cycle and performance metrics for Tavg from (a,b,c) ECMWF, (d,e,f) MERRA, and
(g,h,i) NCEP, compared to in situ data at 0.05 m under sod soil, for April through September of 2009.
(a,d,g) the mean daily temperature cycle for in situ data (black x), original NWP temperature (red dash)
and synchronized NWP product (blue). (b,e,h) correlation coefficient for original (red dash) and
synchronized product (blue). (c,f,i) SEE (top of gray shading), ubRMSE (top of black shading), and
RMSE (blue line).
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significant reduction in RMSE from 3.2 to 2.2 K. On the
other hand, removing a similar but opposite phase difference
from TNC

soil results in an increase in RMSE from 1.9 to 2.5 K.
This result is curious because the characterization of the di-
urnal cycle actually improves, and may be explained by dif-
ficulties in recreating higher frequency harmonics from a
dampened and poorly sampled signal at a deeper depth.

[64] Even though for the area as a whole an RMSE at 6
A.M. of below 2 K was found for TEC

avg, TME
avg , and TNC

avg , the
percentage of individual grid cells with errors above this
threshold amounted to 8%, 14%, and 19%, respectively. In
Figure 6 maps of the RMSE at 6 A.M. LST over Oklahoma
are presented for the Tavg of each model. The distribution
of the RMSE over the state is far from homogenous, but no
obvious relationship with spatially varying features such as
vegetation density, average soil moisture content, or soil
texture maps can be identified. The lack of a spatial struc-
ture in the error might indicate that it is associated with in-
stallation and/or scaling errors associated with the in situ
data more than with the model structure itself. The error
varies in time as well as in space, but to a slightly lesser
degree. Further analysis (not shown) indicates that there is
no relationship between temperature error and soil moisture
at 6 A.M. When calculating the RMSE for 6 A.M. across
Oklahoma, the percentage of days with errors in excess of
2 K is 9% for TEC

avg, 11% for TME
avg , and 16% for TNC

avg .
[65] Because the bias is relatively small during the night,

the possible gain from bias reduction techniques is limited.
During the day the bias is more directly related to an over-
estimation of the daily amplitude and, as a result, better
modeling techniques have the potential of reducing the
absolute error to values closer to the SEE.

[66] Since the primary location for this analysis is
Oklahoma, with a UTC offset of 6 h, the 6 A.M. local time
coincides closely with the noon analysis of ECMWF and
NCEP. As a result, the penalty resulting from the low tem-
poral resolution of ECMWF and NCEP (both provide anal-
ysis output at 6 h time steps) is minimized at this time
of day and for this particular location. If available, using
the 3 h forecast data to better interpolate the temperature
between analyses steps might help improve the overall per-
formance. Even so, a customized output stream with higher
temporal resolution might have to be requested if NCEP or
ECMWF were to be used for the SMAP algorithms. On the
other hand, because the hourly resolution of the MERRA
output is already high, its results are likely more independ-
ent of longitude.

[67] In summary, for the morning overpass of SMAP,
the 0.05 m temperature can be estimated with an RMSE
below 2.0 K from either NWP model, but best results were
found using the ECMWF data, followed by MERRA.
Because the RMSE varies in space and time, even the best
temperature product had errors above 2.0 K at 1 out of 10
stations, and on 1 out of 10 days in this analysis. The scope
for bias reduction appears limited, but acquiring output at a
higher temporal resolution may reduce this error further.

Table 4. Performance Metrics for NWP Temperature Estimates
Versus In Situ Measurements for 1 April to 1 October 2009, Con-
sidering Only the Data at the Time of the Morning Overpass for
SMAP

Tskin Tavg Tsoil

Phase Synchronization No Yes No Yes No Yes

ECMWF
Bias (K) �0.7 �0.4 �0.1 0.1 0.4 0.6
R2 0.85 0.92 0.88 0.93 0.90 0.92
SEE (K) 1.8 1.3 1.6 1.3 1.4 1.3
ubRMSE (K) 2.4 1.6 1.9 1.4 1.6 1.4
RMSE (K) 2.6 1.8 2.1 1.6 1.9 1.7
N(RMSE > 2 K)/N(all) 62/63 13/63 38/63 5/63 14/63 12/63

MERRA
Bias (K) �0.7 �0.4 �0.8 �0.3 �0.8 �0.7
R2 0.85 0.93 0.9 0.93 0.92 0.92
SEE (K) 1.8 1.2 1.5 1.2 1.3 1.3
ubRMSE (K) 2.8 1.5 2.2 1.5 1.7 1.7
RMSE (K) 3.0 1.8 2.4 1.7 2.0 2.0
N(RMSE > 2 K)/N(all) 63/63 10/63 57/63 9/63 34/63 31/63

NCEP
Bias (K) �1.6 �0.8 �0.6 �0.2 0.4 �0.3
R2 0.81 0.88 0.88 0.91 0.90 0.84
SEE (K) 2.1 1.6 1.7 1.4 1.5 1.9
ubRMSE (K) 2.6 1.9 2.0 1.6 1.7 2.3
RMSE (K) 3.2 2.2 2.2 1.8 1.9 2.5
N(RMSE > 2 K)/N(all) 63/63 53/63 48/63 12/63 21/63 53/63

Figure 6. RMSE at 6 A.M. LST for the phase synchron-
ized temperature products from (top) ECMWF, (middle)
MERRA, and (bottom) NCEP.
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4.4. Replication

[68] To test the robustness of the results, the analysis
was repeated for the set of 27 grid cells with duplicate sta-
tions. The overall performance metrics are almost identical
for the two groups of stations, the RMSE values are all
within 0.07 K of the values as shown for the primary set.
This gives us confidence that the retrieved results are not
significantly influenced by individual stations.

[69] As another replication, we conducted the same anal-
ysis for the year 2004. For this year the standard deviation
of temperature as recorded by the in situ sensors was
slightly smaller. This lower variation may explain the SEE
levels that are about 0.2 K lower than in 2009. For
ECMWF and MERRA this in turn results in lower RMSE
values, but not for NCEP. As mentioned above, ECMWF
and NCEP have modified their land surface models
between 2004 and 2009 and improved their spatial resolu-
tion, whereas MERRA represents a frozen framework. It
seems that especially for NCEP the modifications have
resulted in improved accuracy of the soil temperature.
However, because of the different dynamic range in tem-
perature between 2004 and 2009, it is not possible to isolate
the impact of the changes in the NWP systems on the per-
formance of the temperature products.

[70] Finally, the analysis was repeated for the primary set
of mesonet stations, but now for the entire year 2009 which
includes long periods with frozen soil and possibly snow.
At such times no soil moisture retrieval will be possible
and, therefore, the quality of the soil temperature estimate
will not affect the SMAP error budget. Therefore, the times
for which model skin (or soil; or avg) temperatures are
below 273.2 K are excluded from the analysis. The perform-
ance over the entire year is summarized in Figure 7, show-
ing an increase in error during the night and a decreased
error level during the day. The exact metrics for 6 A.M. are
listed in Table 5 and show a minor increase in error levels,
with an RMSE of 2.1 K for TNC

avg , 2.0 for TME
avg , and 1.9 K for

TEC
avg. Even when considering all data and including tempera-

tures below 273.2 K, the RMSE at 6 A.M. would still only
be 2.3 and 2.0 K for TNC

avg and TEC
avg, respectively. For TME

avg ,
however, including these low temperatures results in a
larger increase in RMSE to 2.5 K. The temperature of
MERRA’s 0–0.1 m soil layer shows an identical increase in
RMSE when subfreezing temperatures are considered.

[71] All three replications confirm the general level of
attainable accuracies for the soil temperature products.

When considering a larger temperature range up to the
freezing point the error will increase only by a few tenths
of a degree, but subfreezing temperatures pose a problem
for MERRA.

5. Discussion and Conclusion
[72] In this paper, several NWP model-based soil tem-

perature products were validated using in situ observations
from the Oklahoma mesonet. The objective of the study
was to provide an error assessment that supports the selec-
tion of the product that is best suited for use in satellite-
based soil moisture retrieval algorithms. For this reason it
is the accuracy of the temperature products at a specific
time of the day that is our primary focus (6 A.M. for
SMAP), rather than the daily average temperature. This
focus makes the validation framework highly dependent on
the depth of the in situ sensors and the model levels.

[73] We addressed the uncertainty in the actual depth of
the sensors. Variations in the exact placement and subsi-
dence/erosion over time will cause the depth to vary
between points and over time. We adjusted for this effect
by removing stations with clear and persistent mismatches
between the two topsoil temperature sensors. For the pri-
mary set that was used in the assessment we selected sta-
tions for which the timing of the temperature wave was
closest to the mean value of all stations. Furthermore, in
order to compare the various NWP products, depth differ-
ences are accounted for by synchronizing the phase of each
temperature product (and proportionally adjusting its am-
plitude) according to the mean phase difference measured
between in situ data and model data over Oklahoma. An
improved representation by the models of the average daily
temperature cycle of the in situ data and a clear improve-
ment in precision and absolute error demonstrate the use-
fulness and validity of this approach.

Figure 7. Same as bottom row of Figure 5 but for the full year 2009, excluding model temperatures
below 273 K.

Table 5. Validation Results at 6 A.M. for the Entire Year 2009
(With Model Temperature > 273.2 K)

Model TEC
avg TME

avg TNC
avg

Bias �0.2 �0.8 �0.2
R2 0.95 0.95 0.93
SEE 1.5 1.4 1.8
ubRMSE 1.7 1.8 1.9
RMSE 1.9 2.0 2.1
N(RMSE > 2 K)/N(all) 17/63 36/63 41/63
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[74] By applying these transformations to make the data
sets more comparable, it is shown that at 6 A.M. local time,
the 0.05 cm temperature can be estimated with an SEE of
1.3 K and an RMSE of 1.6 K using the ECMWF and
NASA/GMAO systems. These results reflect the lowest
error levels measured during the day and increase to an
RMSE of above 3 K from noon to 7 P.M. The temperature
from NCEP appears to have a better agreement of the full
diurnal cycle which leads to a much more stable perform-
ance across the day. Its error at 6 A.M. is only slightly
higher with an RMS of 1.8 K. However, this error varies
spatially and 19% of the grid cells had errors in excess of
2 K at 6 A.M., compared to only 8% for ECMWF and 14%
for MERRA.

[75] These results suggest that the overall accuracy of
the best NWP soil temperature products from each center
does not exceed the level allotted in the error budget for
SMAP (2 K), during the morning overpass of 6 A.M. local
time. However, the spatial variation in error suggests that
the actual area for which the temperature products perform
within the desired accuracy for SMAP will be in the order
of 90% of the land surface of Oklahoma for ECMWF and
MERRA, and only 80% for NCEP. Some of the error is
likely related to how representative the point based valida-
tion data are for the 0.5 deg grid box; if a particular site is
not representative of the grid cell average conditions, the
true error in the NWP soil moisture estimates may well be
smaller than our analysis indicates. In addition, more ex-
pansive studies of the bias over longer time periods may
yield a better mitigation of those errors, as will more opti-
mized temperature modeling methods.

[76] The above results represent the current best estimate
of NWP soil temperature performance using the most ex-
pansive and consistent set of in situ temperature data cur-
rently available. Although the area covered by this study is
large and covers some of the main vegetation types (grass-
land, crop land) of interest for soil moisture remote sensing,
one has to be careful in extrapolating the results to other
areas of the world. The main reason is that the performance
of the NWP models is determined by its input data, the
quality of which varies considerably across the globe.
Indeed, the NWP products generally perform best in the
continental US and western Europe, and if this is also true
for soil temperature then the presented results must be
regarded as the best case scenario.

[77] A second caveat is that the temporal resolution of
the model output may result in longitude dependent inter-
polation errors. When considering a 6 A.M. LST across the
globe the output time of ECMWF and NCEP can be as
much as 3 h removed, whereas for MERRA with an hourly
output interval the time difference is never more than a half
hour. These types of errors happened to be minimal over
Oklahoma for all NWP models. A final factor is that the
phase synchronization was based on the regional average
phase difference between NWP and in situ temperatures,
and may not be suitable for other parts of the world.

[78] Prior to the launch of SMAP, soil temperature esti-
mates from NWP systems are expected to be available at
higher resolutions as the land and atmospheric modeling
and analysis grids are refined. At the time of this writing,
the three NWP systems evaluated here are already operat-
ing at a higher spatial resolution than what was available

for this study. Custom tile-based output from the (georefer-
enced) tiles of the GEOS-5 system might further improve
the resolution. Moreover, gains in accuracy are expected
from improvements in the atmospheric data assimilation
components and through the addition of land data assimila-
tion modules in operational systems. For example, an
enhanced soil moisture analysis based on the extended Kal-
man filter was implemented in the operational ECMWF
model in November 2010 [Rosnay et al., 2011].

[79] Although the 0.05 m temperature plays the domi-
nant role in the modeled effective temperature for L-band
microwave emission, the error might be moderated further
if the temperature of the deeper layers is known more accu-
rately. Future studies should investigate the errors of NWP
soil temperature estimates at deeper depths up to around
0.3 m and the potential to use the deeper layer information
in the parameterization of the effective temperature of the
emitting surface.

Appendix A: CMA Series Approach to
Temperature Profile Modeling

[80] Instead of the classical Fourier analysis, the change
in temperature with depth is estimated based on a summa-
tion of residuals after removing the central moving average
(CMA), and was earlier used to implement the Van Wijk
model [Holmes et al., 2008]. To more fully capture seasonal
variation, this approach is expanded from considering only
two harmonics (daily and annual) to capture ten harmonics
periods (P) of less than a day to a year with P ¼ [0.5, 1, 2,
3, 4, 8, 16, 32, 64, 365] days. For example, P(n ¼ 1) ¼
0.5 days and P(n ¼ 10) ¼ 365 days. Given a time series of
temperature at a single depth (Tt), and an estimate of the
phase shift of the daily temperature harmonic between this
input depth and that of the target depth (d’), the tempera-
ture at the output depth (T �t ) can be estimated as

T�t ¼ Tn¼10;t þ
X10

n¼1

Hn;tn ed’n ; (A1)

where n is the subscript into the array of harmonics P and

d’n ¼ d’=
ffiffiffiffiffiffiffiffiffiffi
PðnÞ

p
; (A2)

tn ¼ t � d’n 	 PðnÞ=2�; (A3)

and for n ¼ 1

Tn¼1;t ¼ CMAn¼1ðTtÞ; (A4)

Hn¼1;t ¼ Tt � Tn¼1;t;

and for n > 1

Tn;t ¼ CMAnðTn�1;tÞ; (A5)

Hn;t ¼ Tn�1;t � Tn;t:

[81] The CMA is the central moving average over the
time period [t � P(n)/2, t þ P(n)/2] and the harmonics are
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interpolated to the phase corrected time (tn) by means of a
cubic spline interpolation.
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