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[1] Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS
(AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging
Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated
separately or jointly into the Noah land surface model over a domain in Northern Colorado.
A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based
update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The
results are validated against in situ observations at 14 high-elevation Snowpack Telemetry
(SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer
Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS
SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow
snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately,
and joint SWE and SCF assimilation yields significantly improved root-mean-square error
and correlation values for scaled and unscaled data assimilation. In areas of deep snow
where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low
and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE
assimilation could not improve the interannual SWE variations in the assimilation results
because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks.
SCF assimilation has only a marginal impact at the SNOTEL locations because these sites
experience extended periods of near-complete snow cover. Across all sites, SCF
assimilation improves the timing of the onset of the snow season but without a net
improvement of SWE amounts.
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1. Introduction
[2] Snowmelt runoff is of major importance to summer

water supplies [Barnett et al., 2008; Dyer, 2008], and plays
a considerable role in flood events [Perry, 2000] in midlati-
tudes and northern latitudes. Snow alters the interface
between the atmosphere and the land surface through its
higher albedo and lower roughness compared to snow-free
conditions, and by thermally insulating the soil from the
atmosphere. Consequently, the presence of snow strongly
affects the land surface water and energy balance, weather

[Jin and Miller, 2007; Gong et al., 2004] and climate [Bam-
zai and Shukla, 1999; Cohen and Entekhabi, 1999; Yang
et al., 2001]. Moreover, snow has a high spatial and tempo-
ral variability, which is very sensitive to global change
[Déry and Wood, 2006; Mote et al., 2005; Brown and Mote,
2009; Brown et al., 2010; Brown and Robinson, 2011].

[3] In situ snow observations are collected at numerous
meteorological stations (e.g., the National Oceanic and
Atmospheric Administration Cooperative Observer Pro-
gram (COOP) station network), by special snow monitoring
networks (e.g., the Natural Resources Conservation Service
(NRCS) Snowpack Telemetry (SNOTEL) network) and
during intensive field campaigns. Moreover, Earth observ-
ing satellites provide global direct or indirect estimates of
the snow state, but with limited accuracy and discontinuous
spatio-temporal coverage. In addition, numerical integra-
tion of surface meteorological estimates from global atmos-
pheric data assimilation systems into a land surface model
(LSM) provides continuous estimates of the land surface
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state, including snow. However, the representation of snow
processes in LSMs is far from perfect [Slater et al., 2001;
Rutter et al., 2009; Dutra et al., 2010], and the assimilation
of snow observations into an LSM may provide a more
accurate estimate of snow conditions at spatial scales down
to 1 km. Several studies report the assimilation of in situ
snow observations [Liston et al., 1999; Slater and Clark,
2006; Liston and Hiemstra, 2008], including for operational
applications (e.g., National Operational Hydrologic Remote
Sensing Center [Barrett, 2003], Canadian Meteorological
Centre [Brasnett, 1999], European Centre for Medium-
Range Weather Forecasting [Drusch et al., 2004]). In the
following, we will focus on satellite snow data assimilation.

[4] Various types of satellite observations can be used
to discern snow covered and snow free areas. Sources
include visible and near-infrared measurements such as
those from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS, 2000 to present) on the Terra and Aqua
platforms, the Landsat Thematic Mapper (TM, 1982 to
present) and the advanced very high resolution radiometer
(AVHRR, 1978 to present). While these data are fairly
accurate, they come with a number of limitations, includ-
ing the inability of these sensors to see through clouds
[Hall and Riggs, 2007].

[5] Moreover, satellite-based snow cover fraction (SCF)
products only provide a partial estimate of the snow state,
namely snow cover, whereas hydrologic modeling is
mostly concerned with estimating snow water equivalent
(SWE; that is, snow mass). Snow depletion curves are of-
ten used to relate SCF to SWE [Essery and Pomeroy,
2004]. Observed snow cover maps can be used to parame-
terize these curves in a hydrological model [Déry et al.,
2005; Lee et al., 2005]. Alternatively, techniques for SWE
reconstruction after the end of the snow season have been
proposed [Durand et al., 2008a, 2008b; Molotch, 2009].
Dynamic assimilation of snow cover observations to update
the state variables of a hydrologic model has been explored
through rule-based ‘‘direct insertion’’ algorithms [Rodell
and Houser, 2004; Hall et al., 2010], nudging forcing
fields toward likely precursors of the observed snow cover
area [Zaitchik and Rodell, 2009] and ensemble Kalman fil-
ter (EnKF) approaches [Clark et al., 2006; Su et al., 2008].
Visible or near-infrared observations do not allow assimila-
tion updates under cloudy conditions and the updates are
typically affected by the uncertainties associated with the
estimation of SWE for a given binary snow presence or a
fractional snow cover (snow depletion curves). In this pa-
per, we assimilate fine-scale satellite-based snow cover
fraction observations instead of the binary presence or ab-
sence of snow, which allows us to assimilate the data with
an EnKF [Su et al., 2008]. Our study differs from Su et al.
[2008] in the finer scale of the assimilated SCF observa-
tions and by supplementing the EnKF with a rule-based
SCF assimilation algorithm that allows updates when the
model simulates completely snow-covered or snow-free
conditions.

[6] Some of the above problems with SCF assimilation
can be overcome by using passive microwave observations.
Sensors like the Scanning Multichannel Microwave Radi-
ometer (SMMR, 1978–1987), the Special Sensor Micro-
wave Imager (SSM/I, 1987 to present) and the Advanced
Microwave Scanning Radiometer for the Earth Observing

System (AMSR-E, 2002 to present) do not suffer from
cloud obscuration and allow SWE estimation by relating
the microwave brightness temperature to snow parameters.
However, these products typically have a coarser resolu-
tion, and a low accuracy [Foster et al., 2005; Dong et al.,
2005; Cordisco et al., 2006; Kelly, 2009; Tedesco et al.,
2010; Tedesco and Narvekar, 2010]. Alternatively, active
microwave sensors could be explored [Stankov et al.,
2008], but the applications have been limited, because of
the lack of spaceborne measurements at optimal frequen-
cies (Ku-band). SWE assimilation has been explored in
synthetic experiments [Sun et al., 2004; De Lannoy et al.,
2010]. A few studies attempted to assimilate SMMR or
AMSR-E SWE retrievals, but only with marginal success
[Dong et al., 2007; Andreadis and Lettenmaier, 2006]. It
has been suggested that radiance assimilation may be more
effective [Durand and Margulis, 2006, 2007; Andreadis
et al., 2008; Durand et al., 2009].

[7] A number of blended satellite SWE products have
been proposed [Kongoli et al., 2007; Gao et al., 2010; Fos-
ter et al., 2011] that merge visible, near-infrared, and pas-
sive microwave observations, but most of these products
are research products and only generated for a limited time
period and area. Improved analyses can be expected by
dynamically merging snow products in a data assimilation
scheme [Su et al., 2010].

[8] The objective of the present study is to examine the
possibilities and limitations of assimilating both fine-scale
MODIS SCF and coarse-scale AMSR-E SWE retrievals
into the Noah LSM using advanced assimilation techni-
ques. In this context, our paper contributes three key inno-
vations to the snow data assimilation literature. We aim at
extracting more information from the remotely sensed data
than previous AMSR-E SWE and MODIS snow cover
assimilation studies by (1) spatially downscaling the
AMSR-E SWE retrievals within the assimilation system to
address the mismatch between the coarse-scale observa-
tions and the fine-scale model resolution, (2) jointly assimi-
lating AMSR-E SWE and MODIS SCF observations in
a distributed, multiscale analysis, and (3) assimilating
‘‘scaled’’ (anomaly) SWE and SCF observations to address
climatological biases.

[9] Section 2 describes the experiments, section 3
reviews the observations that are used for assimilation and
validation, and section 4 explains the data assimilation
techniques. The results are analyzed in section 5.

2. Experiment Setup and Overview
[10] The study area and model setup are identical to

those of De Lannoy et al. [2010] and are discussed here
only briefly. The study domain is an area of approxi-
mately 75 � 100 km2 in size (bottom left corner:
40.25�N, �106.75�W; upper right corner: 41.00�N,
�105.75�W) in Northern Colorado, USA, including a cen-
tral plain surrounded by mountain chains (Figure 1). This
area was part of NASA’s Cold Land Processes Experi-
ments (CLPX) to evaluate SWE retrievals from space-
borne passive microwave sensors. Furthermore, this
domain includes a substantial area with flat topography
and a dense collection of long-term in situ SWE observa-
tions for validation.
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[11] The land surface model of the National Centers for
Environmental Prediction/Oregon State University/Air
Force/Hydrologic Research Lab (Noah, version 2.7.1 [Ek
et al., 2003]) is used within the National Aeronautics and
Space Administration (NASA) Land Information System
version 5.0 (LIS5.0) [Kumar et al., 2006; Peters-Lidard
et al., 2007; Kumar et al., 2008], and forced with surface
meteorological data from the North American Land Data
Assimilation System (NLDAS, see http://ldas.gsfc.nasa.
gov/nldas/). All simulations are performed at a 0.01�
(�1 km) resolution (7500 grid cells). Details on Noah snow
processes can be found in the work of Ek et al. [2003].
Recently, several changes to Noah have been suggested to
mitigate the underestimation of modeled SWE and snow

depth [Barlage et al., 2010; Livneh et al., 2010; Wang
et al., 2010].

[12] The ensemble simulations are initialized in 1997 to
allow 5 years of spin-up of the entire land system before
the snow assimilation period from September 2002 through
July 2010, covering 8 winter seasons. The forecasted snow
state is updated by assimilating fine-scale MODIS SCF
observations (daily at 17:00 UTC) and/or coarse-scale
AMSR-E SWE observations (daily at 08:00 UTC) using an
EnKF. Figure 2 shows a schematic of the experiments. Spe-
cifically, we discuss the ensemble open loop without assim-
ilation (EnsOL) and three assimilation experiments: (1)
assimilation of coarse-scale AMSR-E SWE observations
(SWE DA); (2) assimilation of fine-scale MODIS SCF
observations (SCF DA); and (3) joint, multiscale assimila-
tion of AMSR-E SWE and MODIS SCF observations
(SWE & SCF DA). The three assimilation experiments are
performed either (1) with the unscaled satellite observations,
or (2) using the anomaly information in the observations,
i.e., after scaling these observations to avoid systematic
differences in model and observation climatologies (see
section 4.5 for details).

[13] The SWE estimates obtained through assimilation
of satellite observations without a priori scaling (experi-
ments 1a, 2a, and 3a) are validated directly against in situ
SWE measurements at SNOTEL or COOP sites. When
scaled satellite observations are assimilated (experiments
1b, 2b, and 3b), we validate the anomalies from the
assimilation against the corresponding anomalies from the
in situ measurements, i.e., the data set-specific climatol-
ogy is subtracted from the in situ data and assimilation
results. Note that the direct validation against in situ
observations is subject to spatial scaling errors, although
this issue is mitigated when anomalies are validated to
assess the temporal (interannual) variability of the results
(section 4.5).

3. Observations
3.1. AMSR-E SWE

[14] In this study, we assimilate the Aqua AMSR-E
Level-3 Daily Snow SWE product (AE_DySno, V09, R. E.
Kelly et al., AMSR-E/Aqua daily L3 global snow water
equivalent EASE-Grids v009, 2002–2010, see http://nsidc.
org/data/ae_dysno.html [Kelly, 2009]) provided by the
National Snow and Ice Data Center (NSIDC). We re-
sampled the SWE data from a hemispheric 25 km equal
area grid to a 0.25� resolution geographic coordinate sys-
tem. The product only includes descending (nighttime)
overpasses. There are 12 (3 � 4) AMSR-E pixels covering
the study area (Figure 1).

[15] The AMSR-E SWE values in our study area and
timeframe range from 0 to 240 mm. The maximum SWE
value recorded in the global NSIDC product is 480 mm,
which occurs only for specific snow classes outside our
study domain. Typical error standard deviations for the
AMSR-E retrievals range between 10 and 50 mm in terms
of SWE, or �10–250 mm in terms of snow depth (based on
comparison with in situ observations [Pulliainen and
Hallikainen, 2001; Kelly et al., 2003; Derksen et al., 2003;
Foster et al., 2005; Tedesco and Narvekar, 2010]). The
actual errors depend strongly on the time and location of

Figure 1. Study domain with the 1 km topography as
background, AMSR-E pixel boundaries (25 � 25 km2, with
indication of pixel coordinates) and in situ observation
locations for SNOTEL (dots) and COOP (triangles). The
crosses cover 1 km2 intensive study areas monitored during
the NASA Cold Land Processes Experiments for North
Park (Illinois River (ni), Michigan River (nm), and Potter
Creek (np)) and for Rabbit Ears (Buffalo Pass (rb), Walton
Creek (rw)).
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the individual observations. Locally, errors on the order of
100 mm SWE and higher have been reported [Tekeli,
2008; Tedesco and Narvekar, 2010], mainly for deeper
snowpacks [Dong et al., 2005; Tong et al., 2010].

[16] Figure 3 illustrates typical scaling errors of the
AMSR-E SWE estimates versus snowpit SWE values col-
lected during NASA’s CLPX [Cline et al., 2004] in early
2003. In the flat, lower-elevation North Park area,
AMSR-E SWE exceeds the shallow in situ snow measure-
ments by up to a factor �5–10, while AMSR-E underesti-
mates SWE in the mountainous, high-elevation Rabbit
Ears area by a factor �10. In other words, the coarse-
scale (�25 � 25 km2) SWE amount across an AMSR-E
pixel does not necessarily represent local snow amounts
that are measured in the spatially averaged (including up
to 16 snowpits) snowpit data scattered across a 1 km2

area.
[17] A number of detection issues affect passive micro-

wave snowpack estimates. These include the presence of
wet snow, open water bodies, metamorphism, complex to-
pography, vegetation interference, and signal saturation
[Kelly et al., 2003; Dong et al., 2005] with increasingly
uncertain retrievals above 100 mm SWE. Another issue is
the assumed constant snow density [Sturm et al., 1995] in
the conversion from snow depths to SWE retrievals
[Tedesco and Narvekar, 2010]. The recently released
GlobSnow product (see www.globsnow.info, [Pulliainen,
2006]) attempts to better constrain the SWE retrievals in

nonmountainous areas through an optimization of the
snow grain size and assimilation of in situ information,
but does not (yet) provide coverage over our study
domain.

Figure 2. Schematic of the data assimilation experiments: (1a, 1b) AMSR-E SWE assimilation, (2a,
2b) MODIS SCF assimilation, and (3a, 3b) joint AMSR-E SWE and MODIS SCF assimilation. The
remote sensing data are either assimilated (1a, 2a, 3a) as they are (without scaling) or (1b, 2b, 3b) after
rescaling. If scaled data are assimilated, then the analysis anomalies are compared against in situ anoma-
lies by removing the climatology of each data set.

Figure 3. SWE from AMSR-E (dots) retrievals and
snowpit measurements (bars) in 5 CLPX intensive study
areas (see Figure 1), for 2 periods in 2003: (black) 21
through 25 February, (gray) 28 through 30 March. For each
study area, SWE estimates are averages over up to 16
snowpits. Error bars indicate 1 standard deviation across
the individual snowpits.

W01522 DE LANNOY ET AL.: SATELLITE-OBSERVED SNOW DATA ASSIMILATION W01522

4 of 17



3.2. MODIS SCF
[18] MODIS provides snow cover, albedo and SCF prod-

ucts, including daily 500 m Terra MODIS SCF observa-
tions on a sinusoidal grid (MOD10A1–5, D. K. Hall, G. A.
Riggs, and V. V. Salomonson, MODIS/Terra snow cover
daily L3 global 500m grid V005, 2002–2010, see http://
nsidc.org/data/mod10a1v5.html). We regridded these 500
m SCF observations to the 0.01� model grid by averaging
SCF only over the cloud-free 500 m pixels within each
0.01� grid cell. MODIS SCF observations from Terra are
obtained through an algorithm that uses MODIS bands 4
(0.55 mm) and 6 (1.6 mm) to calculate a Normalized Differ-
ence Snow Index (NDSI) [Hall et al., 1998], which is
related to the SCF [Salomonson and Appel, 2004]. Note
that SCF retrievals from MODIS on the Aqua platform use
the less optimal band 7 (2.105–2.155 mm) because of a
technical problem with that sensor’s band 6, which results
in less accurate retrievals that are not used here.

[19] The most frequent errors in MODIS SCF observa-
tions are related to snow/cloud discrimination (in collection
5, this has been improved through a revised cloud mask),
detection of very thin or ephemeral snow (<10 mm) and
snow estimation in forested and complex terrain areas
[Hall and Riggs, 2007].

3.3. In Situ Data
[20] Two sets of in situ measurements are used to vali-

date the satellite, model, and assimilation estimates: (1)
SNOTEL SWE observations and (2) COOP snow depth
observations. In situ SNOTEL SWE measurements from
pressure sensing snow pillows are reported daily at 08:00
UTC and distributed by the US Department of Agriculture
NRCS (see http://www.wcc.nrcs.usda.gov/snow/). The
COOP snow depth measurements (see http://www.ncdc.
noaa.gov) are distributed by the National Climate Data
Center as daily measurements at different times throughout
the years and over the different stations. For simplicity, we

assume that all COOP observations are taken at 14:00
UTC for validation (which is, on average, the nearest time
of day across all observations). For validation purposes, the
snow depth measurements are converted to SWE by multi-
plication with a density of 230 kg m�3, the average snow
density for our study area that is used in the AMSR-E SWE
retrieval algorithm [Kelly, 2009; Sturm et al., 1995]. The
details of the 14 SNOTEL and 4 COOP sites with sufficient
available data are summarized in Figure 1 and Table 1.

4. Data Assimilation
[21] The data assimilation system used in our study is

based on the ensemble Kalman filter (EnKF) [Reichle
et al., 2002; Evensen, 2003] and is identical to that of De
Lannoy et al. [2010] unless otherwise indicated here.

4.1. Ensemble Perturbation
[22] Uncertainty is introduced into the ensemble forecast

by perturbing select forcing and state variables, using 20
ensemble members. Precipitation (PR) and downward
shortwave radiation (SW) are subject to multiplicative per-
turbations with mean ¼ 1 and standard deviations of 0.5
(PR) and 0.1 (SW), respectively. Moreover, zero-mean,
additive perturbations are applied to air temperature (TA)
and longwave radiation (LW) with standard deviations of
0.5 K (TA) and 15 W m�2 (LW), respectively. The single-
layer Noah model prognostic variables for SWE (swe�)
and snow depth (snd�) are subject to multiplicative pertur-
bations with mean ¼ 1 and standard deviation ¼ 0.01. The
TA and state perturbations are intentionally small to avoid
systematic differences between the EnsOL run and a deter-
ministic (no perturbation, no assimilation) model integra-
tion. All perturbations have spatial correlation lengths of
30 km (larger than the resolution of the coarse-scale obser-
vations, De Lannoy et al. [2010]), which is needed for
the 3-D-EnKF (see below). In addition, we impose cross-
correlations � between perturbations to state variables

Table 1. Characteristics of In Situ Stations and Select Model Parameters for the Corresponding 1 km2 Grid Cellsa

In Situ Station Characteristics Model Parameters

Name ID Lon (�E) Lat (�N) Elev [m] Elev [m] Vegetation Class snup [m]

SNOTEL
Willow Creek Pass 06j05s �106.09 40.35 2907.76 2884 evergreen needleleaf forest 0.04
Arapaho Ridge 06j08s �106.38 40.35 3340.57 3313 evergreen needleleaf forest 0.04
Rabbit Ears 06j09s �106.74 40.37 2865.09 2797 bare ground 0.02
Columbine 06j03s �106.60 40.39 2791.93 2790 grassland 0.02
Phantom Valley 05j04s �105.85 40.40 2752.31 2760 evergreen needleleaf forest 0.04
Never Summer 06j27s �105.96 40.40 3133.31 3109 evergreen needleleaf forest 0.04
Lake Irene 05j10s �105.82 40.41 3261.32 3286 evergreen needleleaf forest 0.04
Joe Wright 05j37s �105.89 40.53 3084.54 3109 open shrubland 0.02
Tower 06j29s �106.68 40.54 3200.36 3190 evergreen needleleaf forest 0.04
Rawah 06j20s �106.01 40.71 2749.26 2927 woodland 0.04
Zirkel 06j19s �106.60 40.79 2846.80 2868 open shrubland 0.02
Deadman Hill 05j06s �105.77 40.81 3115.02 3100 evergreen needleleaf forest 0.04
Lost Dog 06j38s �106.75 40.82 2840.70 2838 evergreen needleleaf forest 0.04
Roach 06j12s �106.05 40.88 2956.52 2987 evergreen needleleaf forest 0.04

COOP
Grand Lake 1 NW 053496 �105.82 40.27 2657.90 2669 evergreen needleleaf forest 0.04
Gould 4se Sfsp 053446 �106.00 40.50 2743.20 2806 evergreen needleleaf forest 0.04
Walden 058756 �106.27 40.73 2455.50 2455 cropland 0.013
Hohnholz Rch 054054 �106.00 40.97 2365.20 2374 grassland 0.02

aThe vegetation classes are according to the UMD land cover classification.
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(� ðswe�;snd�Þ ¼ 0:9) and forcing fields (� (SW,LW) ¼
�0.3; � (SW,PR) ¼ �0.5; � (SW,TA) ¼ 0.3; � (LW,PR)
¼ 0.5; � (LW,TA) ¼ 0.6; � (PR,TA) ¼ �0.1) (following
the approach of Reichle et al. [2007]).

4.2. SWE Assimilation and Downscaling
[23] The coarse-scale AMSR-E observations are assimi-

lated using a distributed 3-D-EnKF, specifically method
3D_Cm of De Lannoy et al. [2010]. In each fine-scale
(1 km) grid cell k, the state vector at one particular time

step (time index omitted) is x̂�k ¼
swe�k
snd�k

� �
. The EnKF is

used to update these two model prognostic variables at the
fine scale by assimilating multiple (m) coarse-scale obser-
vations simultaneously. For an ensemble member j, the a
priori state x̂�k is updated to x̂þk as follows:

x̂ jþ
k ¼ x̂ j�

k þ K½y j � ŷ j�� (1)

K ¼ Cov½x̂�k ; ŷ��½Cov½ŷ�; ŷ�� þ R��1; (2)

where y j denotes the perturbed AMSR-E observations
(m elements), R the observation error covariance, and
ŷ j� � hðx̂ j�Þ is short-hand for the corresponding model
predictions of these observations, with hð�Þ the observation
operator. In our study we thus have

y j ¼

sweobs; j
�1

sweobs; j
�2

:::

sweobs; j
�m

0
BBBBB@

1
CCCCCA and ŷ j� ¼

1=625 �625
l¼1swe j�

kl;1

1=625 �625
l¼1swe j�

kl;2

:::

1=625 �625
l¼1swe j�

kl;m

0
BBBBB@

1
CCCCCA; (3)

where �m, m ¼ 1; 2; :::;Nobs denotes a coarse-scale grid cell
and kl;m, l ¼ 1; 2; :::; 625 indexes the fine-scale grid cells
contained within �m. Nobs is the number of observed (	12,
depending on the swath) coarse-scale AMSR-E pixels in
our study domain for the update time step. Through the
imposed spatial error correlations (correlation length ¼ 30
km), each fine-scale grid cell senses the impact of sur-
rounding coarse-scale observations, and unobserved areas
are updated. The impact decreases for more remote obser-
vations and becomes negligible beyond a localization
length scale of 75 km. We approximate the observation
error standard deviation with a linear function of the SWE
amount:

ffiffiffiffiffiffiffiffi
½R��

p
¼ 5þ 0:2 � sweobs

� [mm], reflecting the
reported increase in SWE retrieval errors for deeper snow-
packs. Note that the model forecast uncertainty also
increases for deeper snowpacks [De Lannoy et al., 2010].
As in the work of Andreadis and Lettenmaier [2006], we
avoid the assimilation of AMSR-E data when either the
observed or model-predicted SWE exceeds a snowpack sat-
uration value of 240 mm, but this constraint has almost no
effect over our simulation domain, because our snowpacks
are generally lower than this threshold.

4.3. SCF Assimilation
[24] Unlike binary information on snow presence,

MODIS SCF observations are real numbers based on the
NDSI (section 3.2) and can be assimilated with a Kalman

filter [Su et al., 2008, 2010]. The update equation is identi-
cal to equation (1), but for SCF we use a 1-D-EnKF, that is,
y j and ŷ j� only contain a single fine-scale observation per
fine-scale grid cell k and unobserved areas (e.g., cloud cov-
ered) are not updated. The (scalar) SCF innovations
½y j � ŷ j��k are calculated by differencing the (regridded)
0.01� MODIS SCF observations (yk) and the model forecast
SCF (ŷ j�

k ¼ scf j�
k ), obtained from the forecasted SWE

(swe j�
k ) via the snow depletion curve of the Noah LSM,

which serves as the observation operator. Specifically, we
have

ŷ j�
k ¼

1� e
�4 �

swej�

snup

� �
� swej�

snup
� e�4

2
64

3
75

k

; if swej�
k < snupk

1; if swej�
k >¼ snupk

;

8>>>><
>>>>:

(4)

where swe j�
k and snupk are in units of m and the predicted

ŷ j� ¼ scf j�
k is a dimensionless fraction. The parameter snup

is a vegetation class–dependent time-invariant SWE thresh-
old above which full coverage is assumed (see Table 1).

[25] Evidently, a simple snow depletion curve with a sin-
gle vegetation-dependent parameter will not account for all
terrain heterogeneity [Luce et al., 1998; Shamir and Geor-
gakakos, 2007; Luce et al., 1999]. In an earlier study by
Andreadis and Lettenmaier [2006], an observation-based
curve was used to assimilate MODIS SCF with an EnKF,
which can be expected to result in a better performance.
Essery and Pomeroy [2004] suggested that prognostic
schemes may be required to account for the actual snow-
pack dynamics.

[26] For SCF, the EnKF update equation (1) must be sup-
plemented with a rule-based update. As Figure 4a illus-
trates, a given perturbation to the swe� state results in a
decreasing spread (uncertainty) in scf � as swe� increases.
For deep model snowpacks (high swe� values), the ensem-
ble spread of scf � is thus very small and the EnKF update
cannot reduce the forecasted SWE if only partial coverage
is observed. Similarly, the EnKF update cannot induce the
onset of snow accumulation in the model forecast if all en-
semble members are free of snow, again because there is
no spread (uncertainty) in the model ensemble.

[27] These two situations are addressed with a rule-based
update. If all forecast ensemble members have a snow
cover below an infinitesimal value of � ¼ 10�6 for a given
grid cell, and if the observed snow cover scf obs exceeds
�scf ¼ 0:3, then a nominal amount of 20 mm of water
equivalent is added to SWE, and a corresponding 87 mm
(assuming a density of 230 kg m�3) are added to snow
depth:

if maxjðscf j�
k Þ< � and scf obs; j

k > �scf :
swe jþ

k ¼ swe j�
k þ 20mm

snd jþ
k ¼ snd j�

k þ 87mm
:

(

(5)

If all forecast ensemble members essentially have full snow
cover and the observed scf obs

k is less than 1� �scf ¼ 0:7,
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then the forecast state variables are reduced to a quarter of
their values:

if minjðscf j�
k Þ > 1� � and

scf obs; j
k < 1� �scf :

swe jþ
k ¼ swe j�

k =4

snd jþ
k ¼ snd j�

k =4
:

8<
:

(6)

Smaller thresholds �scf allow more impact of SCF observa-
tions on the analysis, but may also be problematic. Even
under ‘‘full’’ cover, the MODIS observations typically
range from 0.95 to 1. Using �scf < 0:05 would thus lead to
a systematic removal of SWE from the forecast state. The
reduction to a quarter of the snow amount is an arbitrary
choice, and attempts to weigh the information in the obser-
vations more than the forecasts.

[28] Figure 4b shows the effect of perturbing the
MODIS SCF observations in the assimilation scheme. Per-
turbing full snow cover always reduces the observed snow
cover, causing the corresponding SWE amount to decrease
below the snup value. Consequently, the analysis incre-
ment would always be negative, even if there was more
snow observed than forecasted (as suggested by
SWEy > swe�k in Figure 4b). Thus, SCF assimilation with
perturbed observations would systematically and substan-
tially underestimate SWE. This problem can be addressed
through careful modeling of the observation error var-
iance. In this study, we use

ffiffiffiffiffiffiffiffi
½R�k

q
¼

0:5 � scf obs
k ; if scf obs

k <¼ 0:5

0:5 � ð1� scf obs
k Þ; if scf obs

k >¼ 0:5
;

(
(7)

that is, starting from
ffiffiffiffiffiffiffiffi
½R�k

p
¼ 0 at scf obs

k ¼ 0, the observa-
tion error standard deviation increases linearly to a value of
0.25 at scf obs

k ¼ 0:5 and thereafter decreases again, reach-
ing 0 at scf obs

k ¼ 1. For SCF near 1, the observation pertur-
bations are thus effectively disabled. In reality, we do not
expect the SCF observations to be perfect for zero or full
cover. For example, zero cover during the accumulation
and melt phase may include subpixel-scale snow patches
that happened to be obscured by clouds. More sophisticated
observation error models could be explored in future

studies or alternatively, an ensemble square root filter
implementation [Whitaker and Hamill, 2002] could perhaps
be used to avoid the observation perturbations.

4.4. Multi-Scale SWE and SCF Assimilation
[29] Both AMSR-E and MODIS observations are also

assimilated jointly by alternating between 3-D-EnKF
updates at 08:00 UTC using coarse-scale AMSR-E SWE
observations and 1-D-EnKF updates at 17:00 UTC using
fine-scale MODIS SCF observations. The forecast and ob-
servation error specifications are identical to those of the
single sensor assimilation experiments, although it can be
expected that the forecast error estimates remain smaller
with a higher assimilation frequency. Additional tuning of
the error parameters could further optimize the joint filter
but is left for future studies.

4.5. Anomaly Assimilation
[30] Earlier studies have highlighted different climatolo-

gies in different satellite SWE products [Derksen et al.,
2003]. Moreover, in situ data generally differ in magnitude
from remote sensing products that represent larger areas
[Moser et al., 2009] and estimates from land models [Pan
et al., 2003; Mote et al., 2003; Rawlins et al., 2007]. The
climatological differences present difficulties for satellite
data assimilation (the Kalman filter assumes unbiased fore-
casts and observations) as well as for in situ validation. To
sidestep some of these difficulties, Slater and Clark [2006]
assimilated percentiles of in situ snow observations and
Andreadis and Lettenmaier [2006] validated percentiles of
AMSR-E SWE assimilation results against percentiles of in
situ observations.

[31] Here, the 3-D assimilation scheme accounts for
some of the spatial scale discrepancy between the assimi-
lated observations and the model, but climatological differ-
ences between the model and (assimilated and validation)
observations remain at the 25 km and the 1 km scales, as
will be shown in the experiments where satellite observa-
tions are assimilated without a priori scaling. To address
these biases, we repeat all experiments (Figure 2), but this
time we assimilate only the anomaly information from the
observations by scaling the satellite observations prior to
data assimilation as follows.

Figure 4. Assimilation of MODIS SCF: (a) with increasing swe� the spread in scf � decreases and the
assimilation impact decreases, (b) perturbation of observed 100% snow cover (yk) will decrease the cor-
responding SWE below snup.
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[32] We calculate for each data set a climatological sea-
sonal cycle of the snowpack evolution by first smoothing
the time series with a 30 day window and then averaging
the resulting time series over 8 winters. For the data assimi-
lation experiments, the coarse AMSR-E SWE observations
are scaled to the 25 � 25 km2 EnsOL climatology before
assimilation. This scaling approach effectively adjusts the
magnitude of the SWE peak climatology, but it does not
always correctly scale the timing of onset and melt. The
anomalies are not scaled for their variability, because the
AMSR-E data are prone to a lot of noise, and tests showed
that such a second-order scaling mainly amplified the noise.
Likewise, the MODIS SCF observations are scaled to their
corresponding 1 km2 EnsOL climatology.

[33] The scaling of the satellite observations to the model
climatology does not imply that we trust the model clima-
tology more than that of the observations. Scaling the satel-
lite observations prior to data assimilation as described
above is equivalent to assimilating only the anomaly infor-
mation from the satellite observations. The bias is not
assigned to the model or the observations, and the climatol-
ogy (and long-term bias) will be disregarded in the valida-
tion. As shown in Figure 2, the departures (anomalies)
from the climatological seasonal cycle are calculated for
both the assimilation estimates and the in situ validation
observation data (SNOTEL/COOP), and then used to vali-
date the skill of the assimilation scheme [Reichle et al.,
2010]. The climatological seasonal cycle for the assimila-
tion results and the SNOTEL/COOP sites is again calcu-
lated as the 8 year average of the smoothed time series and
subtracted from the ‘‘raw’’ data. This operation avoids the
representativeness bias in the in situ observations and
focuses on the validation of the interannual variations only.
Simply put, in high snow years, we expect high positive
anomalies in both the in situ observations and the assimila-
tion results, while in low-snow years, negative anomalies
should appear in both data sets.

5. Results
5.1. Comparison of Satellite Observations and Model
Estimates

[34] Before we assess the assimilation results, we briefly
discuss the skill of the satellite retrievals and the model
estimates. First, the AMSR-E SWE product is compared to
the aggregated EnsOL simulations at the coarse (25 km) re-
solution. Figure 5a shows that the climatological seasonal
SWE cycles for the EnsOL and AMSR-E data are very dif-
ferent in magnitude and shape. Typically, peak SWE
amounts are greater and occur earlier for EnsOL than
AMSR-E. Figure 5b shows the EnsOL estimates and
AMSR-E values in a single, representative coarse-scale
pixel over 8 years and Figure 5c shows the corresponding
anomaly time series. There is a significant interannual vari-
ation in the model simulations, while only very little inter-
annual variability can be found for the otherwise noisy
AMSR-E observations. Scaling of the AMSR-E retrievals
will remove the long term observation-minus-forecast bias
and mostly result in higher SWE values. However, the rela-
tive lack of interannual variability (causing short-term bias)
limits what can be achieved through assimilation of
AMSR-E SWE anomalies. Over 8 winters (October–June

2002–2010) and for the 12 coarse-scale (25 km) pixels, the
root-mean-square-difference is RMSD ¼ 64 mm, the mean
observed-minus-simulated SWE bias ¼ �23 mm and the
correlation is R ¼ 0.25 between the unscaled AMSR-E
data and 25 km EnsOL (not shown). For the anomalies, we
obtain RMSD ¼ 51 mm, bias ¼ 1 mm (instead of 0 mm,
due to resetting rare negative SWE values to 0 mm after
rescaling) and R ¼ 0.005 (not shown).

[35] The SCF assimilation is impacted by the Noah snow
depletion curve. Figure 6 shows the (1 km) EnsOL and
MODIS SCF values for the corresponding EnsOL SWE,
averaged over 8 years and over all grid cells in the two
dominant vegetation classes. For all vegetation classes (not
shown), the observed SCF is generally lower than that of
the model for high SWE values, because MODIS rarely
ever reports 100% cover. In forested areas, the snow cover
is typically underestimated. After scaling, the low observed
SCF values for classes with taller vegetation (e.g., forest)
are shifted closer to the model climatology (Figure 6(top)).
For short vegetation (e.g., grassland), SCF rises quickly
with increasing SWE in the model (because of small values
for snup) and in the observations (because short vegetation
does not obscure the signal). Therefore, scaling has a negli-
gible effect in this case (Figure 6(bottom)). For both vege-
tation classes the mean scaled MODIS SCF never reaches
100%, because all positively anomalous SCF observations
are set back to 100% cover when the model climatology for
SCF is 100%.

5.2. Effect of Data Assimilation on Spatial Patterns
[36] Figure 7 illustrates the spatial patterns of the satel-

lite observations, the EnsOL estimates, and the assimilation
estimates (without scaling) for a few representative days
during the winter of 2009–2010, at time steps with limited
cloud cover. For this winter, the model and unscaled satel-
lite observations have a similar SWE magnitude. At the
start (12 October) and end (31 May) of the snow season,
AMSR-E retrievals indicate little if any snow, while
MODIS SCF reports snow in the mountains on both dates.
The 3D_Cm filter performs a downscaling of the coarse
AMSR-E SWE observations and shows a realistic fine-
scale variability driven by the land surface model integra-
tion. For example, high elevations maintain SWE values
well above the observed AMSR-E SWE (e.g., 7 January),
which would not be the case if the AMSR-E pixels were a
priori disaggregated and assimilated with a 1-D filter. Fur-
thermore, areas without observations (swath effects, e.g.,
2 March) are updated through spatial correlations in the
forecast errors, which prevents delineations between
observed and nonobserved areas.

[37] The 1-D SCF filter imposes the fine-scale MODIS-
observed variability on the snowpack, and locations with-
out fine-scale observations (due to clouds) are not updated.
SCF assimilation successfully adds snow during accumula-
tion under freezing temperatures (e.g., 18 November, 7
January), but it is more difficult to keep added snow during
the snow melt, especially in lower elevation areas, when
temperatures are above freezing (e.g., 10 April). The com-
bined SWE and SCF assimilation shows features of both
the SWE and SCF assimilation integrations. The spatial
(pattern) correlation (versus the in situ measurements, aver-
aged over 8 winters) is generally much smaller for the

W01522 DE LANNOY ET AL.: SATELLITE-OBSERVED SNOW DATA ASSIMILATION W01522

8 of 17



remote sensing products (R � 0:1� 0:2 for MODIS-based
and AMSR-E SWE) than for the EnsOL model integration
(R � 0:5). The assimilation estimates maintain R � 0:5,
both without and (not shown in Figure 7) with a priori scal-
ing of the satellite observations.

5.3. Time Series Analysis: Assimilation Without Prior
Scaling

[38] Figure 8 shows the time series R values and root-
mean-square error (RMSE) values of different assimilation
integrations versus in situ observations. The RMSE and R
values are computed separately for each in situ sensor and

then averaged over all available sensors. Figures 8a and 8c
also show 95% confidence intervals for the average R val-
ues. The RMSE and R values only include times and loca-
tions where snow is present in both the assimilation
estimates and the in situ measurements (i.e., zero snow is
excluded), thereby avoiding the consideration of ‘‘trivial’’
skill in the performance metrics during extended snow-free
periods. In section 5.6, we analyze timing errors in snow
accumulation and melt.

[39] Figures 8a and 8b show the results after assimilating
the data without a priori scaling. At the COOP locations
with shallow snowpacks, some improvement can be obtained

Figure 5. (a) AMSR-E (white dotted line) and Noah (gray solid line) area-averaged 8 year SWE clima-
tology and range between 8 year minimum and maximum values (shaded areas), for each of the 12
(25� 25 km2) AMSR-E pixels (pixel coordinates as in Figure 1). (b) An example of the 8 year time se-
ries for the single coarse pixel (1,1) at the south-western corner of the domain. (c) Corresponding anom-
aly time series for the same single coarse pixel (1,1).
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over the EnsOL by assimilating either AMSR-E SWE (� R
¼ 0.06) or MODIS SCF (� R ¼ 0.04). Closer inspection of
the time series shows that the EnsOL has a larger SWE
range than the COOP observations, because the model does
not account for effects like wind-driven snow redistribution
(not shown). The limited range in the AMSR-E SWE
nudges the assimilation estimates closer to the observed
seasonal cycle for COOP sites. The SCF assimilation also
has a positive impact, because the low-snow conditions
allow sufficient spread in the ensemble observation predic-
tions (scf �), which in turn enables frequent EnKF updates.
In addition, these sites experience less cloud cover and thus
more regular updates. Typically, SCF assimilation contrib-
utes most during the transition seasons with patchy or thin
snow, while SWE assimilation has more impact for greater
snow cover. Consequently, at COOP sites, the modest indi-
vidual contributions from the SWE and SCF assimilation
add up to a significant improvement in the SWE evolution
upon joint, multisensor SCF and SWE assimilation (R ¼
0.21, RMSE ¼ 62 mm) compared to the EnsOL (R ¼ 0.10,
RMSE ¼ 78 mm).

[40] However, at the SNOTEL sites, none of the data
assimilation scenarios without scaling (R � 0:0, RMSE
� 330� 350 mm) improves the performance over the
EnsOL (R ¼ 0.19, RMSE ¼ 305 mm). Without assimila-
tion, there is a large discrepancy between the EnsOL and
the SNOTEL observations, mainly due to their highly ele-
vated location, deep and long-lasting snowpacks, a higher
chance for precipitation in the form of snow as compared
to rain, the coarser scale of the NLDAS precipitation forc-
ing, and model parameterization. SWE assimilation leads
to estimates that are more different from the dynamic SNO-
TEL observations than the EnsOL estimates : in the deep

snowpack areas around SNOTEL sites (e.g., coarse pixels
(1,1), (2,1), (3,1) and (1,4) in Figure 5a), the negative bias
in the coarse-scale (25 km) SWE innovations dampens the
temporal variability in the analyses. Furthermore, while
the downscaling included in the assimilation accounts for
the scale difference between the model (1 km) and the SWE
retrievals (25 km), the direct validation of the 1 km model
(or assimilation) results against the SNOTEL point observa-
tions is still prone to scaling errors. The limited skill of
SWE assimilation for deeper snowpacks was also noted by
Andreadis and Lettenmaier [2006] and Dong et al. [2007].

[41] The assumed constant snow density in the retrieval
of the AMSR-E SWE could adversely affect the results. To
avoid this assumption, we also tested the assimilation of
AMSR-E snow depth retrievals (as opposed to SWE
retrievals) but obtained largely similar results. Our conclu-
sions are further supported by experiments with SWE and
snow depth retrieval assimilation over the entire Northern
Hemisphere [Kumar et al., 2011].

[42] At the SNOTEL sites, SCF assimilation slightly
reduces snowpack because of underobserved MODIS snow
cover in forest areas and inaccurate conversions from SCF
to SWE. The resulting decrease in R (Figure 8a) is also due
to irregularities in the spatial and temporal patterns (cloud
obscuration; a mix of updated and nonupdated time steps
and locations are included in the R calculation). At the
SNOTEL sites, the joint SWE and SCF assimilation is
dominated by the adverse impact of SWE assimilation and
leads to worse estimates than those obtained from the land
surface model alone (EnsOL).

5.4. Time Series Analysis: Assimilation With Prior
Scaling

[43] In Figures 8c and 8d, we validate the analysis
anomalies after assimilating anomaly satellite information
(where anomalies are obtained by removing the data set-
specific mean seasonal cycle from the time series). The
anomaly RMSE values shown in Figure 8d are reduced
compared to the values in Figure 8b because the long-term
bias is excluded. Again, statistically significant improve-
ments in the anomaly R and RMSE are found for the
COOP sites through joint SCF and SWE assimilation
(� RMSE ¼ �11 mm with respect to the EnsOL). SCF
assimilation dominates the positive impact, while SWE
assimilation has almost no impact on the synoptic-scale or
interannual variability.

[44] At SNOTEL locations, no improvement can be
found for either scaled AMSR-E SWE or MODIS SCF
assimilation. Figure 9a illustrates several limitations inher-
ent in SWE anomaly data assimilation for the winter of
2009–2010 at one fine-scale SNOTEL location. While the
SNOTEL sites all show a late melt in this year (relative to
the 8 year climatology), there is no late snow simulated,
and the AMSR-E SWE anomalies do not show late snow
either (AMSR-E is not sensitive to thin snow layers, and
local snow patches are not obvious in coarse-scale meas-
urements). It is thus impossible to introduce late snow
anomalies into the analysis through SWE assimilation. Fur-
thermore, during this particular winter, the AMSR-E
anomalies are mostly positive while the model and most in
situ observed SNOTEL anomalies are primarily negative.
Hence the temporal variability in the analysis product is

Figure 6. Noah predicted SCF (thick solid line), unscaled
(black crosses), and scaled (gray rectangles) MODIS SCF
observations. The SCF values are averaged per simulated
SWE (EnsOL) bin over all locations within each of the two
dominant vegetation classes over 8 years (October–June
2002–2010). The error bars show the spread in SCF values
for a particular SWE range across all locations and times.
The number n indicates the total amount of 1 km2 grid cells
falling in each vegetation class.
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deteriorated. This comes as no surprise, because the anom-
aly correlation between the SNOTEL in situ and AMSR-E
observations is close to zero. Scaled SWE assimilation is
not successful, because (1) the SWE product lacks a correct

interannual variability, probably as a result of a saturation
error in the retrievals and interannually changing snow
properties [Rosenfeld and Grody, 2000] that affect the
brightness temperature signal and (2) the simple bias

Figure 7. SWE (at 08:00 UTC) and SCF (at 17:00 UTC) fields for 5 days (MMDDYYYY) in the win-
ter of 2009–2010. No snow is indicated as black. The top 2 rows show individual SWE and SCF satellite
observations. The remaining rows show SWE (at 09:00 UTC) and SCF (at 18:00 UTC) for the EnsOL
forecast and 3 different analyses obtained through data assimilation (DA) without a priori scaling: SWE
DA, SCF DA, and joint SWE & SCF DA, respectively. AMSR-E data are missing due to the swath effect
and MODIS data are missing because of cloud cover.
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removal strategy used here cannot correct for interannual
variations and fine-scale bias.

[45] Because of their long-lasting deep snow and nearly
complete snow cover, the SNOTEL sites are only margin-
ally impacted by scaled MODIS SCF assimilation during
the midwinter (Figure 9b). During the melt period, SCF
assimilation is unable to add and maintain the snow cover if
the model tends to melt the snow (for example, because the
model forcing results in above-freezing temperatures).
Using future snow observations to adjust the air temperature
[Zaitchik and Rodell, 2009] may help to solve this problem.

5.5. Water Balance and Increments
[46] The different assimilation scenarios have a distinct

impact on the water budget. Table 2 compares the season-
average SWE against the corresponding accumulated
snowfall minus sublimation and melt (P-S-M), averaged
over 8 snow seasons (October through June) and over the
entire domain. For the EnsOL without assimilation, both
the averaged SWE and P-S-M are approximately balanced
at �40 mm (Table 2). SWE assimilation without a priori
scaling excessively removes SWE (to �19 mm) and thus
leaves less snow available for melt and sublimation, which
increases P-S-M (to �69 mm). SCF assimilation without a

priori scaling also reduces the snowpack during the mid-
winter (to �30 mm), but large melt and sublimation events
occur when nominal amounts of snow are added in the
spring while the model is quickly melting off snow. This
results in low average P-S-M (�20 mm), which is again
out of balance with the time-average SWE. Similarly, joint
SWE and SCF assimilation without a priori scaling results
in a notable water imbalance.

[47] By contrast, scaled data assimilation better pre-
serves the water balance, even though all scenarios still
show a slightly reduced snowpack relative to the EnsOL
(Table 2). Snow additions and removals (increments) might
at first glance be expected to compensate each other. But
while snow removal is a linear process, snow additions
do not result in a commensurately increased snowpack,
because of melt and sublimation. Thus, this nonlinear effect
results in a slight reduction in the climatological snowpack.
Scaled SCF assimilation again yields a reduced P-S-M
because nominal amounts of added snow increase the melt.

[48] The changes in the water balance are directly related
to the distribution of the assimilation increments. Note
again that for the 3-D SWE assimilation, the increments are
always computed for and applied to the entire domain, i.e.,
also at unobserved locations. Figure 10 shows the long-

Figure 8. (a) Time series correlation R and (b) RMSE versus in situ observations (COOP (black bars)
and SNOTEL (gray bars)) for model forecasts (EnsOL) and assimilation analyses, computed over 8 win-
ters (October–June 2002–2010). (c and d) Same as Figures 8a and 8b but showing anomaly R and anom-
aly RMSE for assimilation using scaled satellite observations. The average R values are supplemented
with 95% confidence intervals.
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term (8 winters) mean and standard deviation of the SWE
increments for each 1 km2 gridcell in the domain, calcu-
lated over observed and unobserved time steps for SWE
assimilation (Figures 10a and 10b) without prior scaling
and (Figures 10c and 10d) with prior scaling. Also shown
are the statistics for the spatially averaged increments over
each of the 12 (25 � 25 km2) AMSR-E pixels. In this con-
text, a 1 km2 gridcell is considered observed for a given
update time step if it is covered by an assimilated SWE re-
trieval at that time. Unobserved increments are obtained
through propagation of information from a partially
observed (swath) area to unobserved areas. SWE assimila-
tion without scaling results in predominantly negative
increments (Figure 10a), and reduces the snowpack

(Table 2). However, there is a large spatial variability
in the fine-scale increments with positive increments in
the central (lower elevation) area of the domain, where
AMSR-E tries to add snow, while the model melts it off
(not shown).

[49] With a priori scaling, the mean observed increments
are zero across the domain (Figure 10c), by design. How-
ever, the mean increment for each coarse-scale AMSR-E
area is not exactly zero, because of horizontal information
propagation across the pixel boundaries. The fine-scale
increments show preferential patterns (not shown), which
causes the analysis climatology at the fine scale to be dif-
ferent from the EnsOL. For example, deep snowpacks
have a larger ensemble spread and therefore attract larger
increments.

[50] As expected, for assimilation without and with a pri-
ori scaling, the mean and the standard deviation of the
unobserved increments are smaller than those of the
observed increments because of the reduced error correla-
tion with increasing distance from the observed area (not
shown). When the domain is only partially observed, the
swath typically covers either the eastern or the western end
of the domain. This leads to updates to the unobserved pix-
els in the center of the domain while the updates (and their
standard deviation) are negligible for the opposite side of
the domain. The negative unobserved increments mainly
occur when information is propagated from the eastern
observed area (with less snow) to the unobserved center
west part (with deeper snow). It should be noted that the
unobserved increments only take a small fraction of the
total increments and the spatial distribution of the total
increments (not shown) is very similar to that of the
observed increments.

5.6. Timing of Accumulation Onset and End of Melt
[51] The time series metrics in Figure 8 assess skill in

the snowpack evolution when snow is present. For several
applications, however, the onset of the snow accumulation
and the last day of snow cover are important and warrant
further investigation. Table 3 gives an overview of the
mean absolute difference in days between the in situ
observed and the simulated date of the onset of accumula-
tion for different assimilation scenarios without a priori
scaling. The table also provides the same metric for the
timing of snow melt. The RMSE is calculated for each site
individually over the 8 years and then averaged over the 14
(or 4) SNOTEL (or COOP) sites. The snow onset date is
defined here as the latest date without any snow preceding
a period of continuous snow cover for at least 20 days.
Likewise, the snow melt date is defined as the earliest date
without any snow following a period of continuous snow
cover for a period of at least 20 days. For the MODIS and
AMSR-E observations, the additional requirement is that
less than 5 out of these 20 days can contain missing (and
thus potentially zero snow) data. Because of the missing
data, the time difference in the onset and melt as observed
by the satellite data is an inaccurate estimate. AMSR-E
snow typically starts to accumulate later (2 weeks to 1
month) and melt earlier (�2 months) than the in situ obser-
vations, because thin or patchy snow is not observed at the
coarse scale.

Figure 9. (a) SWE and (b) SCF anomalies during the
winter of 2009–2010 at the Columbine SNOTEL site
(06j03s). The EnsOL and anomaly assimilation integrations
(SWE DA, SCF DA), as well as the validating in situ
anomaly observations (SNOTEL) are shown at 07:00
UTC. The SWE and SCF satellite observations are assimi-
lated at 08:00 UTC and 17:00 UTC, respectively. Model
and assimilation estimates are at 1 km scale. The date indi-
cates month/year.

Table 2. Water Balance Variables for the Ensemble Open Loop
and Different Assimilation Integrationsa

SWE [mm] P-S-M [mm]

EnsOL 41.6 37.3

Without Prior Scaling
SWE DA 18.8 69.4
SCF DA 30.2 20.2
SWE & SCF DA 18.2 34.7

With Prior Scaling
SWE DA 35.8 41.5
SCF DA 37.0 23.1
SWE & SCF DA 35.0 24.9

aSWE represents the winter season-average SWE accumulation and P-S-M
is the winter season-averaged accumulation of snowfall-sublimation-melt.
Both are averaged over 8 winters (October to June 2002–2010) and over
the entire simulation domain.
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[52] SWE assimilation has only a minor impact on the
timing of the accumulation onset when compared to the
EnsOL, because the modeled onset is maintained, even
when snow is reduced by assimilation of zero SWE (snow
is never entirely removed in the EnKF analysis, because of
assumed errors in the assimilated AMSR-E SWE). Assimi-
lation of unscaled AMSR-E SWE causes an overall reduc-
tion in SWE during the midwinter (low-biased SWE) and
spring (unobserved thin or patchy snow), which accelerates
the ablation and causes a larger error in the analysis timing
of the melt than the EnsOL.

[53] SCF assimilation always has a beneficial effect on
the snow onset timing estimate and is mostly induced
through the rule-based update. However, SCF assimilation
is often unable to add and maintain snow (if observed at
SNOTEL sites with long-lasting snow cover) once the
model starts the snow melt. The joint SWE & SCF assimi-
lation reduces the error in the timing of the onset from 19
(COOP) and 13 (SNOTEL) days to 15 and 9 days, respec-
tively. Less impact of data assimilation can be expected
with models that better simulate the exact length of the
snow season.

6. Summary and Conclusions
[54] Accurate snowpack estimates are an important part

of assessing the land surface water and energy budget. Sat-
ellite observations provide estimates of snow cover and
snow water equivalent, but with several limitations. In this
paper we use advanced ensemble Kalman filter (EnKF)
techniques to assimilate the remote sensing retrieval

products from AMSR-E and MODIS into the Noah LSM.
The assimilation estimates are validated against in situ
SNOTEL and COOP observations.

[55] First, the state-of-the-art techniques for single-
sensor snow data assimilation are improved over previous
attempts. The coarse-scale AMSR-E SWE retrievals are
dynamically downscaled to the finer model scale to limit
bias due to the spatial scale mismatch, and information is
propagated from observed to unobserved areas through a
spatial 3-D-EnKF. High-resolution MODIS SCF observa-
tions are assimilated with a 1-D-EnKF. Here the mapping
from observed SCF to unobserved snowpack variables
(SWE and snow depth) is the main challenge. Both in the
absence of snow and in times of full snow cover, the model
ensemble of observation predictions will not show any
spread, thereby preventing meaningful EnKF updates if the

Figure 10. (a and c) Long-term (8 snow seasons) mean and (b and d) standard deviation in daily SWE
increments for (gray dots) 1 km2 pixels in the simulation domain, averaged over each of the 12 AMSR-E
pixels (black squares), and averaged over the domain (diamond). Increments were obtained through
AMSR-E SWE assimilation (a and b) without and (c and d) with a priori scaling. Each 1 km2 pixel is
observed on average at 1730 time steps, and unobserved (but updated by a neighboring observed area) at
449 time steps. Also shown is the 1–1 line.

Table 3. RMSE Between In Situ and Simulated Snow Onset and
Snow Melt Dates for 8 Years, Averaged Over Individual Sitesa

COOP SNOTEL

Onset Melt Onset Melt

EnsOL 19 60 13 38
AMSR-E 31 98 14 59
MODIS 31 34 35 34
SWE DA 19 71 12 39
SCF DA 17 68 9 39
SWE & SCF DA 15 72 9 40

aData assimilation (DA) is without a priori scaling. RMSE is in days.
The 8 years represented are October to June 2002–2010.
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SCF observations contradict the model estimates. There-
fore, additional rule-based updates have been introduced.

[56] Second, motivated by expected coarse-scale (25 km)
climatology bias between simulated SWE predictions and
AMSR-E SWE retrievals as well as fine-scale (1 km) bias
between the model estimates and in situ validation data, we
conduct all experiments without and with scaling of the sat-
ellite observations prior to data assimilation. The assimila-
tion of scaled data is essentially anomaly assimilation and
validated by comparing SWE departures from the climato-
logical cycle in the in situ observations and the assimilation
estimates. This technique thus seeks to assimilate the year-
to-year and synoptic-scale SWE (or SCF) variations in the
AMSR-E SWE (or MODIS SCF) retrievals, rather than
their absolute SWE (or SCF) amounts.

[57] Finally, both AMSR-E SWE and MODIS SCF
are assimilated jointly in a multiscale framework. These
experiments attempt to overcome shortcomings in each ob-
servation type. The coarse-scale AMSR-E SWE does not
report thin patchy snow during the transition seasons, but it
provides a snow estimate under cloudy conditions. In con-
trast, fine-scale MODIS SCF observations capture snow
during the early accumulation and melt phase, but they do
not provide a direct snowpack measurement and are not
available when the land surface is obscured by clouds.

[58] Without assimilation, the ensemble open loop inte-
gration (EnsOL) shows realistic spatial SWE patterns. Both
AMSR-E SWE and MODIS SCF assimilation maintain
good spatial patterns in the analyses. For AMSR-E assimi-
lation, this is attributed to the spatial downscaling of
the coarse-scale observations in the 3-D-EnKF used here.
At shallow snowpack (COOP) locations, assimilation of
unscaled AMSR-E SWE brings the seasonal SWE cycle
closer to that of the in situ observations. Furthermore, less
cloud cover and the low (partial cover) SCF conditions
allow more impact of SCF assimilation at the low-elevation
stations. Joint SWE and SCF assimilation further improves
the results at the COOP sites with significantly enhanced
RMSE and R metrics versus in situ observations. Scaled
SWE assimilation does not improve the results at COOP
sites, but scaled SCF is beneficial and joint scaled SCF and
SWE assimilation again has a positive impact.

[59] In areas with deep snowpacks (SNOTEL), AMSR-E
SWE assimilation without a priori scaling suffers from cli-
matological biases between the AMSR-E and modeled
SWE. Furthermore, underobserved SCF during the midwin-
ter and the imperfect conversion to SWE negatively affect
unscaled SCF assimilation results, and scaled SCF assimi-
lation only has a marginal effect in the transition seasons.
Furthermore, AMSR-E retrieval assimilation with a priori
scaling is not successful, because the SWE product lacks a
correct interannual variability and the applied simple bias
removal strategy cannot correct for interannual variations
and fine-scale bias.

[60] There is a modest benefit at both SNOTEL and
COOP sites from SCF assimilation in an improved timing
of the onset of the snow season. Yet, SCF assimilation does
not improve the melt time estimate, because once the model
starts to melt the snow, SCF assimilation is unable to main-
tain the snowpack. Because AMSR-E SWE retrievals can-
not detect thin snow cover or patchy snow conditions, their
assimilation does not improve the timing of snow onset or

melt. In fact, SWE assimilation without a priori scaling
generates snow melt earlier in the season because the snow-
pack is typically reduced during the midwinter (due to the
low bias in AMSR-E SWE), which increases the difference
between the melt times of the assimilation estimates versus
those of the in situ observations.

[61] The different assimilation scenarios have a distinct
impact on the water balance. Without a prior scaling of the
assimilated data, the snowpacks are generally reduced and
SWE assimilation causes a reduced melt and sublimation,
while SCF assimilation increases the melt. This distortion
of the water balance can be largely overcome through scal-
ing of the observations prior to data assimilation.

[62] The assimilation and validation of snow remote
sensing products poses several challenges that require fur-
ther study. MODIS SCF assimilation is impacted by the
conversion of SCF to SWE information. Furthermore,
while snow removal is mostly effective, any addition of
snow only persists if the temperature is below freezing
point. The latter issue could be addressed by including a
nudging factor to the meteorological forcings [Zaitchik and
Rodell, 2009]. Problems with AMSR-E snow data assimila-
tion could be further mitigated by (1) improving the retriev-
als (e.g., using data assimilation within the retrieval
process, [Tedesco et al., 2010; Pulliainen, 2006]), (2)
assimilating radiances directly [Durand et al., 2009] and/or
(3) expanding the assimilation scheme with a more com-
plex dynamic bias estimation [Dee and da Silva, 1998; De
Lannoy et al., 2007], which would need to be state and
environment dependent (e.g., different for deep and shal-
low snowpacks). Unfortunately, SWE estimation is compli-
cated in mountainous areas, but this is exactly where snow
matters for water supply. In order to contribute significantly
to a data assimilation system, the observations need to
reflect realistic synoptic-scale and interannual (spatial and
temporal) variations.

[63] In summary, AMSR-E or MODIS snow observa-
tions alone come with a number of limitations, and joint
snow cover and snowpack data assimilation may have
potential to complementary overcome these limitations, as
shown here for the COOP sites. However, future improve-
ments for deep snow conditions depend on further advances
in assimilation methods and an improved characterization
of the synoptic scale (spatial and temporal) variations in
the observations.
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