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[1] Terrestrial water storage (TWS) information derived from gravity recovery and
climate experiment (GRACE) measurements is assimilated into a land surface model over
the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an
ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are
compared against independent observational data sets of snow water equivalent (SWE) and
runoff. For SWE, modest improvements in mean difference (MD) and root-mean-square
difference (RMSD) are achieved as a result of the assimilation. No significant differences in
temporal correlations of SWE resulted. Runoff statistics of MD remain relatively
unchanged while RMSD statistics, in general, are improved in most of the sub-basins.
Temporal correlations are degraded within the most upstream sub-basin, but are, in general,
improved at the downstream locations, which are more representative of an integrated basin
response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux
estimation, though comparisons with observed runoff would be enhanced by the use of river
routing and lake storage routines within the prognostic land surface model. Further,
GRACE hydrology products would benefit from the inclusion of better constrained models
of postglacial rebound, which significantly affects GRACE estimates of interannual
hydrologic variability in the Mackenzie River basin.
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1. Introduction
[2] Snow is an important component of the hydrologic

cycle that accounts for a large fraction of the available fresh-
water resources in many parts of the northern hemisphere
[Barnett et al., 2005]. Accurate estimation of snow mass, or
snow water equivalent (SWE), across space and time using
point-scale, ground-based techniques is a difficult task.
Therefore, in an effort to better quantify this potential fresh-
water supply, many researchers have turned to remote sens-
ing estimates derived from space-based instrumentation used
in conjunction with land surface models.

[3] Despite recent popularity in the utilization of passive
microwave and visible spectrum imagery for the purpose of
snow pack estimation [e.g., Andreadis and Lettenmaier,
2006; Durand and Margulis, 2006; Dong et al., 2007; Su
et al., 2008], satellite-derived measurement techniques pos-
sess significant limitations. Passive microwave estimates, for
example, are prone to large errors for snow packs that are ei-
ther wet, deep (>1 m), or contain ice and/or depth hoar

layers [Clifford, 2010]. Similarly, visible imagery often pro-
vides little information outside of the initial accumulation
and final ablation periods of the snow season [Clark et al.,
2006].

[4] An alternative to passive microwave and visible spec-
trum-based SWE estimation is the use of gravimetry. Gravi-
metric techniques focus on the measurement of gravitational
anomalies associated with the accumulation (or loss) of mass
near the Earth’s surface. In the context of snow, changes in
the Earth’s gravitational field are associated with the accu-
mulation of snow during the snow season and the subsequent
ablation and runoff of the snow mass during the melt season.
Gravimetry is capable of capturing snow mass throughout
the accumulation season, including peak accumulation when
SWE information is most valuable to water resource manag-
ers. Unfortunately, the drawback of space-based gravimetry
is its coarse spatial (approximately hundreds of km) and tem-
poral (approximately monthly) resolution that limits its
applicability for smaller domains. When satellite gravimetric
measurements are combined with a land surface model as
part of a data assimilation (DA) framework, however, there
is the potential to effectively downscale gravimetric esti-
mates in time and space while simultaneously providing use-
ful information content when passive microwave and visible
spectrum measurements cannot.

2. Background
[5] One such satellite gravimetry mission is the gravity

recovery and climate experiment (GRACE). GRACE
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provides approximately monthly estimates of variations in
terrestrial water storage (TWS), which includes snow, ice,
surface water, soil moisture, and groundwater. The mission
is a major step toward understanding regional TWS dynam-
ics [Tang et al., 2010] and offers significant insight into re-
gional- and continental-scale hydrologic processes [Syed
et al., 2009; Rodell et al., 2009; R. Houborg, M. Rodell,
B. Li, R. Reichle, and B. F. Zaitchik (2011), Drought indi-
cators based on model assimilated GRACE terrestrial water
storage observations, submitted to Water Resources
Research, 2011].

[6] Relatively few studies have been conducted that uti-
lize GRACE measurements within a DA framework. The
first study by Zaitchik et al. [2008] assimilated GRACE in-
formation into a land surface model of the Mississippi
River basin. When compared against in-situ groundwater
observations, Zaitchik et al. [2008] found reduced errors
and increased temporal correlations as a result of the assim-
ilation. Further, the results suggested the potential to down-
scale the coarse-scale GRACE measurements via use of a
relatively fine-scale land surface model. However, because
snow contributes little to TWS in the Mississippi River ba-
sin, there was limited opportunity to study the impact of
GRACE data assimilation on snow pack characterization.

[7] More recently, Su et al. [2010] studied the impact of
GRACE data assimilation on TWS estimates in North
America for the express purpose of improved snow pack
estimation. They found that GRACE assimilation improved
SWE estimation in many of the North American basins
where snowfall is a significant contributor to the hydrologic
cycle. However, Su et al. [2010] also found that many
issues remain to be addressed, including: the cause of
model degradation in some high-latitude basins as a result
of GRACE assimilation, the impact of GRACE observatio-
nal error on DA results, and the impact of GRACE assimi-
lation on components of TWS other than snow.

[8] This study expands on the work by Zaitchik et al.
[2008] and Su et al. [2010] via extended examination of
GRACE DA performance within a snow-dominated hydro-
logic basin. Namely, additional verification activities using
independent, ground-based data sets are explored, a number
of different GRACE products are tested during assimilation,
the impact of GRACE measurement error on DA results is
investigated, an analysis of DA innovation sequences is
included, and a longer period of record is utilized, which
allows for a better assessment of interannual variability.

[9] Section 3 introduces the methods used in the assimi-
lation framework, section 4 highlights the study domain,
section 5 discusses the GRACE measurements and forward
model used during the assimilation, section 6 highlights the
independent data sets used for validation, section 7 presents
the assimilation results, and section 8 concludes with sum-
marized findings and implications.

3. Data Assimilation Framework
[10] A DA framework is an effective means of merging

model estimates with measurements that often yields an
improved estimate beyond that of the model or measure-
ments alone [McLaughlin, 2002]. Not only does DA pro-
vide a conditioned estimate that accounts for both model
and measurement uncertainty, but it offers the potential to

effectively downscale the measurements in space and time
via utilization of the finer-scale information associated with
the prognostic model formulation, its parameters, and its
forcing data [Reichle et al., 2001; Zaitchik et al., 2008].

[11] The selection of the most appropriate DA system
depends on feasibility, robustness, and computational effi-
ciency. In that regard, we choose to employ an ensemble
Kalman smoother (EnKS) in part because of its ability to
handle nonlinear models coupled with its flexible, modular
structure [Dunne and Entekhabi, 2006] as well as the ability
to leverage the work of Zaitchik et al. [2008] as a precursor
study. In general, an EnKS has two basic components: a
physically based, forward model to propagate the model
states as an ensemble in order to provide background error
covariances, and an update scheme that combines the model
states and the satellite measurements in a way that accounts
for their respective uncertainties. The work conducted in this
current study adapts the EnKS presented by Zaitchik et al.
[2008] for a snow-dominated basin, thereby contributing to
the methodological development of GRACE DA (see sec-
tion 5.3). The EnKS is introduced in the next paragraphs,
whereas the assimilated measurements and forward model
are discussed in section 5.

[12] The prior (unconditioned) estimate of the model states,
xi�
� , is derived from a prognostic land surface model. This

is illustrated in the left-hand side (i.e., step 1) of Figure 1. The
nonlinear model, Ftð�Þ, propagates the posterior (conditioned)
model states, xiþ

��1, forward in time, t, from one month to the
next (i.e., from � � 1 to �) using an ensemble of N realiza-
tions with prescribed model errors wi

t as

xi�
� ¼ Ftðxiþ

��1;w
i
tÞ for i 2 N : (1)

We adopt the convention where bold lowercase symbols
denote vectors, bold uppercase symbols denote matrices,
nonbold symbols denote scalars, and calligraphic symbols
represent operators. Uncertainties in the model are defined
by the model error term, wi

t with covariance Qt. In the en-
semble framework, model errors are represented by pertur-
bations that are applied to model states and forcings
(section 5).

[13] Next, the prior model states are updated using the
observations available for the time period of interest
� 2 ½to; tf � (where to and tf are the beginning and end of the
assimilation window, i.e., the first and last day of the month
in this application). This is illustrated in the right-hand side
(i.e., step 2) of Figure 1. The following linear update equa-
tion is employed as

xiþ
� ¼ xi�

� þK� ½y� þ vi �Hxi�
� �; (2)

where K� is the Kalman gain matrix, y� is the measurement
vector, and H is the predicted measurement model that lin-
early maps the model states into measurement space. Ran-
dom perturbations, vi, representing measurement error are
added to the measurement vector [Burgers et al., 1998].
The Kalman gain, K� , is a weighted average between the
uncertainty of the prior states and the measurements such
that

K� ¼ P�� HT
� ðH�P�� HT

� þ RÞ�1; (3)
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where P�� is the background error covariance computed
from xi�

� for i 2 ½1; N �, and R is the measurement error
covariance.

[14] The analysis increments, xþ� � x�� , are applied
evenly over each day of the month as illustrated in step 2 of
Figure 1. The update procedure ignores non-Gaussian char-
acteristics and relies only on the first two moments of the
distribution. In practice, however, it may only be feasible
to accurately compute the first and second moments of the
system state [Khare et al., 2008]. Additional details regard-
ing the EnKS update procedure applied in equation (2) are
found in Figure 5 of Zaitchik et al. [2008] as well as in
section 5.3.

4. Study Domain
[15] The study domain used here is the Mackenzie River

basin (MRB) located in northwestern Canada (Figure 2)
and consists of four individual sub-basins. The sub-basin
delineation was based on topographic control and adhered
to the topology of the river network. Each sub-basin was
extracted from the original GRACE product in order to pro-
duce sub-basin-averaged TWS estimates. The smallest sub-
basin is 280,000 km2, which is larger than the minimum

area of �150,000 km2 that can be resolved by GRACE at
midlatitudes [Rowlands et al., 2005; Swenson et al., 2006].
Additional details regarding the GRACE measurements
and measurement preprocessing activities are found in sec-
tions 5.1 and 5.2, respectively.

[16] As a whole, MRB is �1.8 � 106 km2 in drainage
area (�1.6 � 106 km2 for land areas only; see Table 1)
with the main branch of the Mackenzie River running from
the highlands in the southwestern corner of the domain
northward toward the Arctic Ocean. The snow classifica-
tion scheme of Sturm et al. [2010] suggests MRB snow
type is dominated by taiga-type snow with smaller areas of
tundra- and alpine-type snow found in the northwest and
southern regions, respectively (see Figure 2b).

5. Assimilated Measurements and Forward
Model
5.1. Grace Measurement Background

[17] Several different GRACE hydrology products were
investigated in this study: TWS anomalies from the Space
Geodesy Research Group (GRGS) product [Bruinsma et al.,

Figure 2. Map of Mackenzie River Basin including (a)
GEOS-5 topography, sub-basin delineation, and GRDC ob-
servation locations (solid dots), and (b) Sturm et al. [2010]
snow type with INAC snow survey locations (hollow
diamonds).

Figure 1. Simplified flowchart of EnKS application.
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2010; Horwath et al., 2011], the Tellus product available
from the NASA Jet Propulsion Laboratory (Tellus) [Wahr
et al., 2004; Swenson and Wahr, 2006], and the mass con-
centration product generated at the NASA Goddard Space
Flight Center (MasCon) [Rowlands et al., 2005, 2010].
Each product utilizes the same level 1 range-rate measure-
ments from GRACE, but is processed in a different manner
in order to yield mass change estimates in terms of equiva-
lent water thickness.

[18] Each product is available as gridded TWS anoma-
lies (i.e., deviations from the temporal mean at each loca-
tion). The GRGS and Tellus products are provided on a
�1� � 1� grid whereas the MasCon product is provided on
a �4� � 4� grid. Each product was subsequently converted
into sub-basin-averaged total TWS values by adding the
location-specific, long-term-average TWS from the land
surface model. More information on GRACE measurement
preprocessing is provided in section 5.2 and the land sur-
face model is provided in section 5.3.

5.2. Grace Measurement Preprocessing
[19] Conversion of the GRACE TWS anomalies into

sub-basin-averaged TWS estimates that are compatible
with modeled TWS values begins with generating a single-
replicate of the forward model for the period 1 September
2002 to 1 September 2009. No model errors are prescribed in
this simulation unlike that shown in equation (1). Long-term
(i.e., 2002–2009)-averaged, sub-basin-averaged estimates of
TWS derived from the forward model are subsequently
added to the sub-basin-averaged monthly GRACE TWS
anomalies, which yields monthly estimates of TWS for
each modeled sub-basin that are eventually assimilated
using equation (2). Additional details on the utilization of
the GRACE measurements in equation (2) are found in the
work of Zaitchik et al. [2008].

[20] One notable aspect of GRACE preprocessing is the
consideration of a secular trend associated with postglacial
rebound (PGR). The Tellus product accounts for PGR using
the methods of Paulson et al. [2007]. However, the GRGS
and MasCon products do not account for PGR. Therefore,
model output from Paulson et al. [2007] is applied here to
the GRGS and MasCon products in a similar manner as
done for the Tellus product. Preliminary DA results suggest
PGR is overestimated by the model of Paulson et al.
[2007] in both the Slave and Peace plus the Athabasca sub-
basins, but this cannot be verified as the exact amount of
PGR in these regions is unknown. Unfortunately, PGR
models are difficult to validate due to a lack of independent
data, thus the errors are not well quantified. Therefore, in

an effort to better understand the impacts of PGR estimates
on GRACE DA performance within the MRB, two differ-
ent versions of each GRACE product were used in the DA
experiments: PGR correction applied using Paulson et al.
[2007] and PGR correction not applied (i.e., the PGR cor-
rection was removed from the Tellus product). These two
approaches effectively bound the extent of PGR impacts on
GRACE DA performance.

[21] Finally, one requirement for optimal data assimila-
tion is an accurate representation of measurement error.
Given the multiple sources of error present within the
GRACE measurements [Bruinsma et al., 2010; Horwath
et al., 2011; Rowlands et al., 2005; Swenson and Wahr,
2006; Wahr et al., 2006], this task is not trivial. GRACE
TWS errors arise from a combination of measurement
errors, processing errors, and errors in the geophysical
models used to de-alias the GRACE measurements [Wahr
et al., 2004]. The error estimates used in this study are
based on those of Swenson and Wahr [2006] and S. Swen-
son (unpublished), and are comparable to those used in
the work of Zaitchik et al. [2008]. Even though the spa-
tially distributed error estimates provided in S. Swenson
(unpublished) are only for the Tellus product, we believe
they are fairly representative of the measurement error in
all of the GRACE products since each product utilizes the
same level 1 range-rate measurements. The time-invariant
GRACE measurement error used in this study is less than
that used by Zaitchik et al. [2008] due to the increased
number of satellite overpasses near the poles. The mea-
surement error covariance for each sub-basin of interest is
provided in Table 1. The impact of measurement error
covariance on DA performance is further discussed in
section 7.4.

5.3. Catchment Land Surface Model
[22] The prognostic model used in this application is the

catchment land surface model (catchment) developed by
Koster et al. [2000]. Catchment employs a catchment defi-
cit prognostic variable rather than the more commonly used
soil water content variable to estimate subsurface water
storage, and explicitly models subgrid-scale soil moisture
variability and its effect on hydrological processes such as
runoff and evaporation. Further, the inclusion of a three-
layer snow model [Stieglitz et al., 2001] provides additional
capability in the estimation of terrestrial water storage in
areas where snow is a significant contributor to the hydro-
logic cycle. These attributes create a unique capability for
catchment in the assimilation of terrestrial water storage
data assimilation.

[23] The predicted measurement model, H, (see equation
(2)) maps the catchment model states into the GRACE
measurement space. H not only spatially aggregates the
model states into the four sub-basins as described in section
4, but it also integrates the model states to yield a vertically
integrated estimate of TWS. Catchment-based estimates of
TWS include changes in the unconfined water table, root-
zone soil moisture, surface soil moisture, SWE, and canopy
interception. A schematic of catchment-derived TWS is
shown in Figure 3. Catchment-derived TWS was computed
in a similar manner as done by Zaitchik et al. [2008], except
with the additional consideration of canopy interception.
Even though lake water storage can be a significant storage

Table 1. Sub-Basin Characteristics for the MRB (Land Areas
Only) Along With Applied GRACE Measurement Error Covari-
ance, R

Sub-Basin Name Land Area (km) R (mm2)

Peel plus Bear 4.1 � 105 182

Slave 3.6 � 105 162

Liard 2.8 � 105 172

Peace plus Athabasca 5.7 � 105 162

Entire Mackenzie 1.6 � 106 172
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component of TWS, catchment does not account for mass
changes within surface water impoundments.

[24] The modern era retrospective-analysis for research
and application (MERRA) product [Rienecker et al., 2011]
was used to force the land surface model. MERRA is pro-
vided at an hourly temporal resolution and a 1/2� � 2/3�

(latitude/longitude) spatial resolution. An alternative forc-
ing data set by Reichle et al. [2011] was investigated for
use, which is the same as MERRA, except that the precipi-
tation estimates have been corrected toward estimates
from the global precipitation climatology project (GPCP)
[Huffman et al., 1997]. No significant difference in the per-
formance of the DA experiments was found between the
two forcing data sets. Therefore, only the results utilizing
the MERRA forcing are presented here.

[25] Perturbations to specified model states and forcings
were prescribed in order to adequately represent the model
error. Both multiplicative and additive perturbations were
utilized as listed in Table 2. Model state perturbations were
applied every 20 min (i.e., at each model time step),
whereas model forcing perturbations were applied every 60
min (i.e., at each forcing time step). Temporal correlations
were imposed using a first-order autoregressive model
(AR(1)) within the perturbed fields as discussed by Reichle
et al. [2008]. Following the work of Reichle and Koster
[2003], a horizontal error correlation length of 2.0� was
applied. The root-zone soil moisture excess prognostic
variable was not perturbed to avoid the introduction of
unwanted bias in the subsurface. The cross-correlations

between perturbations were included in an analogous man-
ner as conducted by Reichle et al. [2007].

[26] To better manage perturbations made to the catch-
ment ensemble, a number of modifications were made to
the DA framework from that originally used by Zaitchik
et al. [2008]. Perturbations applied to the three snow layers
were only applied to SWE and not to the snow depth or the
snow heat content. Perturbed snow depth was subsequently
recomputed as the perturbed SWE divided by the unper-
turbed snow density. Snow heat content was also recom-
puted such that the perturbed SWE yielded the same snow
pack temperature as the unperturbed SWE. This was done
to ensure physical consistency within the snow pack associ-
ated with the prescribed SWE perturbations. In addition,
perturbations to the catchment deficit (subsurface) were
modified based on the presence of snow in conjunction
with frozen soil conditions. More specifically, if snow is
present and the surface (�5 cm) soil temperature is below
freezing, perturbations are applied to the SWE states only;
if the surface soil temperature is at or above freezing, per-
turbations are applied to the SWE states as well as the
catchment deficit. Conversely, if snow is absent and the
surface soil temperature is below freezing, perturbations
applied to the catchment deficit state were scaled by a fac-
tor <1 in order to mimic the attenuated soil moisture dy-
namics associated with reduced soil permeability ; if the
surface soil temperature is at or above freezing, perturba-
tions were applied normally to the catchment deficit. Col-
lectively, the changes better maintain physical consistency
within the snow pack while better simulating an attenuated
soil moisture response when frozen soil conditions persist.

[27] Model spin-up and initialization consisted of a two-
step approach. The first step involved a repeated, 1-year
(i.e., May 2001 to May 2002) cycle of a single replicate
without model perturbations for 10 years to yield a reasona-
ble estimate of TWS. The second step involved running the
model as an open-loop (OL) ensemble from May 2002 to
September 2002 in order to yield a reasonable estimate of
cross-correlations between different model states as well as
to produce an adequate amount of uncertainty (spread)
within the OL ensemble. From September 2002 to Septem-
ber 2009, the model was run in either an OL mode or with
GRACE DA enabled. Finally, an ensemble size of 16 was
used based on the convergence of the TWS standard devia-
tion of the prior ensemble. Ensemble sizes greater than 16
showed no significant change in ensemble standard devia-
tion, hence it was determined that 16 replicates were suffi-
ciently large.

Figure 3. Conceptual representation of the components
of catchment model terrestrial water storage where 1 is the
catchment deficit, 2 is the root zone excess, 3 is the surface
soil excess, 4–6 are the individual snow layers, and 7 is the
canopy interception.

Table 2. Parameters for Perturbations to Meteorological Forcing
Inputs and Model Prognostic Variables

Perturbation Type SD Units L (Degrees) AR(1) (d)

Precipitation M 0.5 – 2 3
Shortwave radiation M 0.5 – 2 3
Longwave radiation A 50 W m�2 2 3
Snow water equationa M 0.0004 – 2 1
Catchment deficit A 0.05 mm 2 1
Surface soil xcess A 0.02 mm 2 1

aPerturbations made to all three snow layers; M is multiplicative; A is
additive; L is spatial correlation length; AR(1) is the first-order autore-
gressive temporal correlation.
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6. Validation Approach
[28] A variety of observational data sets were used to

evaluate the GRACE DA output. However, because of the
observation sparsity within the MRB, particularly in the
northern regions, not all pertinent model states could be
verified. Most notable among the observational data gap is
a lack of groundwater and soil moisture measurements. De-
spite the lack of some observational types, a series of mod-
eled and measured estimates are available that provide a
reasonable assessment of the MRB hydrologic response as
a function of space and time.

6.1. CMC Daily Snow Analysis Product
[29] Snow observations were based on the Canadian

Meteorological Centre (CMC) daily snow depth product
[Brasnett, 1999; Brown and Brasnett, 2010] obtained via
ftp server available at http://sidads.colorado.edu. The CMC
product yields snow depth estimates throughout the northern
hemisphere at a horizontal resolution of �24 km for the pe-
riod of March 1998 to the present, and is often considered
the best available snow product for evaluating model output
[Su et al., 2010]. It is based on optimal interpolation of in
situ daily snow depth observations and aviation reports with
a first-guess field generated from a simple snow model
driven by analyzed temperatures and forecast precipitation
from the Canadian forecast model [Brasnett, 1999]. SWE
estimates were derived from the CMC daily snow depth
estimate in conjunction with the climatological snow den-
sity parameterization of Sturm et al. [2010] as a function of
snow depth, day of year, and snow class (Figure 2b).

6.2. INAC Snow Surveys
[30] An additional set of ground-based observations was

made available by the Indian and Northern Affairs Council
(INAC). This observational data set consists of snow sur-
veys at 42 different locations, predominantly within the
Slave Basin (Figure 2b). Each survey consisted of snow
depth and snow water equivalent measurements at �10 dif-
ferent points that were then averaged together to yield a
single-survey estimate at each of the 42 different survey
locations. In general, surveys were conducted annually
when the snow pack reached peak accumulation. Therefore,
these ground-based observations are only available once
per year and only within a small portion of the MRB.
Between the CMC measurement product and the INAC
observational data set, however, a reasonable comparison
of SWE estimates may be conducted over the entire MRB
domain throughout the course of the snow season with par-
ticular emphasis placed on peak accumulation.

6.3. GRDC Runoff Observations
[31] Runoff estimates were provided by the Global

Runoff Data Center (GRDC) and available at http://www.
bafg.de/GRDC/EN/Home/homepage__node.html. GRDC
estimates are available at hundreds of locations within the
MRB at a daily timescale. However, only a handful of sta-
tions were selected based on a minimum upland drainage
area of �250,000 km2 and a minimum of 6 years of meas-
urements (Figure 2a). Daily estimates were subsequently
aggregated to a monthly timescale for comparison against
the DA results utilizing monthly GRACE observations.
Table 3 lists the stations used in this study along with the

approximate sub-basin aggregation (in terms of integrated
upland area) in accordance with the sub-basins shown in
Figure 2a. GRDC discharge estimates in the MRB are, in
general, based on measurements of river stage height,
which were then converted into volumetric flux using
assumptions of both the river cross-sectional area and flow
velocity. During the winter time when ice floes are com-
mon in the MRB, river discharge measurement error likely
increases.

6.4. Validation Metrics
[32] Using the independent, ground-based observations

described above, a number of validation metrics were
computed. Mean difference (MD) was computed as

MD ¼ 1
T

XT

�¼1

ðM� � O�Þ where M� is the modeled ensemble

mean and O� is the ground-based observation, respectively,
at month � and where T is the total number of months. Sim-
ilarly, root-mean-square difference (RMSD) was computed

as RMSD ¼ 1
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

�¼1

ðM� � O�Þ2
vuut . Finally, the anomaly cor-

relation coefficient (R) was computed by first determining
the climatological seasonal cycle over the course of the
simulation period, then the anomaly time series is com-
puted by subtracting the climatological seasonal cycle from
the original time series, and finally the anomaly R is com-
puted as the correlation coefficient between the modeled
ensemble mean anomalies and the corresponding anomalies
of the ground-based observations. For all three metrics, the
modeled values are obtained from either the open-loop
(OL) or data assimilation (DA) simulations. In addition,
only times and locations with values M� > 0 or O� > 0
were used in the computation. That is, coincident zeros
were excluded (e.g., omitting summertime values when no
snow is present in both the model and observations).

[33] The statistical significance of R is determined using
the Hotelling-Williams test, which investigates the equality
of two dependent correlations [Steiger, 1980]. In this study,
the dependent correlations are between: the ground-based
observations and the OL results (R12), and the ground-
based observations and the DA results (R13). It begins with
the hypothesis that the two dependent correlations are equal
(i.e., Ho : R12 ¼ R13). Next, a t-statistic is computed as

tN�3 � ðR12 � R13Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þð1þ R23Þ

2 N�1
N�3 jRj þ R

2ð1� R23Þ3

s
; (4)

Table 3. GRDC Runoff Measurement Characteristics

Station
Number Station ID

Upland
Area (km2) Sub-Basin Aggregation

1 4208271 2.75 � 105 Liard
2 4208450 2.93 � 105 Peace
3 4208400 6.06 � 105 Peace plus Athabasca
4 4208005 1.27 � 106 Slave plus Liard plus Peace plus

Athabasca
5 4208150 1.57 � 106 Slave plus Liard plus Peace plus

Athabasca plus Bear
6 4208025 1.66 � 106 Entire Mackenzie
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where N is the approximate number of degrees of freedom,

R ¼ R12 þ R13

2
, R23 is the correlation between the OL and

DA results, and jRj ¼ 1� R2
12 � R2

13 � R2
23 þ 2R12R13R23.

If the computed t-statistic is greater than the corresponding
Student’s t-statistic for a given N at a given confidence
level, then one can reject the null hypothesis, Ho, and in
turn say that the computed correlation coefficients are stat-
istically different. It is important to note that the t-statistic
computed here is only an approximation and likely overes-
timates the value because of the presence of serial error
correlations, which imply that the actual number of degrees
of freedom is less than the number of data points.

7. Results and Discussion
7.1. Terrestrial Water Storage (TWS)

[34] The comparison of model results begins with a com-
parison against the assimilated GRACE TWS measure-
ments used during the conditioning phase. Theory predicts
that if information transfer from the GRACE observations
into the model estimates takes place during conditioning,
then a better agreement between the conditioned estimates
and the GRACE observations should occur. If not, the lack
of change is either due to a near-zero covariance structure

in K or is due to close agreement between the GRACE
TWS and the model-predicted TWS.

[35] Figure 4 shows the ensemble OL and DA simula-
tions relative to the GRGS (without PGR correction)
GRACE TWS observations for the four assimilated sub-
basins along with the MRB as a whole. The dark gray and
light gray regions represent the range of the OL and DA
ensembles, respectively. The GRACE observations are
shown as solid, black dots with the error bars representing
the time-invariant standard deviation of the observation
error. The thick dashed and solid lines represent the ensem-
ble means for the OL and DA ensembles, respectively.

[36] In general, there is good agreement between the
OL ensemble mean and the GRACE measurements with
the exception of the Slave basin during 2002–2004. When
the DA is enabled, the ensemble mean moves toward the
GRACE observations as a result of conditioning. The pres-
ence of positive, nonzero covariances in K coupled with
differences between the GRACE observations and the
model-based TWS estimates allows for a significant correc-
tion in the DA ensemble toward the GRACE observations.
However, it should also be noted that significant differen-
ces exist between the model estimates (OL and DA) and
the GRACE observations near the annual minimum of
TWS. This is in part because of a bias in the variability

Figure 4. TWS estimates for the OL (dark gray), DA (light gray), and GRACE (dots) for the GRGS
product without PGR correction for (a) Liard, (b) Peace þ Athabasca, (c) Slave, (d) Bear þ Peel, and
(e) Mackenzie basins. Each line represents the respective ensemble mean whereas the error bars repre-
sent the standard deviation of the GRACE observations.
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between the OL model and the observations. That is, the
catchment model has a tendency to ‘‘dry out’’ beyond what
the GRACE measurements would suggest. As is discussed
in more detail in sections 7.3 and 8, a lack of hydraulic
routing and lake storage routines in catchment leads to a
more rapid hydrologic response, which results in a more
variable (i.e., larger dynamic range) estimate of TWS. An
assimilation of the GRACE measurements serves to con-
strain some of this variability. In addition, when the snow
melts and subsequently runs off, the model-derived back-
ground error variance is smaller (because of a lack of snow
and snow errors) than the prescribed measurement error
variance, which ultimately leads to a significant reduction
in the Kalman gain (see equation (4)), and hence a smaller
update toward the GRACE measurements.

[37] After conditioning, another notable feature is that
the ensemble spread is significantly reduced between the
OL and DA simulations. This is indicative of the DA proce-
dure having an impact on the model-derived ensemble and
suggests increased confidence in the TWS estimates via
assimilation. Collectively, these findings compose a useful
sanity check on the efficacy of the assimilation framework
and lends some credibility to its ability to model TWS in a
snow-dominated basin.

7.2. Snow Water Equivalent (SWE)
7.2.1. Comparison to CMC Product

[38] Monthly averaged CMC values of SWE for each of
the four sub-basins as well as the entire MRB are compared
against the OL and DA simulations. As discussed in section
5.2, multiple versions of each GRACE product were gener-
ated that include PGR corrections as well as exclude PGR
corrections using the model of Paulson et al. [2007]. For
brevity, only the GRGS product is discussed herein as it is
representative of the other GRACE products and because it
yields the most complete time series (i.e., fewest monthly
gaps) for the study simulation period. Further, only the
results for the GRGS product excluding PGR corrections
are shown in Figure 5. The sensitivity to the PGR correc-
tions will be discussed later.

[39] The differences in Figure 5 between the OL and DA
simulations are apparent, most notably the reduction in the
ensemble standard deviation (spread) associated with
GRACE assimilation. In general, the conditioning proce-
dure moves the DA ensemble mean closer to the CMC esti-
mates relative to the OL simulation. This is more apparent
in the Liard Basin where the snowfall accumulation is
greatest, particularly in 2005–2007 and 2009 when the

Figure 5. SWE estimates from OL (green), DA (red), and CMC (black dots) for the GRGS product
without PGR correction shown for (a) Liard, (b) Peace þ Athabasca, (c) Slave, (d) Bear þ Peel, and (e)
Mackenzie basins. Solid lines represent the ensemble means (left axis with zero offset) and dashed lines
represent the ensemble standard deviations (right axis). CMC SWE estimates were derived from CMC
snow depths using Sturm et al. [2010] snow densities.
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model has a tendency to overestimate SWE. Changes are
less apparent in the other sub-basins because less snow is
present, hence the changes are much smaller in magnitude,
and because in general, the OL does a reasonable job of
estimating SWE. This is further discussed in section 7.5
where it is shown that the updates to SWE are near zero
during much of the accumulation phase, hence the differen-
ces in the OL and DA SWE are relatively small.

[40] Figure 6 shows the statistics of MD, RMSD, and the
anomaly R for each of the sub-basins. Metrics are shown
for the open loop (white), and for assimilation of GRGS
GRACE TWS without (light gray) and with (dark gray)
PGR correction. In terms of MD and RMSD without PGR
correction, the greatest improvement is witnessed in the

Liard Basin. MD relative to the CMC product is reduced
through assimilation by �30% (MD ¼ 13.2 mm for OL
and MD ¼ 9.3 mm for DA) with a >15% reduction in
RMSD (RMSD ¼ 24 for OL and RMSD ¼ 19.6 for DA).
The other sub-basins, including the MRB as a whole, con-
tain less snow and receive a much smaller amount of cor-
rection compared to the Liard Basin. In general, the other
sub-basins receive a small reduction in MD with little or no
change to RMSD. Changes in MD and the RMSD of SWE
are essentially the same no matter which GRACE product
is assimilated and no matter whether PGR correction is or
is not applied (results not shown).

[41] Unlike MD and RMSD, changes to anomaly R are
typically degraded as a result of the assimilation. When
excluding PGR correction, the differences are not statisti-
cally significant at the 5% level based on the Hotelling-
Williams test, but there are apparent reductions in the abil-
ity to capture the interannual variability of SWE when
invoking the DA procedure. These results suggest the DA
simulations do a reasonable job of estimating the amount
of SWE in each basin but that the timing of the accumula-
tion/ablation phases are slightly degraded when incorporat-
ing information from GRACE. When PGR correction is
applied to the GRACE observations, the anomaly R degra-
dation becomes much more pronounced, particularly in the
Slave Basin where PGR is most prominent in the model of
Paulson et al. [2007] (R ¼ 0.70 for DA without PGR cor-
rection and R ¼ 0.64 for DA with PGR correction). More
specifically, assimilation of the GRGS product with PGR
correction yields the lowest anomaly R-values among
basins in both the Slave sub-basin and the MRB as a whole
with values that are statistically different from the OL
results via the Hotelling-Williams test.

7.2.2. Comparison to INAC Surveys
[42] On average, both the OL and DA simulations under-

estimate SWE when compared against the INAC ground-
based observations with MD ¼ �28 mm for OL and MD ¼
�33 mm for DA estimates (Table 4). Each comparison was
conducted by first comparing all of the surveys at a given
location in space against the model output collocated in
time. Then, the MD and RMSD were computed across time
and subsequently presented in Table 4. The assimilation of
GRACE data typically removes snow mass near peak accu-
mulation thereby further increasing the negative bias. The
INAC observations are in direct contrast to the CMC prod-
uct results, which suggest a positive bias in the OL and DA
results. However, given that the CMC product is condi-
tioned on snow depth observations collected in open areas
such as airports that are subject to wind-blown snow redis-
tribution, there is a potential to introduce a negative bias
into the CMC estimates (relative to the truth). Snow at the
stations used in the CMC optimal interpolation routine
tends to be shallower and melt earlier than in surrounding

Figure 6. SWE statistics of (a) MD, (b) RMSD, and (c)
anomaly R for open-loop (white), DA without PGR correc-
tion (light gray), and DA with PGR correction (dark gray)
results relative to CMC-derived SWE estimates via Sturm
et al. [2010]. For anomaly R values, asterisks indicate stat-
istically significant differences between the OL and DA.

Table 4. Statistics for the OL and DA Experiments Relative to
the INAC Snow Surveys

Ensemble MD (mm) RMSD (mm)

OL �28 39
DA �31 41
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terrain [Brown et al., 2003]. Hence, the disparity between
the CMC product and the INAC observations within the
Slave Basin can be partly explained by the CMC negative
bias (relative to the truth) as well as by the differences in
the sampling domain between point-scale observations and
the �24-km pixel resolution of the CMC product.

7.3. Runoff
[43] Comparison against GRDC runoff measurements

were conducted in a similar manner as with the CMC SWE
estimates. However, rather than comparing by sub-basin,
runoff estimates are compared against individual gaging
stations. Table 3 lists the upland area and approximate sub-
basin integration for each station of interest ; the results are
displayed in Figure 7. One notices many distinct features.
Namely, all simulations (OL or DA) suffer from a signifi-
cant negative bias relative to the runoff observations. This
is mostly because of the insufficient base flow runoff within
the model for all but the smallest of sub-basins. This is
clearly demonstrated in Figure 7 at the downstream obser-
vation locations during the winter when melt flux and over-
land flow are near zero because the surface water (e.g.,
SWE) is restrained in a solid phase. Hence, the base flow
component is the dominant contributor to winter runoff.

Since the observed runoff at the downstream locations is
considerably larger than the modeled runoff, it is reasona-
ble to assume that the model generates an insufficient
amount of base flow at these locations during the winter
season when overland flow is minimized. One also notices
an overestimation of annual peak flow, particularly during
the spring freshet. This is partly because of a lack of runoff
routing and lake storage routines, which contributes to a
more rapid runoff response within the model. No discerni-
ble difference between the OL and DA ensemble means is
witnessed in Figure 7 as the DA line effectively overlaps
the OL line. However, a small (�5%–10%) reduction in en-
semble standard deviation (spread) is witnessed in most
sub-basins as a result of the assimilation procedure.

[44] Figure 8 shows the corresponding computed statis-
tics of MD, RMSD, and anomaly R at a monthly timescale
at each of the gaging stations. In general, MD is slightly
more negative as a result of assimilation, but to a lesser
degree when PGR correction is excluded (Figure 8, light
gray) relative to the inclusion of PGR correction (Figure 8,
dark gray). The decrease in negative MD results from the
removal of SWE during peak accumulation, which results
in less runoff production during ablation. The removal of
SWE is essentially counterbalanced by an increase in

Figure 7. Runoff from OL (green), DA (red), and GRDC observations (black dots) at six different
locations for the GRGS product without PGR correction shown for (a) Liard, (b) Peace, (c) Peace þ
Athabasca, (d) Slave þ Liard þ Peace þ Athabasca, (e) Slave þ Liard þ Peace þ Athabasca þ Bear,
and (f) Mackenzie basins. Upland drainage area increases from the upper-left subplot (a) through the
lower-right subplot (f) (see Table 3 for definitions). Solid lines represent the ensemble means (left axis
with zero offset) and dashed lines represent the ensemble standard deviations (right axis).

W01507 FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN W01507

10 of 14



subsurface storage (further discussed in section 7.5), but
does not translate into any significant increase in base flow
production or infiltration excess runoff, hence the slightly
more negative MD. RMSD, in general, is reduced or
remains unchanged in all of the sub-basins and is effec-
tively the same between the different GRACE products
(results not shown).

[45] The greatest discord between the different assimila-
tion experiments is found in the anomaly R-values. The
GRGS product without PGR correction, in general, yielded
the best results. However, two out of six station locations
are degraded as a result of GRACE assimilation relative to
the OL results. Station 4 (S þ L þ P þ A in Figure 8c)
undergoes a statistically significant level of improvement
(R ¼ 0.25 for OL and R ¼ 0.30 for DA without PGR cor-
rection), but at the cost of statistically significant degrada-

tions at the first station (L in Figure 8c; R ¼ 0.71 for OL,
and R ¼ 0.64 for DA without PGR correction) and fifth
station (S þ L þ P þ A þ B in Figure 8c; R ¼ 0.50 for OL
and R ¼ 0.46 for DA without PGR correction). When PGR
correction is included, more stations are degraded than are
improved with most station degradations being significant
at the 5% level. These results, in conjunction with the SWE
results, suggest assimilation of the GRGS product exclud-
ing PGR correction, yields the greatest amount of improve-
ment (and least amount of degradation) in terms of
interannual variability.

[46] Finally, in order to investigate the potential impact
of a river routing scheme, an analysis was conducted in
which runoff estimates (OL or DA) were computed using a
simple, fixed-lag smoother. For a given month, the fixed-
lag smoother computed the runoff as the average of the
given month and the preceding n months. This effectively
delays the hydrologic runoff response in a manner analo-
gous to that of a runoff routing scheme. Based on the
anomaly R and RMSD statistics between the GRDC obser-
vations and the runoff computed from the fixed-lag
smoother (results not shown), the greatest improvements
typically occur with a temporal lag of 1–2 months. How-
ever, the general conclusions with or without application of
the fixed-lag smoother remain the same in that the runoff
response with GRACE assimilation is improved, albeit by a
small amount. Therefore, even though the results displayed
in Figure 8c do not account for hydraulic routing, the
results serve as a good proxy of the impact of GRACE
assimilation on runoff estimation.

7.4. Normalized Innovation Sequence
[47] A filter innovation is the difference between the en-

semble mean observation and model forecast, y� �Hx�� ,
for a given month, � . Investigation of filter innovations is a
useful tool for assessing whether or not the measurement
(Table 1) and model (Table 2) error parameters have been
appropriately selected. If a model is linear and all errors are
Gaussian, then the normalized innovations, NI, should
appear similar in form to white noise (i.e., zero mean, unit
variance, and temporally uncorrelated). Even though the
application used here is a smoother rather than a filter and
the forward model is nonlinear, the investigation of the nor-
malized innovations can provide useful information as to
the performance of the DA procedure.

[48] The normalized innovation may be written as

NI� ¼
y� �Hx��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HP�� HT þ R

q ; (5)

where the numerator represents the difference between the
assimilated measurement and the predicted measurement,
and the denominator represents a combination of the back-
ground and measurement error covariance. Normalized
innovations are collected as a function of time and then the

mean is computed as NI ¼ 1
T

XT

�¼1

NI� while the standard

deviation computed as �NI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

�¼1

ðNI� � NI Þ2
s

:

Figure 8. Runoff statistics of (a) MD, (b) RMSD, and (c)
anomaly R for open-loop (white), DA without PGR correc-
tion (light gray), and DA with PGR correction (dark gray)
results relative to GRDC runoff estimates for the GRGS
product without PGR correction. For anomaly R-values,
asterisks indicate statistically significant differences between
the OL and DA.
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[49] Figure 9 plots the mean versus the standard devia-
tion of the normalized innovations for each of the four
sub-basins using the GRGS product excluding the PGR
correction. The different colors in Figure 9 represent differ-
ent amounts of measurement error standard deviation used
during the DA experiments relative to the nominal values
listed in Table 1. The most striking feature is that all of the
mean innovations are negative regardless of the sub-basin
or the measurement error. This suggests the DA procedure
attempts to correct a seasonal bias where the model con-
tains too much water relative to the GRACE observations
during certain times of the year. This can be seen via
inspection of Figure 4e, where the individual sub-basin
GRACE updates effectively remove mass most years at
peak accumulation, particularly after January 2005. During
the ablation and runoff phase, GRACE DA attempts to add
mass in the subsurface, but the amount of mass added is, in
general, less than the amount of SWE removed. Hence, the
result is a posterior ensemble with less TWS. This behavior
is further discussed in section 7.5 via inspection of the anal-
ysis increments.

[50] The second feature of note in Figure 9 is the wide
range in �NI resulting from changes to the measurement
error standard deviation. As expected, an increase in mea-
surement error causes an increase in the denominator of
equation (5), which causes a corresponding reduction in the
spread (or standard deviation) of the normalized innovation
sequence. If the design of HP�� HT is assumed reasonable,
Figure 9 suggests that 2 times the nominal measurement
error standard deviation of Table 1 is too large. A large
measurement error variance (relative to the background
error variance) results in a small value of the gain K (equa-
tion (3)), which leads to only minimal assimilation updates.
Conversely, a value of 0.5 times the nominal measurement
error standard deviation is too small, which causes the

assimilation to overly ‘‘trust’’ the measurement quality and
effectively make too large of an update toward the GRACE
measurements. Based on �NI , the application of 1.0–1.5
times the estimated measurement error appears reasonable
and is similar to the GRACE measurement errors used by
Zaitchik et al. [2008] and Su et al. [2010].

7.5. Analysis Increments
[51] Investigation of the analysis increments (i.e., the dif-

ference between xþ� and x�� ) can provide valuable insight
into the behavior of the assimilation procedure. It enables
one to track mass within the relevant TWS components in
order to see how much and at what time mass is being
added to or removed from the system. Figure 10 shows the
analysis increments from the assimilation of the GRGS
product excluding the PGR correction. The thin, solid line
shows the increments made to the subsurface TWS compo-
nent as the negative of the catchment deficit prognostic
variable. Assimilation updates were not applied to the sur-
face soil excess or root-zone soil excess states. However,
this is inconsequential as the efficacy with which catchment
redistributes water in the subsurface is overwhelmingly
dominated by the catchment deficit variable [Zaitchik
et al., 2008]. Averaged over time and space the increments
are positive for a total of 12.5 mm, which means assimila-
tion results in increasing the amount of water in the subsur-
face. This is most evident during the spring and summer.
The thick, dashed line in Figure 10 shows the increments
for SWE summed across the three individual SWE layers.
Averaged over time and space SWE is removed during the
accumulation phase with a small amount added back during
the ablation and runoff phase for a total SWE increment of
�45.1 mm. Collectively, the analysis increments to the
catchment deficit and SWE serve to reduce mass during
snow accumulation and then increase the mass during abla-
tion and runoff. These two phenomena essentially constrain

Figure 9. Innovation statistics for the GRGS product with-
out PGR correction for the four sub-basins shown as differ-
ent marker shapes. The different marker colors represent
varying amounts of GRACE measurement error standard
deviation relative to the nominal values shown in Table 1.

Figure 10. Analysis increments for the entire MRB using
the GRGS product without PGR correction. The thin, solid
line represents the subsurface increments (displayed as the
negative of the catchment deficit increments) whereas the
thick, dashed line represents the increments from the sum-
mation of the three individual SWE layers.

W01507 FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN W01507

12 of 14



the amplitude of the modeled TWS dynamics such that bet-
ter agreement with the GRACE observations is achieved.

8. Conclusions
[52] GRACE-derived estimates of TWS were assimilated

into a land surface model for the purpose of improved
snow pack characterization in northwestern Canada. It was
shown that the conditioning procedure, in general, could
reduce MD and RMSD in the SWE estimates (prior versus
posterior) when compared against the CMC snow product.
However, anomaly R-values were typically degraded as a
result of the assimilation. Even though the anomaly R dif-
ferences were not statistically significant at the 5% level,
they suggest some degree of reduced skill at simulating
interannual variability when using the DA procedure. A
comparison of model results against GRDC runoff observa-
tions suggested relatively little change to runoff MD and
RMSD statistics. Anomaly R-values for runoff, however,
were improved at several locations and remain essentially
unchanged at the basin outlet. Improvements to anomaly
R-values for runoff are mostly attributable to a more
delayed runoff response with assimilation.

[53] These results are encouraging, but it is important to
highlight shortcomings and discuss potential improvements
that could be made in future developments. For example,
the land surface model used in this study does not contain a
river routing scheme. Runoff is effectively routed to the
outlet instantaneously. However, given the size and extent
of the MRB, runoff residence times near the basin outlet can
be conservatively estimated to be on the order of a couple of
months. The improvements to runoff anomaly R-values are
generally associated with a delayed runoff response that
effectively retains water within the basin for a longer pe-
riod of time. That is, the assimilation acts to correct some
of the limitations in the model physics that could likely be
addressed via inclusion of a runoff-routing routine. Simi-
larly, the land surface model does not contain a lake-storage
routine. Changes in lake storage can be a significant con-
tributor to TWS and can also be an important factor in
attenuating hydrologic runoff response at the basin outlet.
Analogous to a runoff-routing routine, inclusion of a lake-
level-storage routine could likely improve runoff timing
relative to the GRDC observations. Development and test-
ing of runoff-routing and lake-storage routines are beyond
the scope of this current study, but would be worthwhile
addressing in future work.

[54] In addition, another limitation of this study is a lack
of subsurface observations (i.e., soil moisture and ground-
water) to evaluate model results. Updates to the catchment
deficit prognostic variable can only be discussed in a quali-
tative sense without a valid data set to make quantitative
comparisons. Unfortunately, soil moisture and groundwater
level measurements are not readily available in hydrologic
basins located in the high latitudes thereby making such a
comparison difficult if not impossible. The lack of subsur-
face observations severely limits the conclusions that can
be made about the ability of the assimilation to effectively
disaggregate TWS into snow, soil moisture, and ground-
water components.

[55] Despite these shortcomings, the GRACE DA proce-
dure did improve MD and RMSD statistics of SWE in the

MRB as well as improved some runoff estimates in terms
of interannual variability. These preliminary findings are
encouraging and suggest the potential for further improve-
ments via a merger with passive microwave and visible spec-
trum remote sensing products to further downscale the
GRACE observations in time and space while simultaneously
disaggregating the GRACE observations into individual, ver-
tical components of TWS. Finally, additional improvements
could be achieved through refining the GRACE measurement
error model, investigating the effects of different horizontal
error correlation lengths within the land surface model forc-
ings, determining a more optimal GRACE measurement
scale, utilizing a more optimal GRACE averaging kernel,
and better constraining of PGR model estimates used during
GRACE preprocessing.
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