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[1] Land surface models are usually biased in at least a subset of the simulated variables
even after calibration. Bias estimation may therefore be needed for data assimilation. Here,
in situ soil moisture profile observations in a small agricultural field were merged with
Community Land Model (CLM2.0) simulations using different algorithms for state
and forecast bias estimation with and without bias correction feedback. Simple state
updating with the conventional ensemble Kalman filter (EnKF) allows for some implicit
forecast bias correction. It is possible to estimate the soil moisture bias explicitly and
derive superior soil moisture estimates with a generalized EnKF that uses a simple
persistence model for the bias and assumes that the a priori bias error covariance is
proportional to the a priori state error covariance. For the case of bi-weekly assimilation of
the entire profile of soil moisture observations, bias estimation and correction typically
reduces the RMSE in soil moisture (over the standard EnKF without bias correction) by
around 60 percent. However, under the above assumptions, significant improvements are
limited to state variables for which observations are available. Therefore, it is crucial to
measure the state variables of interest. The best variant for state and bias estimation
depends on the nature of the model bias and the output of interest to the user. In a model
that is only biased for soil moisture, large and frequent increments for soil moisture
updating may be required, which in turn may negatively impact the water balance and
output fluxes. It is then better to post-process the soil moisture with the bias analysis
without updating the model state.
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1. Introduction

[2] Through a large number of synthetic experiments
[e.g., Hoeben and Troch, 2000; Reichle et al., 2001; Walker
and Houser, 2004; Pauwels et al., 2007], the hydrologic
community has gained an increased understanding of dif-
ferent data assimilation techniques and requirements for
observations and land surface models that may improve
the estimation of hydrologic states and related water and
energy fluxes. However, the assimilation of real data
[Houser et al., 1998; Crow and Wood, 2003; Margulis et
al., 2002; Reichle and Koster, 2005] presents difficulties
that still need to be addressed far more comprehensively,
including the characterization of a priori model and obser-
vation error statistics, and the presence of bias in models
and observations in particular.

[3] A fundamental assumption of the standard Kalman
filter is that the observations as well as the model are
unbiased. Bias in observations typically reflects instrumen-
tal inaccuracies, representativeness errors, or, in the case of
remote sensing observations, errors in the retrieval algo-
rithm. After quality control [Lorenc and Hammon, 1988]
one can often, but not always, assume that the observations
are largely unbiased. Model forecasts, however, are hardly
ever unbiased. Details of the forecast error depend on the
characteristics of the model (including model structure,
parameters, and discretization) and on the model initial
conditions, which are often influenced by observations in
a cycling data assimilation system. In general, the forecast
error contains a random and a systematic component. The
latter could be constant or varying with time.
[4] Many authors have addressed the discrepancy in soil

moisture climatologies from observations and models with a
focus on bias removal prior to (and outside of) data
assimilation [Reichle et al., 2004; Reichle and Koster,
2004; Drusch et al., 2005; Ni-Meister et al., 2005; Crow
et al., 2005]. Earlier, Walker et al. [2003] pointed to the
need to deal with biased observations and the possibility of
improper information propagation over a soil profile.Walker
et al. [2001], for example, noticed difficulties in the esti-
mation of soil moisture profiles because of bias caused by
the model structure and parameterization. Forcing errors are
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another factor which may contribute to bias in output from
(typically non-linear) land surface models [Berg et al.,
2003]. Walker and Houser [2004] demonstrated that – even
in a twin experiment – bias in model forcings or observa-
tions that is not accounted for in the assimilation scheme
may cause adverse effects when near-surface soil moisture
observations are assimilated. Therefore, Pauwels and De
Lannoy [2006] included a bias estimation algorithm even in
a synthetic discharge assimilation experiment.
[5] A typical characteristic of many data assimilation

studies is that the forecast skill of the Kalman filter is
limited to the time horizon where the effects of the corrected
initial conditions are dampened. Often, the model quickly
drifts back to a biased state after the update. This suggests
that state updating alone is not an adequate solution to
improve model results persistently. Madsen and Skotner
[2005], for example, added an error forecast model to
compensate for the decline in river forecast skill in time.
In a groundwater study, Drécourt and Madsen [2002]
calculated bias off-line as the difference between piezomet-
ric head values at the assimilation points and applied kriging
for extrapolation to the rest of the domain. For off-line bias
correction schemes, typically a time mean or time function
of the bias is estimated in advance from the model and
observation or analysis climatologies.
[6] Under the condition that observations are unbiased,

different procedures for on-line forecast bias estimate
updating have been proposed. A common practice has been
to augment the state vector of the original state estimation
problem by adding some uncertain parameters that are
designated as bias terms, or model error terms in general
[Jazwinski, 1970]. This was already tested with ensemble
Kalman filter methods [Evensen, 2003], including studies
with different types of specific bias models [Baek et al.,
2006], and more general model error processes as discussed
by Zupanski and Zupanski [2006] and by Reichle et al.
[2002] for soil moisture assimilation in particular. State
augmentation has also been applied to include model error
in variational assimilation approaches [Griffith and Nichols,
2000]. A practical problem arises when the number of
model error terms is on the order of the number of state
variables and the augmented state vector becomes so large
that filter computations become excessive. To keep the size
of the augmented control vector manageable and the system
observable, often only the random, systematic, or time-
correlated part is included [Vidard et al., 2004].
[7] To circumvent these problems, Friedland [1969]

presented a technique known as ‘separate-bias estimation’
or ‘two-stage estimation’. In Friedland’s method, the esti-
mation of the bias is essentially decoupled from the com-
putation of the bias-blind estimate of the state. The naming
‘bias-blind’ (instead of Friedland’s ‘bias-free’) is adopted
from Dee and da Silva [1998] and refers to estimates that
contain bias. Variants of Friedland’s method have been
applied for example by Dee and Todling [2000] in an
atmospheric model and by Keppenne et al. [2005] and
Chepurin et al. [2005] in oceanography. Few hydrologic
applications of Friedland’s method have been reported.
Drécourt et al. [2006] applied an ensemble Kalman filter
to a simple one-dimensional synthetic groundwater problem
and compared the use of a colored noise model to the
implementation of the separate bias filter. De Lannoy et al.

[2007] showed preliminary results of soil moisture profile
estimates by a state filter and those of a separate bias filter
by combining real observations with land model state
estimates. Moreover, Bosilovich et al. [2006] assimilated
remotely sensed land surface (skin) temperature, dynami-
cally estimated model bias with a variational scheme based
on Dee and da Silva [1998], and demonstrated improve-
ments in 2 m air temperature and sensible heat flux
estimates. None of these studies discussed any alternative
methods to optimize the results for particular kinds of model
bias and only Bosilovich et al. [2006] studied the effect of
bias estimation for one variable on dependent variables or
fluxes (surface energy budget). In the present study, several
variants of Friedland’s state and bias estimation were tested
for the first time for soil moisture estimation of individual
profiles with a land surface model and real soil moisture
observations. We investigated whether the biased or the
bias-corrected estimates should feed back into the (biased)
model and how the bias estimates could be used for
correcting model forecasts. Moreover, the effect of soil
moisture filtering on fluxes was studied.

2. State and Bias Estimation

2.1. Definition of Forecast Bias

[8] A sequential data assimilation system successively
alternates between a model propagation step and an update
step. The nonlinear land surface model used in our system is
expressed in the generic form

~̂x�i ¼ f i;i�1 ~̂xþi�1; ui

� �
; ð1Þ

where fi,i�1 denotes the non-linear discrete transition
function and ui the external forcings. The model propagates
the land surface state from time i � 1 to provide a forecast
(or a priori) state estimate ~̂xi

� at time i. The initial condition
for the land surface model at time i � 1 is the a posteriori
state estimate (or analysis) ~̂xi�1

+ . This a posteriori state
estimate is obtained from updating the a priori state estimate
~̂xi�1
� at time i � 1 (discussed below). If no update was

performed, then formally ~̂xi�1
+ = ~̂xi�1

� .
[9] The forecast bias bi at time step i is defined as the

expectation of the forecast error, which is given by the
difference between the true state xi and the forecasted a
priori state estimate ~̂xi

�, that is bi = E[xi � ~̂xi
�]. In the

ensemble filtering framework discussed below, the expec-
tation is computed as the ensemble mean. The forecast bias
vector bi has thus the same dimension as the state vector.
The symbol ~� is used for bias-blind quantities that are not
corrected with an estimate of the bias. In general, the
forecast bias can be time dependent and will depend on
the state and the parameters of the land surface model.
[10] For the bias, we assume a persistence model to

propagate the bias estimate in time between successive
assimilation updates, that is

b̂�i ¼ b̂þi�1: ð2Þ

The bias estimate is sequentially updated through filtering
(see below). This persistent bias assumption is appropriate if
the bias evolves more slowly than the forecast [Dee and da
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Silva, 1998; Keppenne et al., 2005]. In our study, the model
quickly drifted to its climatology after re-initialization,
resulting in a rapid bias increase until a stable bias value was
reached and our assumption was valid. An alternative
approach was used by Chepurin et al. [2005], where the bias
was a predefined function of time and bias updates were
calculated to correct the state estimate, but not propagated in
the bias model.

2.2. Separate Bias Estimation

[11] In this paper we estimate the bias on-line, that is
within the cycling assimilation system. In the algorithm that
was originally proposed by Friedland [1969], a conven-
tional Kalman filter is used to derive a bias-blind state
estimate (stage 1), and a second Kalman filter is used to
estimate the bias (stage 2). Unlike in state augmentation, the
separate bias estimation algorithm assumes a zero cross-
correlation between the a priori state and bias estimation
errors. Friedland’s original algorithm does not modify the
(biased) forecast model equations, but rather corrects the
output.
[12] For an ensemble Kalman filter, the procedure can be

summarized as follows. An ensemble of biased forecasts ~̂xj,i
�

(j = 1,� � �,N) is generated by a biased non-linear model to
obtain an estimate of the state’s pdf:

~̂x�j;i ¼ f i;i�1 ~̂xþj;i�1; ui;wj;i�1

� �
; ð3Þ

with wj,i a realization of the (zero mean assumed) model
error that represents the complete effect of perturbations to
forcings, parameters and state variables. The a priori
estimate ~̂xi

� of the state is given by the ensemble mean.
Through the non-linear model, the zero mean estimation
error and the bias in ~̂xj,i�1

+ as well as the zero mean wj,i�1

result in both random and systematic error in ~̂xj,i
�. When an

observation yi is available, each ensemble member j is
updated individually to obtain the bias-blind a posteriori
state estimate as follows (stage 1):

~̂xþj;i ¼ ~̂x�j;i þ ~Kx;i yj;i �Hi~̂x
�
j;i

h i
: ð4Þ

[13] The observations are perturbed to ensure sufficient
spread, i.e., yj,i = yi + vj,i, with vj,i the imposed zero-mean
Gaussian perturbation Burgers et al. [1998]. In this study,
the observation operator Hi linearly relates the observations
yi to the state xi. It contains only 1 and 0, because the
observations are direct measurements of the state variables.
The innovations [yj,i � Hi~̂xj,i

�] of the stage 1 filter contrast
the observations with the corresponding model forecasts
and provide important information for validating the per-
formance of the filter (section 4). The bias-blind gain ~Kx,i is
identical for all ensemble members and given by:

~Kx;i ¼ ~P
�
x;iH

T
i Hi

~P
�
x;iH

T
i þ Ri

h i�1

; ð5Þ

with ~Px,i
� the a priori bias-blind state error covariance

(obtained from the sample covariance) and Ri the observa-
tion error covariance, respectively.
[14] The bias forecast b̂i

� follows the persistence model
(equation (2)) (after initializing b̂0

� = 0 at time zero). Unlike

the state forecast, the bias is not perturbed (no ensemble
members), and its uncertainty will be derived empirically
(see below). The updated (a posteriori) bias estimate b̂i

+ is
obtained as a linear combination of the a priori bias estimate
b̂i
� and the difference between the observations and the a

priori bias-corrected state estimate (stage 2):

b̂þi ¼ b̂�i þKb;i yi �Hi ~̂x
�
i þ b̂

�
i

� �h i
: ð6Þ

[15] The gain for the bias updateKb,i is given by [Friedland,
1969], Dee and da Silva [1998]:

Kb;i ¼ P�
b;iH

T
i HiP

�
b;iH

T
i þHi

~P�
x;iH

T
i þ Ri

h i�1

; ð7Þ

with Pb,i
� the a priori bias error covariance. If observations are

not available at any given time step, no bias update is
computed.
[16] A key assumption is now made to estimate Pb,i

� .
Typically, a lot of effort is expended on the careful estima-
tion of the a priori state error covariance matrix ~Px,i

� . By
contrast, little or no information is available about the bias
error covariance Pb,i

� . We follow Dee and da Silva [1998]
and express Pb,i

� as a fraction of ~Px,i
� :

P�
b;i ¼

g
1� g

~P�
x;i: ð8Þ

[17] Given this assumption, the Kalman gain for the bias
Kb,i can then be determined by:

Kb;i ¼ g~P
�
x;iH

T
i Hi

~P
�
x;iH

T
i þ 1� gð ÞRi

h i�1

; ð9Þ

with g a parameter that may be tuned to optimize the filtering
system Keppenne et al. [2005]. Moreover, for g � 1, the
gain for the bias update is simply a fraction of the gain for
the state update, that is Kb,i � g ~Kx,i, and the typically
expensive computation of the gain matrix need only be
performed once instead of twice per update step. In this
study, we could not make use of this simplification, because
we chose g = 0.5, representing that the a priori bias estimate
and the a priori state estimate were equally uncertain.
However, it will be shown in the results that this value
was too large to be optimal. Increasing g has the effect of
decreasing the memory of the bias estimator, and results in
noisy bias estimates. Equation (8) is a very rough approxi-
mation in our case of flow-dependent error covariance
matrices: it implies that Pb,i

� is propagated by the land model
instead of the bias model and there is no guarantee that the
covariance structure of the state errors is similar to that of
the bias errors.
[18] Finally, the bias-corrected a posteriori state estimate

x̂i
+ is given by [Friedland, 1969; Dee and da Silva, 1998]:

x̂þj;i ¼ ~̂x
þ
j;i þ I� ~Kx;iHi

� �
b̂
þ
i ð10Þ

x̂þi ¼ 1

N

XN
j¼1

x̂þj;i; ð11Þ
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with I the identity matrix. Intuitively, the terms b̂i
+ �

~Kx,iHi b̂i
+ can be interpreted as (+b̂i

+) a bias correction of the
bias-blind a priori state estimate ~̂xj,i

� and (�~Kx,i Hib̂i
+) a bias

correction of the innovations in equation (4). In Friedland’s
original algorithm, the bias-corrected analysis (equation (10))
is only used as output and is not used to re-initialize the
model at the next propagation step. Dee and Todling [2000]
clearly stated that for the analysis to be unbiased, the
observation error must be zero mean and b̂�i must be an
unbiased prediction of the forecast bias. The latter condition
depends on the bias model and data coverage in space and
time for updating.

2.3. Variant Algorithms for Separate State and Bias
Estimation

[19] In this section we describe the variants of the above
state and bias estimation algorithm that we explored. In the
following, an important distinction is made between (i) the
output analysis and forecasts, and (ii) the analysis that feeds
back into the model as initial condition for the next
propagation step. For the output states, the bias-corrected
estimates (if available) are generally of most interest. For
the model re-initialization step, on the other hand, it is not
clear whether feeding back bias-blind, bias-corrected, or
fully biased estimates is most beneficial. The best choice
depends not only on the quality of the state estimates, but
also on model-produced variables such as runoff and
evaporation that depend on the state estimates. Land surface
models are typically tuned to predict fluxes like runoff and
evapotranspiration with a model-specific level of absolute
soil moisture. If the model’s soil moisture is generally
biased, re-initializing the model with a bias-corrected soil
moisture analysis may drive the model away from its soil
moisture climatology and thus result in unrealistic output of
dependent fluxes.
[20] Besides conventional state updating without explicit

bias estimation (EnKF), separate state and bias estimation
was tested (i) without feedback of the bias estimate on the
analysis for model re-initialization (original Friedland
[1969] algorithm, here labeled EnBKF_1), (ii) with partial
feedback of the bias estimate on the analysis through bias-
corrected innovations (EnBKF_2), and (iii) with complete
feedback of the bias estimate on the analysis (EnBKF_3).
The possibility of bias estimation without state update was
also investigated (EnBKF_0). Details are described below,
and Table 1 gives a summary. It should be noted that for a
linear model and in the presence of bias, only EnBKF_1 is
optimal. Bias feedback destroys the optimality of the two-

stage algorithm, and the EnKF (without bias estimation) is
anyway suboptimal in the presence of bias. Since the land
model used here is non-linear, it is not clear a priori which
algorithm performs best.
[21] The first algorithm that we tested, labeled EnBKF_0,

relies only on bias estimation and does not estimate the
random errors via the state update. In this case the output
analyses and forecasts are bias-corrected with the appropri-
ate bias estimates, while the state update equation is ignored
and the model integration proceeds without any feedback
from the bias estimation (Table 1). In other words, the
observations have no impact on the model integration
whatsoever and affect only the output states through a
post-processing bias analysis.
[22] In the original algorithm of Friedland [1969], here

labeled EnBKF_1, the state and bias updates are performed,
and the bias-blind state is fed back into the model. In other
words, the bias-blind a posteriori state estimate ~̂xi

+ given by
equation (4) serves as an initial condition for the subsequent
model propagation step, i.e., the model run is unchanged
relative to EnKF. The bias-corrected output is obtained
outside the model run as in equation equation (10).
[23] In EnBKF_1, the bias-blind a posteriori estimate that

is fed back into the model already contains an implicit
partial correction for the bias (without any explicit use of
the forecast bias estimate). As mentioned above, any bias
correction could have an adverse effect on the model’s
dependent variables or fluxes (such as runoff and evapora-
tion). Instead of computing the innovations in equation (4)
from the bias-blind forecast, the implicit bias contribution
can approximately be removed, so that the state update
approximately corrects for random error only:

~̂x
0þ
j;i ¼ ~̂x

�
j;i þ ~Kx;i yj;i �Hi ~̂x

�
j;i þ b̂

þ
i

� �h i
: ð12Þ

[24] In this variant, labeled EnBKF_2, the analysis that is
used to re-initialize the model is not forced to come close to
the truth. Rather, we attempt to propagate the model close to
its biased state while removing as much of the random error
as possible. To obtain the bias-corrected output state, we
add the bias correction to the a priori and a posteriori
estimates outside of the model run (Table 1).
[25] If the best a priori state estimates are generated when

the model is initialized by a state close to the truth, then it
seems logical to feed back the bias-corrected analyses into
the model. Note again, however, that dependent model
variables such as runoff and evaporation may be adversely

Table 1. Overview of Assimilation Algorithmsa

Method

Model Re-initialized

with (l = 0 and ~Ki = 0 if obs. not available)

Output State

State Update Bias Update
Feedback of
Bias EstimateAnalysis Forecast

EnKF ~̂xj,i
+ = ~̂xj,i

� + ~Ki[yj,i � Hi~̂xj,i
�] ~̂xj,i

+ ~̂xj,i
� yes no n/a

EnBKF_0 ~̂xj,i
� ~̂xj,i

� + b̂i
+ ~̂xj,i

� + b̂i
� no yes no

EnBKF_1 (same as EnKF) ~̂xj,i
+ + [I � ~KiHi] b̂i

+ ~̂xj,i
� + b̂i

� yes yes no

EnBKF_2 ~̂xj,i
0+ = ~̂xj,i

� + ~Ki[yj,i � Hi(~̂xj,i
� + b̂i

+)] ~̂xj,i
0+ + b̂i

+ ~̂xj,i
� + b̂i

� yes yes no

EnBKF_3 x̂j,i
+ = ~̂xj,i

� + ~Ki[yj,i � Hi~̂xj,i
�] + l[I � ~KiHi]b̂i

+ x̂j,i
+ ~̂xj,i

� yes yes partial

EnBKF_3+ (same as EnBKF_3) x̂j,i
+ ~̂xj,i

� + b̂i
� yes yes complete

aBias estimates are always obtained as in equations (2) and (6). For clarity, ~Ki � ~Kx,i and l = 1, if observations are available. If observations are not
available, then formally ~Ki = 0 and l = 0.
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affected by imposing the true state in a model that is tuned
to work for biased states. In method EnBKF_3, the bias-
corrected analyses (equation (10)) are fed back and it is
assumed that, starting from an unbiased or bias-corrected
initial state or analysis, the forecasts are only negligibly
biased. This method was called on-line forecast-bias esti-
mation and correction with feedback by Dee and da Silva
[1998] and applied by Dee and Todling [2000], Keppenne et
al. [2005] and Chepurin et al. [2005]. Because in several
experiments we observed a fast return of the model state to
its biased climatology, in the additional variant EnBKF_3+

we correct the forecast outputs for bias without feedback of
this bias correction in between analyses. Here, the model
run is unchanged relative to EnBKF_3.

2.4. Remark

[26] Forecast bias could also be approximated as the time
mean forecast error, or by a function that reflects cyclic
components. Forecast bias could then be computed off-line
by comparing long records of forecasts with those of (re-)
analyses or observations (assuming they are unbiased) and
such bias estimates would be readily available to correct

new forecasts. The off-line estimation of climatological
differences between the model and the observations is also
the basis for the rescaling approaches that have been
developed recently [Reichle and Koster, 2004; Drusch et
al., 2005; Toth and Peña, 2006]. Such approaches reduce
the discrepancy between model forecasts and observations
through rescaling of the observations to the model clima-
tology prior to data assimilation. In other words, rescaling
approaches imply that only the anomaly information from
the observations is assimilated. By design, rescaling reduces
the average magnitude of the innovations and avoids that the
model is pushed away from its own climatology through
data filtering, in line with the idea behind EnBKF_2 in our
study.
[27] There are, however, important differences between

the bias estimation variants discussed here and the rescaling
approaches. Obviously, the climatological rescaling techni-
ques are based on a priori knowledge, while in our on-line
bias estimation methods the forecast bias is updated
dynamically at each assimilation event. Moreover, rescaling
does not per se assign the systematic errors to either the
model or the observations, while our bias estimation var-
iants assume unbiased observations and only account for
(model) forecast bias. Another difference is that the rescal-
ing approaches, in particular the approach based on match-
ing cumulative distribution functions, also address
systematic errors in higher order moments such as errors
in the variability and skewness. By contrast, our on-line bias
estimation variants with a persistent bias model estimate the
mean errors.

3. Experimental Setup

3.1. Model and Observations

[28] The filtering algorithms outlined above were tested
with soil moisture observations at different depths and
different locations in the 21 ha corn field in Maryland,
USA, where the project for Optimizing Production Inputs
for Economic and Environmental Enhancement (OPE3,
http://hydrolab.arsusda.gov/ope3/) is conducted. In each of
the four sub-watersheds (A, B, C, D) in the field, there are
12 capacitance probes for soil moisture measurements
(EnviroSCAN, SENTEK Pty Ltd., South Australia), but
during our study period only 36 of the 48 probes were
operating (Figure 1). The probes were named following a
3 digit system Gish et al. [2002]. The first letter represents
the sub-watershed (A, B, C, D). The second letter (L, M, H)
refers to the estimated infiltration rate at the point of
installation (Low, Moderate, High clay content). The third
digit (1, 2, 3, 4) discerns between the different probes of a
specific infiltration regime. H-probes have sensors at 10, 30,
and 80 cm depth. L- and M-probes have sensors at 10, 30,
50, 120, 150, and 180 cm depth. L-probes have an addi-
tional sensor at 80 cm depth. The sensors measure in a soil
volume with a radius of approximately 10 cm. There were
12 working probes of each type (H, M, L). The 10-min
observations were aggregated into hourly time steps for
comparison with model results.
[29] The vertical soil moisture profiles at all working 36

observation locations were modeled as independent point
profiles with the Community Land Model (CLM2.0). The
model simulates land surface processes by calculating

Figure 1. Digital elevation model with location of soil
moisture probes in the field. Defective probes during the
study period are crossed out.
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vertical water and heat fluxes and states for each profile
separately without interaction between profiles [Dai et al.,
2003]. CLM2.0 has one vegetation layer, a user-defined
number of soil layers (we used 10), and up to 5 snow layers
(depending on the snow depth). The depths of the soil nodes
were set to 2.5, 5, 10, 20, 30, 50, 80, 120, 150, and 180 cm,
so that soil moisture at all observation depths was included
in the model state vector. The interface between the layers
was halfway in between two consecutive nodes (except for
the upper and lower layer) and hence the layer thickness
was variable (schematic shown by De Lannoy et al.
[2006a]). The land surface model was forced with hourly
observed meteorological data, which were assumed to be
spatially homogeneous over all profiles.
[30] Data from 1 May 2001 through 1 October 2001 were

used for system identification (parameter calibration and
initial state estimation), while during the period from
2 October 2001 through 30 April 2002 there was state
and bias estimation and validation (split sample) for all
36 profiles. A detailed analysis of the soil moisture data set
[Gish et al., 2002; De Lannoy et al., 2006b] revealed a
complex subsurface hydrology, mainly caused by an irreg-
ular shaped clay layer at 1 to 3 m depth. The calibration and
initialization of the model was performed for each profile
individually [De Lannoy et al., 2006a], but it was not
possible to achieve zero bias for all soil layers in all profiles,
mainly because lateral flow is not modeled by CLM2.0.
Because of the structural deficiency and the a priori model
calibration, further parameter estimation as part of the
assimilation would not reduce the bias problem. Therefore,
the soil moisture observations were assimilated to estimate
the total forecast bias resulting from several error sources,
including model structural errors and forcing errors.
[31] The OPE3 soil moisture observations were assimi-

lated into CLM2.0 during a fixed time period: the first
assimilation event was always on 2 October 2001, the last
one on 19 March 2002, and varying numbers of assimilation
events/frequencies (Table 2) were considered. For the assi-
milation, the state vector for each profile consists of 22
prognostic variables, namely soil moisture and soil temper-
ature at 10 levels, canopy water storage, and vegetation
temperature. Assimilation of soil moisture thus also influ-
ences the other state variables, like soil temperature, which
is important for balancing and to study the total effect on
evapotranspiration. Since snow and soil freezing were
negligible, model prognostic variables related to snow and
frozen soil water were not included in the state vector. In a
typical experiment, we assimilated in situ observations in
one soil layer for all 36 profiles at selected time steps (Table 2)
and verified against the (withheld) in situ data corresponding
to this or the other profile layers over all time steps within
the validation period (2 October 2001 through 30 April
2002). The effect of data assimilation in an individual soil
layer on the performance of the complete profile was studied,

and for subsection 4.2 the effect of assimilation of all
available data per profile on the evapotranspiration and runoff
was investigated.

3.2. Practical Considerations

[32] The first practical obstacle encountered in the assim-
ilation experiments was the estimation of the model and
observation error statistics. The ensemble a priori state error
covariance ~Px,i

� was computed as the sample covariance
from an ensemble integration with N = 64 members,
because more members did not significantly alter the
description of the predicted univariate state variable pdfs.
Each member experienced realistic perturbations of all
initial state values, parameters and forcings, as described
by De Lannoy et al. [2006a]. Because of the model structure
(independent profiles) and our choice of uncorrelated forc-
ing perturbations, a priori state errors at different locations
were effectively uncorrelated. The spurious elements of
~Px,i
� outside of the diagonal blocks (corresponding to the

variables in one profile) were set to 0. This strategy amounts
to a severe covariance localization that increases the rank of
~Px,i
� [Hamill et al., 2001]. As mentioned above, the a priori

bias error covariance P�
b,i was chosen proportional to ~Px,i

� for
all experiments. The observations were assumed unbiased
with error covariance R = (0.022 m3m�3)2�I, assuming zero
cross-correlation between the observation errors [De Lannoy
et al., 2007].
[33] For all algorithms it is necessary to make sure that

the updated state variables are physically realistic. When-
ever estimates are used to re-initialize the model, they must
also be compatible with the model’s parameters. Conse-
quently, each state estimate (forecast/analysis) was checked
and possibly altered before it was fed back into the model.
For example, a corrected soil moisture that exceeded the
model’s porosity was re-set to the porosity before feedback.
For the output state (possibly corrected outside the model
run), the values were simply limited to physically realistic
numbers, without regard to model-specific limitations. In
any case, only a negligible amount of these kinds of
interventions was required.

4. Results

4.1. Soil Moisture

[34] We begin our analysis by highlighting a few key
features of the soil moisture estimates produced by the
various assimilation algorithms. Figures 2 and 3 show
examples of soil moisture time series at two distinct soil
depths and locations where different types of forecast bias
were present. For the assimilation integrations, only obser-
vations in the single soil layer that is shown in the figure
have been assimilated, and the output analyses/forecasts of
Table 1 are plotted. For reference, we also show the
ensemble mean of an ensemble integration without assi-

Table 2. Overview of Data Assimilation Frequencies and Number of Assimilation Events (Evenly Spaced

Between 2 October 2001 and 19 March 2002)

Frequency a b c d e f g

Interval 1 day 2 days 4 days 1 week 2 weeks 4 weeks 8 weeks
Number of assimilation events 169 85 43 25 13 7 4
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milation, which is referred to as the control model integra-
tion. In both examples the control model results are typi-
cally drier than the observations. In the first example
(Figure 2), the 10 cm in situ data show a larger dynamic
range than the corresponding control model estimates, and
the bias varies on timescales of a few weeks. In the second
example (Figure 3), the 80 cm control model soil moisture
is persistently drier than the observations, although the bias
gradually decreases toward the end of the experiment
period.
[35] As expected, the assimilation integrations provide

soil moisture estimates that are typically closer to the
observations than the control model estimates. In most
cases, however, the assimilation estimates drift back toward
the control model estimates immediately after each update
because of errors in the model formulation or parameteri-
zation. This behavior is most clearly visible in Figure 3,
where the drift was most pronounced for EnKF and
EnBKF_3, and consequently this also affected the output
for EnBKF_1 and EnBKF_3+. In these methods, the model
was re-initialized with a state estimate that was forced to
move from the model climatology toward the observation
climatology.

[36] Figure 3 also shows that algorithms EnBKF_1 and
EnBKF_3+ produced overshoots, i.e., the output was found
outside the range spanned by the observation and model
results. More specifically, the analyses of algorithms
EnBKF_1 and EnBKF_3+ can be clearly distinguished as
isolated squares in the zoomed plots of Figure 3 and were
well estimated, while the estimation of the (output) forecasts
after the assimilation events produced the overshoots. The
problem of overshoots indicates that a persistent bias model
might be appropriate from one analysis to the next, but not
for correcting the forecasts immediately following the last
analysis. During a limited period after the state update, the
forecast bias is typically limited by the effect of the stage 1
filter and growing quickly, until the model forecasts reach
the ‘stable’ model climatology and the persistent bias model
is valid again. Instead of the persistence model, a zero-
initialized growing bias model that reaches the last updated
b̂i
+ at the next assimilation step could perhaps be used.

Overshoots were not observed for the output of EnBKF_2.
However, the underlying model run (without addition of the
forecast bias estimate) showed that the model state diverged
from the desired (model) trajectory. The algorithm with bias
estimation only (EnBKF_0) did not suffer from this prob-

Figure 2. Soil moisture at 10 cm depth for DH2 for weekly assimilation (indicated by arrows) at 10 cm
only and for the six different estimation algorithms. Right column plots are zooms of left column plots.
Shown are (gray) observations, (dotted) ensemble mean without filtering, and (black solid line in the left
panels and black squares in the right panels) filtering runs.
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lem and was able to find a good estimate of the bias, so that
the output state came very close to the observations.
[37] While Figures 2 and 3 illustrate specific issues, we

now turn to profile-integrated and area-averaged perfor-
mance measures in Figure 4, namely the root mean square
error (RMSE) and the time series correlation coefficient (R)
between observed and modeled/assimilated soil moisture.
For each of the filtering methods, seven separate assimila-
tion integrations were performed by assimilating in situ data
from one of seven layers once per week (Table 2) while
with-holding the rest of the in situ observations. Next, the
profile-average RMSE and R were computed for each entire
probe (with equal weights for all observed layers) for all
assimilation integrations during the validation period
(2 October 2001 through 30 April 2002) and subsequently
normalized with the corresponding values from the control
integration (no filtering). Figure 4 then shows the spatial
average normalized RMSE and R across all L-probes, plus/
minus one (spatial) standard deviation.
[38] Figure 4 shows that, in general, it was possible to

improve (relative to the control) the RMSE of the complete
profile slightly through assimilation in any single layer, both
with and without bias estimation (except for EnBKF_2).
However, the improvement was modest and bias correction
did not improve the results much more than conventional
EnKF filtering without explicit bias estimation.
[39] The time series correlation R was typically degraded

through filtering (Figure 4), because each assimilation event
caused a jump in the time series, which decreased the
similarity with the observed time series. EnKF, EnBKF_0,
and EnBKF_1 retained acceptable correlation. These algo-

rithms have less impact on the model evolution, and the
control model already provided a good estimate of the
temporal evolution based on the high-quality input precip-
itation and other forcing data. By contrast, EnBKF_3/3+

greatly reduced R, because the complete bias correction was
fed back in all profile layers, thereby causing more signif-
icant jumps in the time series.
[40] In general, assimilation in a single layer had only a

limited impact on the complete profile. This may be because
the state and bias error covariances (~Px,i

� and Pb,i
� ) were

poorly known and error corrections were therefore inade-
quately propagated through the soil moisture profile. More-
over, the observability matrix of the bias system did not
reach full rank when only one layer was observed, because
the persistence model for the bias implies that there is no
vertical ‘‘flow’’ of bias.
[41] Figure 5 shows the spatial average of the normalized

RMSE and R for two individual soil layers into which
observations were assimilated at different frequencies. The
spatial average is over sensors with observations at the
assimilation depth (i.e., all 36 probes at 10 cm, and 24 H-
and L-probes at 80 cm, because M-probes have no obser-
vations at 80 cm depth). Obviously, the performance for the
assimilation layer itself was greatly improved through
inclusion of bias estimation, even though the profile-aver-
age performance improvement was modest (Figure 4). For
EnBKF_0, EnBKF_1, EnBKF_2 and EnBKF_3+, the sim-
ulations at all sensor depths yielded better results than the
control integration (without filtering) and the EnKF. By
contrast, EnBKF_3 was no better than EnKF. For
EnBKF_2, it was found that the underlying model run

Figure 3. Same as Figure 2, but at 80 cm depth for DL4.
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(without bias addition) sometimes introduced additional
bias (not shown). Of all methods, simple bias estimation
without state estimation (EnBKF_0) was most efficient: it
reduced the RMSE and kept the time series correlation R
highest. For algorithms with bias estimation, the perfor-
mance measures did not generally improve when the
assimilation was done more frequently than once per week
and less intensive assimilation is needed than for EnKF.

4.2. Other Variables

[42] Unfortunately, in situ observations were not available
for evapotranspiration, runoff, and drainage. Nevertheless, it
is instructive to assess the impact of the various assimilation
and bias feedback options on these dependent variables.
Table 3 shows soil moisture, evapotranspiration (and its
component fluxes), runoff, and drainage (averaged over the
profile locations) for 2-weekly assimilation of complete
observed profiles. The table also lists the profile-integrated
RMSE between observed and modeled/assimilated soil
moisture, the total column absolute increment added to
the soil water, and spatial standard deviations for all
variables that provide a measure of the variability across
all locations. Note that flux totals given in Table 3 are for
the 211-day validation period from 2 October 2001 through
30 April 2002 that includes fall, winter, and early spring
with relatively little evapotranspiration. For reference, the
total observed precipitation during the validation period is
279 mm (of which 25 mm fell as snow), and the total
saturated water content of the control model, averaged
across all profiles, is 869 ± 90 mm.
[43] Table 3 indicates that the average soil moisture is

typically increased through data assimilation, from 16.5 vol%
for the control run to between 18 and 20 vol%. Algorithms
that include bias correction in the outputs produce the
highest soil moisture estimates. For all assimilation algo-
rithms, the total evapotranspiration, its component fluxes,

and surface runoff were only marginally affected when
compared to the control run (Table 3). This is a logical
consequence of the fact that the complete profile assimila-
tion had only a minor effect on the upper layers of soil
moisture and because of the winter time. Deeper layers were
influenced more strongly [De Lannoy et al., 2007]. Conse-
quently, the choice of assimilation algorithm had a large
impact on subsurface drainage.
[44] The control integration and EnBKF_0 suggest that

109 mm of water (39% of observed precipitation) left the
study site as subsurface drainage. This estimate is roughly
in line with an independent estimate that at least 30% of
precipitation exits the site as drainage (Timothy Gish,
personal communication). Significantly increased drainage
was found for the rest of the assimilation algorithms.
EnBKF_2 suggests that 149 mm of water (53% of observed
precipitation) drains from the site. EnKF, EnBKF_1, and
EnBKF_3/3+ produce drainage far in excess of observed
precipitation. Such large drainage cannot be explained
by errors in the observed precipitation and are entirely
unrealistic.
[45] The unrealistic drainage rates follow directly from

the fact that the calibrated model is biased dry and already
produces relatively high subsurface drainage. When the data
assimilation adds water to bring the biased soil moisture up
to the observed values, the model responds with increased
drainage. Note that the corresponding dry-out can also be
seen in Figure 3 for assimilation in a single layer. The
increased drainage acts to restore the bias, which in turn
necessitates additional increments of water during the
assimilation. In general, depending on the level of bias,
the bias correction scheme that is used, and due to nonlinear
effects, drainage produced by the assimilation easily departs
from realistic values.
[46] The average absolute assimilation increments, also

listed in Table 3, provide additional insights. By construc-

Figure 4. Profile-integrated, area-average, normalized (top) RMSE and (bottom) R for different
algorithms with weekly assimilation at 7 different depths (10, 30, 50, 80, 120, 150, and 180 cm) per
algorithm. Normalization of RMSE and R is with respect to the control run. Averages were calculated
over all layers and all 12 L-probes. One spatial standard deviation is also shown.
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tion, data assimilation increments become part of the water
balance, but it is difficult, if not impossible, to attribute the
increments to specific fluxes. A desirable feature of a data
assimilation system is to produce good soil moisture esti-
mates (that is, low RMSE) with the smallest possible
increments. For methods without output bias correction
(EnKF andEnBKF_3) increments occurred at only 13 analysis
times during the study period, with average absolute incre-
ments between 7 mm and 38 mm per event. By contrast,
EnBKF_0, EnBKF_1, EnBKF_2, and EnBKF_3+ use a
total of 211*24 = 5064 hourly increments for output bias
correction during the 211-day experiment period, each
averaging between 36 mm and 65 mm depending on the
algorithm. EnBKF_1, for example, thus requires a total

absolute increment of 5064 * 39 mm �197 m of water
during the experiment period!
[47] Table 3 clearly shows the tradeoff between good soil

moisture estimates and small increments. Of all filtering
methods, the regular EnKF caused the smallest increments,
but shows little improvement in soil moisture over the
control run and produced the largest soil moisture RMSE
of all assimilation integrations. State updating with bias
removal from the innovations (EnKF_2) resulted in the
smallest RMSE, but at the expense of high increments,
because the underlying model run with assimilation gener-
ated additional bias. Bias correction without state updating
(EnBKF_0) required the largest increments and most dis-
torted the water balance, but delivered low RSME. Gene-

Figure 5. Normalized single layer RMSE and R for different algorithms with 7 different assimilation
frequencies (a, b, c, d, e, f, and g; Table 2) per algorithm. Assimilation depth was (a) 10 cm and (b) 80 cm.
Normalization of RMSE and R is with respect to the control run. Averages were calculated over all probes
with sensors at the assimilation depth. One spatial standard deviation is also shown.
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rally, methods with bias correction outside the model result
in less biased output (low RMSE), but at the expense of
large increments and a corresponding distortion in the water
budget.

4.3. Forecast Bias Evolution

[48] Figure 6 shows the temporal evolution of the forecast
bias estimates for two representative locations at two depths
(10 cm and 80 cm) with high and low temporal variability in
the bias (compare to Figures 2 and 3). For reference, Figure 6
also shows the difference between the observations and the
control model integration. It is important to note that this
difference is distinct from the forecast bias that we are
trying to estimate and that the bias estimates should not
necessarily match the observations minus control difference.
While the different algorithms clearly yielded distinct val-
ues for the bias estimates, the temporal evolution was quite
similar across the algorithms. In the case of bias estimation
only (EnBKF_0), the bias estimates were typically larger
than for EnBKF_1, because in EnBFK_0 no random error
was assumed and all error was attributed to bias. The
estimated bias for the case of bias correction in the innova-
tions only (EnBKF_2) was larger than for other algorithms
and growing in time for some locations, mainly at 80 cm. In
the case of bias correction with complete feedback
(EnBKF_3/3+), the estimated forecast bias at 80 cm became
gradually less than for the other algorithms as a conse-
quence of the correction feedback. This desirable behavior
is not seen at 10 cm, because the model returns to its biased
climatology after the update with bias correction, as shown
by the spikes for EnBKF_3 at location DH2 in Figure 2. As
will be shown in the next section, the imposed perturbations
resulted in an a priori state error covariance which was
relatively large. When ~Px,i

� and hence Pb,i
� were reduced in

additional sensitivity experiments (not shown), the bias was
identified more slowly, and less of the discrepancy between
observations and predictions was assigned to forecast bias.

4.4. Consistency of Filter Operations

[49] Innovations permit the indirect validation of the
stage 1 and stage 2 filters. If the model is linear and the
filter operates in accordance with its underlying assump-
tions, appropriately normalized innovations should obey a

standard-normal distribution (Gaussian with mean zero and
variance one), indicating that the filter parameters (model
and observation error parameters) are appropriate. Because
of the non-linearity of the land surface model and because
of the approximate (scalar) normalization of the innovations
(see below), we do not expect that the normalized innova-
tions follow a standard-normal distribution perfectly even
for very good filter parameters, i.e., ~Px,i

� , Pb,i
� and Ri.

Nevertheless, closeness of the innovations distribution to
the standard-normal distribution can be considered a sign of
consistent filter operation.
[50] For our analysis, we normalize each stage 1 (for bias-

blind state estimation) ensemble mean innovation [yi �
Hi ~̂xi

�]k (corresponding to a scalar observation at a given
data assimilation step) by the square-root of its filter-
estimated standard deviation [Hi

~Px,i
�Hi

T+Ri]kk
1/2. Figure 7

shows for all available observation points in space (one
per line) at 10 cm and 80 cm depth the time mean and
standard deviations of the normalized ensemble mean
innovations for weekly assimilation of observations in these
individual layers. Generally, we found that the mean of the
normalized stage 1 innovations across all locations was close

Figure 6. Estimated forecast bias for weekly assimilation
in a single layer at DH2 (10 cm) and DL4 (80 cm) for (�)
EnBKF_0, (+) EnBKF_1, (4) EnBKF_2, and (5)
EnBKF_3/3+. The solid line shows the difference between
the observations and the control model integration.

Table 3. Area-Average States and Total Fluxes (2 October 2001 Through 30 April 2002) for 2–Weekly Assimilation of Complete

Observed Profiles, Plus/Minus One (Spatial) Standard Deviationa

Units
EnCtrl

EnBKF_0
EnKF

EnBKF_1 EnBKF_2
EnBKF_3
EnBKF_3+

Profile average soil moisture [vol%] 16.5 ± 2.8 17.9 ± 3.6 – 18.2 ± 3.8
19.2 ± 5.1 19.7 ± 5.3 19.2 ± 4.8 20.0 ± 5.4

Evapotranspiration [mm] 67 ± 11 67 ± 11 67 ± 11 67 ± 11
Ground evaporation [mm] 42 ± 10 42 ± 10 42 ± 10 42 ± 10
Canopy evaporation [mm] 0.2 ± 0.7 0.1 ± 0.7 0.1 ± 0.7 0.1 ± 0.7
Canopy transpiration [mm] 25 ± 10 25 ± 10 25 ± 10 25 ± 10
Surface runoff [mm] 38 ± 11 39 ± 11 37 ± 11 39 ± 11
Subsurface drainage [mm] 109 ± 32 427 ± 393 149 ± 60 571 ± 526
Soil moisture RMSE [vol%] 6.74 ± 3.47 4.98 ± 2.74 – 4.82 ± 2.73

2.00 ± 0.70 1.94 ± 0.71 1.88 ± 0.70 2.08 ± 0.75
Average absolute incrementb [mm/event] n/a 26 ± 29 – 38 ± 39

65 ± 58 39 ± 40 51 ± 50 36 ± 41

aPer column, the two listed algorithms yield the same output for all variables except for soil moisture and for the increment. EnCtrl stands for the control,
i.e., the ensemble mean run without filtering.

bFor EnKF and EnBKF_3 there are 13 assimilation events. For EnBKF_0, EnBKF_1, EnBKF_2, and EnBKF_3+ there are 24*211 = 5064 hourly
increments (events) over the 211-day period.
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to zero. For individual locations, however, the mean was
very different from zero, in particular for the filters that feed
back bias-blind estimates into the model (EnKF, EnBKF_1,
EnBKF_2). The area-average spread of the normalized
stage 1 innovations at 10 cm depth was less than 1 for all
types of filtering when averaged across all locations, indi-
cating that the ensemble spread was larger than necessary.
At 80 cm, EnBKF_2 resulted in a normalized innovation
spread larger than 1, indicating that the state’s uncertainty
was underestimated. This means that the filter is overly
confident of its estimates, less responsive to observations,
and at risk of diverging from the truth. This behavior of
EnBKF_2 was more prominent with more frequent assi-
milation and mainly for deeper assimilation layers. In these
cases, the elements in ~Px,i

� became very small because a
number of ensemble members hit limiting values, thereby

causing a very limited state and bias update. The limiting
values were reached because the repeated (slightly over-
estimated) bias removal pushed the states toward unrealistic
values. This problem could be reduced by re-initializing the
bias to zero before each new assimilation update.
[51] Since overestimation of the spread implies underes-

timation of the information content of the assimilation
estimates, we also tried halving the magnitude of the
ensemble perturbations for all parameters, initial states
and forcings. Results for the normalized innovations from
these experiments are also shown in Figure 7. For assimi-
lation at 10 cm depth, the now reduced ~Px

� underestimated
the state estimate’s uncertainty at most locations (at this
depth) and unduly increased the risk of filter divergence in
individual locations. At 80 cm depth, however, only the
state estimates at a few locations showed too little spread.
Paradoxically, the spread of the normalized innovations for
EnBKF_2 at 80 cm was smaller for the smaller perturba-
tions. This is because the reduced spread in the a priori state
estimates implied smaller bias updates and fewer instances
when limiting values were reached, that is the smaller
perturbations effectively resulted in larger a priori sample
error covariances and thus in smaller spread of the normal-
ized innovations. This finding serves as a warning that it is
often difficult to use data assimilation methods with non-
linear models.
[52] The innovations analysis was also performed for the

stage 2 filter (for bias estimation). In this case, the ensemble
mean a priori bias-corrected innovations [yi � Hi(~̂xi

� +
b̂i
�)]k for all scalar innovations were normalized by their

filter-estimated standard deviations [ 1
1�gH

~Px,i
�HT + Ri]kk

1/2.
We found that g = 0.5 was larger than necessary, even when
the magnitude of the perturbations was cut in half (not
shown). This implies that the uncertainty of the bias
estimates is considerably smaller than that of the state
estimates, and that the resulting bias-corrected state estimate
is less uncertain than the filter (with g = 0.5) estimates it is.
A smaller g should thus improve overall filter performance
and yield increased information content for the bias-
corrected state estimates. It was found that for higher
assimilation frequencies, Pb,i

� could be reduced further.

5. Summary and Conclusions

[53] We tested different practical algorithms for state and
forecast bias estimation for real soil moisture assimilation in
a small agricultural field and investigated feedback of bias-
blind or bias-corrected state estimates into a biased model.
For assimilation in a single layer, the soil moisture estimates
for the assimilation layer could be greatly improved through
inclusion of explicit bias estimation (Figure 5), even though
the profile-average performance improvement was modest
(Figure 4). For assimilation of complete observed profiles,
significant improvements in soil moisture estimates were
achieved through explicit bias estimation (Table 3).
[54] Some but not all of the forecast bias is implicitly

removed in the conventional EnKF. Better results for soil
moisture were achieved with the original separate state and
bias estimation algorithm (EnBKF_1) but this method
produced undesirable overshoots in the output. The over-
shoots are caused by the use of a persistence model for the
bias and may be ameliorated with a more sophisticated bias
model. When the bias was removed from the innovations in

Figure 7. (Upper row) mean and (lower row) standard
deviation of normalized stage 1 innovations time series at
(left) all 36 and (right) 24 H-and L-probe locations (one line
per location) for weekly assimilation in a single layer at
(left) 10 cm and (right) 80 cm for the different algorithms
with the full and halved (0.5s) ensemble perturbations. The
thick line shows the average across all locations.
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the state update equation (EnBKF_2), the filter gradually
overestimated the bias and diverged from the validating
observations. This problem could be alleviated by re-initializing
the bias to zero before updating. Complete feedback of the
bias correction into the model (EnBKF_3/3+) produced
mixed results because in this case the model was driven
away from its preferred soil moisture climatology. Post-
processing the model results by the estimated bias without
updating the state (EnBKF_0) yielded the best results for
soil moisture, because the major part of forecast error was
systematic, rather than random.
[55] For EnBKF_0, information from the observations never

reaches model-produced dependent variables by construction.
For all other assimilation algorithms, it is important to consider
the impact of soil moisture assimilation on diagnostic processes
such as drainage, runoff, and evapotranspiration. Because of
the specifics of our experiment, evapotranspiration and surface
runoff were almost unchanged by all assimilation algorithms
(with respect to the control run). By design, EnBKF_2 affected
subsurface drainage only marginally, but all other methods
(EnKF, EnBKF_1, and EnBKF_3/3+) showed a strong and
negative impact on subsurface drainage.
[56] Problems with dependent fluxes are often linked to

excessive assimilation increments and thus require a trade-
off between the quality of the soil moisture estimates and
that of the flux estimates. In a biased model, large and
frequent increments are required to produce low errors in
soil moisture estimates. The large increments, in turn, result
in unrealistic fluxes as the model continually drifts back to
its biased soil moisture climatology. This problem is partic-
ularly acute if bias-corrected soil moisture estimates are fed
back into the model (EnBKF_3/3+). Moreover, when bias
corrections are applied at every output time step, huge total
increments result.
[57] In summary, the best choice of algorithm for assimi-

lation and bias correction depends on the quality of the
model, the nature of the model bias and the intended use of
the estimated model state variables or fluxes. If, like in our
study, correct fluxes are produced only when the land model
is operating within its biased soil moisture climatology,
EnBKF_0 appears to be the method of choice. Alternatively,
EnBKF_2 could be considered, but would require further
tuning to prevent filter divergence. If the land model were to
produce the correct fluxes when its soil moisture is close to
the true soil moisture, EnBKF_1 or EnKBF_3+ would be an
obvious choice.
[58] Further filter tuning could improve the performance

of the various assimilation methods and may also affect the
relative performance among the algorithms. Much more
research is also needed into the choice of the bias model,
the estimation of the a priori bias error covariance matrix,
and the need for unbiased observations. The undeniable
presence of bias in land surface models requires ongoing
development of advanced bias estimation and correction
methods if land data assimilation systems are to succeed.
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