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[1] It is a common experience that rainfall is intermittent in space and time. This is
reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by
a mixed distribution with a nonzero probability of having a sharp value zero. In this paper
we have explored the dependence of the probability of zero rain on the averaging space and
time scales in large multiyear data sets based on radar and rain gauge observations. A
stretched exponential formula fits the observed scale dependence of the zero-rain
probability. The proposed formula makes it apparent that the space-time support of the rain
field is not quite a set of measure zero as is sometimes supposed. We also give an
explanation of the observed behavior in terms of a simple probabilistic model based on the
premise that rainfall process has an intrinsic memory.
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1. Introduction
[2] Irregular variation of rain over a wide range of space-

time scales has long presented an intriguing challenge to the-
oretical modeling efforts. Because of the difficulty that one
encounters in predicting the precise atmospheric conditions
that determine the occurrence of rain, models of rainfall vari-
ability often employ a statistical framework in which rain is
described in terms of a random variable governed by an
underlying probability distribution. The intermittent nature
of rain in both space and time is a matter of common experi-
ence. In a statistical description this is reflected by the fact
that the distribution of the rain rate is a mixed distribution
with a finite nonzero probability of zero rain. [Kedem and
Chiu, 1987; Bell, 1987].

[3] Experimental measurements generally yield precipi-
tation data as averages over space-time scales determined
by the resolution achieved in a particular measurement
method. Radar observations provide a near-instantaneous
rainfall image with horizontal spatial resolution of the order
of 1 km. Rain gauge and disdrometer measurements, on
the other hand, yield rain rate estimates at a point with
a time resolution of the order of 1 min. Although from a
microscopic point of view rain is particulate in nature, under
normal rainy conditions the rain rate R(x, t) can be treated
as a continuous stochastic field when averaged at these
scales. This continuum approximation is not unlike the one
employed in many areas of traditional physics, for example,
in kinetic theory for describing transport phenomena in
dilute gases.

[4] A fundamental property of rainfall statistics is the
dependence of the probability distribution of rain on the

space-time averaging scale [Kundu and Siddani, 2007].
Power law scaling of the moments of rain rate, or equiva-
lently, the tail of the distribution empirically observed over
a significant range of scales, has been the main motivation
behind the popular multifractal models of rain in terms of a
multiplicative random cascade process. Many variants of
such models exist in the literature that describe spatial,
temporal, or full space-time multiscaling [e.g., Gupta and
Waymire, 1990, 1993; Schertzer and Lovejoy, 1987; Love-
joy and Schertzer, 1990; Over and Gupta, 1996; Marsan
et al., 1996; Menabde et al., 1997]. These models have
been extensively used to simulate rainfall process. Their
usefulness comes from the prospect of their being able to
faithfully capture the subgrid variability by extrapolating
the rainfall process statistically from the scales of observa-
tional resolution down to the much smaller scales that are
relevant for hydrological applications.

[5] A particular feature of rainfall that is just as funda-
mental is the frequent occurrence of zeroes in a precipitation
field, a property referred to as intermittence. Intermittence
contributes significantly to the observed dependence of the
rainfall statistics on the averaging area or time. Moreover,
the statistical properties of the zero-rain regions must them-
selves be scale dependent [Kundu and Siddani, 2007] since
coarse graining of a precipitation field by averaging over ad-
jacent space-time regions of zero and nonzero rain produces
a region that is rainy when viewed on a coarser scale. De-
spite being an essential aspect of the statistics of precipita-
tion, the distribution of rainfall zeroes by themselves has
received relatively limited attention among theoretical
investigators. The presence of zeroes causes the probability
distribution of rain to be described by a mixed distribution
where there is a nonzero probability of rain rate assuming
the sharp value zero. An early effort to model monthly rain-
fall totals in an arid region in terms of a distribution sug-
gested by Fisher and Cornish [1960] that includes the
zeroes of rain goes back to Öztürk [1981] (who attributes it
to Buishand [1977]; see also Revfeim [1982]). The model
describes rainfall as a Poisson process of instantaneous
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showers that are mutually independent, with the event size
negative-exponentially distributed. The temporal distribu-
tion of dry and wet events and its scaling property have
been studied by Hubert and Carbonnel [1989], Olsson et
al. [1993], and Schmitt et al. [1998]. Power law scaling
behavior of the rainy area fraction in gridded radar data
over a limited range of spatial scales was recognized by
Kedem and Chiu [1987], Over and Gupta [1994], and
Kundu and Bell [2003]. Dependence of the tail quantiles
and moments of the duration of wet and dry events on spa-
tial scale in radar data has been investigated by Pavlopou-
los and Gupta [2003]. In the context of a multifractal
cascade model often used to simulate a rain field [e.g.,
Over and Gupta, 1994, 1996; Paulson and Baxter, 2007],
the zeroes are generated by allowing the cascade generator
to have zero value with a finite probability, a theoretical
construct commonly referred to as the beta model, which
was initially utilized in theory of fluid turbulence to repre-
sent intermittence of turbulent flow. The effect of intermit-
tence on the estimation of the parameters of the so-called
universal multifractal model [Schertzer and Lovejoy, 1987;
Lovejoy and Schertzer, 1990], which does not naturally
include zero rain, was investigated by de Montera et al.
[2009]. Recently, Mart�ınez et al. [2007] and Lana et al.
[2010] have explored various aspects of the distribution of
dry spell lengths over the Iberian Peninsula and Europe.
They quantified the distribution of zero-rain gaps at the
daily scale in terms of its lacunarity, a concept originated
by Mandelbrot [1982], and attempted to reproduce the
observed lacunarity from synthetic time series generated by
suitably constructed deterministic or random Cantor sets.
They also investigated the possibility of persistence or long
memory in the time series of dry spell lengths by examin-
ing the Hurst scaling exponent from the scaling behavior of
the so-called R/S statistic [Beran, 1994] and applied consid-
erations of dynamical systems theory to characterize the
underlying random process that potentially generates the
time series.

[6] In the present paper we investigate the scale depend-
ence of intermittence for both spatial and temporal aver-
ages of rainfall from a phenomenological point of view.
Our study leads to a simple empirical formula expressing
the dependence of the zero-rain probability (which meas-
ures the fractional area or time for which the rain rate is
zero) on the averaging area or time. Our finding is based on
a detailed exploration of large multiyear precipitation data
sets produced from ongoing radar and rain gauge measure-
ments in Florida that were collected as part of the ground
validation (GV) program under the Tropical Rainfall Meas-
uring Mission (TRMM) undertaken jointly by NASA and
Japan Aerospace Exploration Agency (JAXA).

[7] The outline of the paper is as follows. In section 2
we briefly explain the theoretical framework employed in
describing the statistics of dry and wet events. In section 3
we present a simple probabilistic model that yields an
explicit formula for the zero-rain probability as a function
of the time interval for a rain gauge time series. The model
we propose is based on the premise that the rainfall process
is intrinsically non-Markovian, i.e., a process with mem-
ory. A similar formula also holds in the two-dimensional
case of spatial radar data. Section 4 gives an account of
our analysis of the various radar and gauge data sets. In

section 5 we then present the results of data analysis and
discuss them in the context of other related investigations.
The paper is concluded in section 6 with a summary of the
findings and some directions for future work. Appendix A
is devoted to the proofs of some mathematical formulas,
and Appendix B describes the statistical tests conducted
to assess the spatial homogeneity of the Florida gauge
network.

2. Theoretical Framework
[8] In this section we describe the theoretical framework

employed in our data analysis. Let

rAT x; tð Þ ¼ 1=ATð Þ
Z

A xð Þ

d2x0
ZtþT=2

t�T=2

dt0R x0; t0ð Þ ð1Þ

denote the area-time average of the instantaneous point rain
rate field over an area A(x) centered at the point x and over
a time interval T centered at the instant t. Radar and rain
gauge measurements capture the statistics of the random
variable rAT in two distinct spatiotemporal regimes, the
large A, small T and the large T, small A regimes. The sta-
tistical properties of the rain rate field are assumed to be
stationary in both space and time.

2.1. Temporal Statistics of Dry and Wet Periods in
Rain Gauge Data

[9] First, we consider the statistics of time-averaged
rain rate data obtained from a set of rain gauges located
within a region in which the spatial statistics is assumed
to be homogeneous. Let rT : rT (t) denote the time aver-
age of the rain rate measured by a gauge over a time inter-
val T centered at the instant t. Each rain gauge provides a
time series {rTi ; i ¼ 1, 2, . . . } of time-averaged rain rates
at equally spaced points. In this paper we are interested
only in occurrence or nonoccurrence of rain; the actual
numerical value of the rain rate is irrelevant. Conse-
quently, it is convenient to introduce a rain indicator field
�T : �T(t), which is a binary random variable equal to 1
when rT > 0 and 0 when rT ¼ 0. In accordance with our
assumption, the statistics is regarded as stationary, i.e., in-
dependent of the choice of t ; �T generates a stochastic pro-
cess of ‘‘trials’’ with a binary outcome: rain or no rain.
The probabilities of nonzero rain (‘‘success’’) and zero
rain (‘‘failure’’) in a randomly chosen time interval T are
given by p1(T) : h�Ti ¼ Pr[rT > 0] and p0(T) ¼ 1 �
p1(T) ¼ h1 � �Ti ¼ Pr[rT ¼ 0], respectively. An important
aspect of the process is that unlike the familiar Bernoulli
trials, here the successive trials are not independent. The
dependency arises through the space-time correlation in-
herent in the physical precipitation process and can be
expressed through the joint probabilities for two randomly
chosen time intervals of length T separated by a lag � :

p11 T ; �ð Þ � �T�
0
Th i ¼ Pr rT > 0; r0T > 0½ �;

p10 T ; �ð Þ � �T 1� �0Tð Þh i ¼ Pr rT > 0; r0T ¼ 0½ �;
p01 T ; �ð Þ � 1� �Tð Þ�0Th i ¼ Pr rT ¼ 0; r0T > 0½ �;
p00 T ; �ð Þ � 1� �Tð Þ 1� �0Tð Þh i ¼ Pr rT ¼ 0; r0T ¼ 0½ �;

ð2Þ
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where a prime indicates evaluation at instant t þ � instead
of t, i.e., �0T ¼ �T(t þ �) and so on. They satisfy the elemen-
tary relations

p11 T ; �ð Þ þ p10 T ; �ð Þ ¼ p1 Tð Þ
p01 T ; �ð Þ þ p00 T ; �ð Þ ¼ p0 Tð Þ;

ð3Þ

with p0(T) þ p1(T) ¼ 1. For simplicity, we assume the sta-
tistics to be stationary, i.e., independent of the choice of t.
Consequently, h�Ti ¼ h�0T i, which implies the time symme-
try property

p01 T ; �ð Þ ¼ p10 T ; �ð Þ: ð4Þ

The degree of dependence can be quantified by the lagged
autocorrelation function of the indicator field

� T ; �ð Þ ¼
�T�
0
T

� �
� �Th i2

�2
T

� �
� �Th i2

: ð5Þ

Using the basic definitions above and the fact that h�T
2i ¼

h�Ti, the lagged autocorrelation �(T ; �) can be written
(dropping the arguments to simplify notation) in the fol-
lowing equivalent forms:

� ¼ p00 � p2
0

p0 � p2
0
¼ p11 � p2

1

p1 � p2
1
¼ � p01 � p0p1

p0p1
: ð6Þ

As rain decorrelates (as would be expected for large �), �
! 0, and consequently, the joint probabilities factorize,
i.e., p00! p0

2, p11! p1
2, and p01! p0 p1.

[10] Finally, since two consecutive zero-rain intervals of
length T separated by an interval � � T overlap to form a
zero-rain interval of length T þ � , it immediately follows
that

p00 T ; �ð Þ ¼ p0 T þ �ð Þ � � Tð Þ: ð7Þ

[11] For � > T, the intervals of zero rain are disjoint.
Consequently, one must have p00(T ; �) > p0(T þ �) in
order to allow the possibility of rain occurring during the
interval that separates them.

[12] It should be noted that although, in principle, T and �
can be treated as continuous variables, in practice, precipita-
tion data are usually available only as a discrete time series
at equidistant points. The spacing between two consecutive
points is a certain nonzero time interval � whose value is
dictated by the finite temporal resolution of the experiment.
All allowed values of T and � are therefore integer multiples
of �. Thus, for a randomly selected time interval [0, T] of
length T ¼ n� consisting of n consecutive time intervals �,
the probability of zero rain can be expressed as

p0 Tð Þ � p0 n�ð Þ ¼ Pr �ðnÞ ¼ 0; . . . ; �ð1Þ ¼ 0
h i

; ð8Þ

where �(j) : ��(tj) (j ¼ 1,2, . . . , n) denotes the indicator
for the interval j centered at tj ¼ (j � 1/2)�.

[13] Another quantitative measure of intermittence is the
lacunarity of a rain rate time series [see, e.g., Mart�ınez
et al., 2007]. Let P(k, n) denote the probability that there

are k zero-rain gaps of length � (i.e., �� ¼ 0) in an interval
of total length T ¼ n�. The first and second moments of k
with respect to the probability distribution P(k, n) are

M1 nð Þ ¼
Xn

k¼1
kP k; nð Þ;M2 nð Þ ¼

Xn

k¼1
k2P k; nð Þ;

and the lacunarity (at the scale n) is defined as the quotient
�� nð Þ ¼ M2 nð Þ=M2

1 nð Þ. If the trials generated by the binary
variable �� are independent, i.e., represent Bernoulli trials,
then P(k, n) is simply the binomial distribution:

P k; nð Þ ¼ n

k

� �
p0 �ð Þ½ �k p1 �ð Þ½ �n�k ;

where the symbol in parentheses on the right-hand side
denotes the binomial coefficient. In particular, P n; nð Þ �
p0 Tð Þ ¼ p0 �ð Þ½ �n, as expected. For the binomial distribu-
tion, we have �� nð Þ ¼ 1þ p1 �ð Þ=np0 �ð Þ.

[14] A related quantity of interest in hydrology is the dis-
tribution of the duration of a dry or wet spell, the so-called
residence time [see, e.g., Schmitt et al., 1998]. The proba-
bility of occurrence of a continuous dry spell of duration
T ¼ n� is given by the conditional probability

�n ¼
Pr �ðnþ1Þ ¼ 1; �ðnÞ ¼ 0; . . . ; �ð1Þ ¼ 0 �ð0Þ ¼ 1

��� �
; n > 0

Pr �ð1Þ ¼ 1 �ð0Þ ¼ 1
��� �

; n ¼ 0

(
:

ð9Þ

It can be readily expressed in terms of p0(T). It is not diffi-
cult to show that �n are given by the formula (see Appen-
dix A for a proof)

�n ¼
p0 n�ð Þ � 2p0 nþ 1ð Þ�½ � þ p0 nþ 2ð Þ�½ �f g=p1 �ð Þ ðn > 0Þ
1� 2p0 �ð Þ þ p0 2�ð Þ½ �=p1 �ð Þ ðn ¼ 0Þ

	
:

ð10Þ

We can easily check that they satisfy the normalization
condition

X1
n¼0

�n ¼ 1:

Now, we consider the dry residence time, i.e., the length
of a dry spell separating the occurrence of rain, regarded as
a new random variable T. Then, by definition, �n ¼
Pr T ¼ n�½ �. The probability Pn ¼ Pr T � n�½ � that a dry
spell of duration greater than or equal to T ¼ n� (n > 0)
occurs is obtained by partially summing the �m over all
m � n :

Pn �
X1

m¼n
�m ¼ p0 n�ð Þ � p0 nþ 1ð Þ�½ �f g=p1 �ð Þðn > 0Þ: ð11Þ

Regarding � as infinitesimal, we can reexpress equation
(11) as (prime denotes derivative with respect to T)

Pn ¼ �p00 n�ð Þ�=p1 �ð Þ n > 0ð Þ; ð12Þ

where it is assumed implicitly that p0(T) is differentiable.
However, passage to the continuous limit is conceptually
somewhat subtle. Formally, it involves taking the double
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limit �! 0, n!1, with T ¼ n� held fixed at a finite (non-
zero) value. One would naturally like to consider the proba-
bility density function (pdf) �(T) of T, which is now
regarded as a continuous random variable. In the continu-
ous limit the quantity �n is to be identified with � Tð Þ� ¼
Pr T � T � T þ �½ �, the probability that T assumes values
lying between n� and (n þ 1)�. Recognizing that the nu-
merator in equation (10) is proportional to the second de-
rivative of p0(T), it follows that

� Tð Þ ¼ p000 Tð Þ �=p1 �ð Þ½ �0 T > 0ð Þ; ð13Þ

where [ ]0 denotes the limit of vanishingly small �. The
quantity Pn then goes over to the complimentary cumulative
distribution function (CDF), also called the survival func-
tion, which represents the falloff behavior of the upper tail:

1� � Tð Þ �
Z 1

T
� T 0ð ÞdT 0 ¼ �p00 Tð Þ �=p1 �ð Þ½ �0 T > 0ð Þ: ð14Þ

An aspect of (14) that might appear puzzling at first is the
explicit dependence on the resolution � that survives the lim-
iting procedure. However, a little reflection shows that this is
a necessary consequence of the definition of �n via equation
(9). Imagine downscaling the temporal resolution by setting
�! �0 ¼ �=�; n! n0 ¼ �n, (� ¼ integer > 1), leaving T
unchanged. This scale transformation does not leave �n and
Pn unchanged, indicating that they must depend on both T
and �. The � dependence drops out in the special case in
which p1(�) is proportional to � for small �, yielding an
unambiguous result in the continuous limit. As we shall see
later, this indeed occurs if the rainfall zeroes follow a Pois-
son process. Unfortunately, the Poisson property does not
appear to hold for the rainfall data we have examined. In this
case our heuristic limiting process indicated in equations
(13) and (14) is, strictly speaking, ill defined. We should
point out that the continuous limit is a mathematical abstrac-
tion since in practice the distribution �(T) is only inferred
from a histogram of the discrete finite resolution data.

[15] One can choose to quantify zero-rain intermittence in
terms of �n (or, equivalently, its continuous version �(T))
instead of p0(T) (or its spatial analog p0(L); see section 2.2),
as we have done in this paper. However, our motivation for
considering p0(T) comes from the fact that it is this quantity
that naturally appears if one considers the full pdf of rain
rate f(rT), which is a scale-dependent mixed distribution
with a Dirac � function singularity (‘‘atom’’) at zero [Kundu
and Siddani, 2007]: f rTð Þ ¼ p0 Tð Þ� rTð Þ þ p1 Tð Þg rTð Þ,
where g(rT) is the pdf conditional on nonzero rain.

[16] It is, in principle, possible to characterize the tempo-
ral zeroes solely in terms of �(T), the distribution of the
interdrop intervals T, if a high-resolution measuring device
is available that can register individual raindrops [Laverg-
nat and Golé, 1998]. However, the question arises whether
intermittence is a distinguishable aspect of the temporal
gaps, i.e., whether it can be meaningfully separated from
the inherent discreteness of the rainfall phenomenon at the
scale of individual drops. Clearly, the temporal gaps at the
small end of the scale are to be interpreted as the interdrop
intervals within a rain episode. On the other hand, the large
zero-rain intervals correspond to genuine gaps separating
distinct rain episodes. A central question is whether there is

a clear-cut separation between the two regimes. It is also
important to recognize the interplay between space and
time scales. The distribution of the temporal gaps necessar-
ily depends on the spatial observation area.

[17] One preliminary way to explore the issue is to con-
sider the mean interdrop interval during rainy conditions.
Consider, for example, observations of � ¼ 1 min averaged
precipitation by a rain gauge of cross sectional area a. The
average number of drops striking the gauge per unit time is
Ra=�v, where R � r� is the 1 min averaged rain rate meas-
ured by the gauge and �v is the mean volume of a drop
defined with respect to the corresponding 1 min drop size
distribution function. The quantity �� ¼ �v=Ra can be taken
as a crude measure of the mean interdrop arrival time that
quantifies intrinsic temporal discreteness. For light to mod-
erate rain R � 1 mm h�1, we take the mean drop diameter
to be 	1 mm [Tokay and Short, 1996]. For a rain gauge of
collection area a � 300 cm2 we obtain the estimate
�� � 0:06s. Typically for a disdrometer, a � 50 cm2, so
that �� � 0:4s. Since �� << � in each case, one can argue
that a zero of rainfall at scale � is, in fact, a manifestation
of intermittence. Representing rain mathematically as a
continuous random process at this scale is justified even at
the small spatial scales of a rain gauge or disdrometer.

2.2. Spatial Statistics of Dry and Wet Areas in Radar
Data

[18] In a similar manner one can set up a framework for
studying intermittence in spatially averaged radar rainfall
data. A radar precipitation data set typically consists of a
sequence of radar scans, each gridded at a certain spatial re-
solution l. Radar-retrieved rain rates near the surface have
an implicit vertical averaging or, equivalently, averaging
over a time scale determined by the mean vertical fall speed
of raindrops. Each image can be regarded as an array of
l 
 l pixels in which the average (near-instantaneous) rain
rate is specified. The rain field at the pixel scale can be
‘‘coarse grained’’ by averaging the rain rate over n 
 n adja-
cent pixels to obtain a new rain field at scale L ¼ nl. Let rL
denote the average rain rate in an L 
 L square grid box
AL(x) centered at the point x at time t. One can then analo-
gously introduce a rain indicator field �L : �L(x) equal to 1
when rL > 0 and 0 when rL ¼ 0 and define quantities such
as the probability of zero rain p0(L) ¼ Pr[rL ¼ 0] in a box
AL(x), the joint probability of zero rain p00(L ; s) ¼ Pr[rL ¼
0, r0L ¼ 0] in a pair of boxes AL(x) and AL(x0) separated by a
distance s, and so on. The formulation of section 2.1 applies
to analogous spatial quantities as well under the assumption
of homogeneity and isotropy of the spatial statistics.

2.3. Scale Dependence of the Zero-Rain Probability
[19] The coarse-graining process described in section 2.2

defines a unique deterministic way of carrying out an
upscaling of the rain field as well as its associated indicator
field. Downscaling, i.e., going from a coarser to a finer re-
solution, is obviously not unique since information about
the structure of the precipitation field is destroyed by aver-
aging. Rather, it can only be defined in a probabilistic man-
ner so that certain key statistical properties of the rain field
are preserved under its action.

[20] The zero-rain probabilities p0(T) and p0(L) (or,
equivalently, the probabilities of nonzero rain p1(T) and
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p1(L)) must necessarily depend on the integration scale. In
fact, it is easy to see that p1(T) and p1(L) are monotonically
increasing functions of their arguments. Consider, for
example, aggregating a rain rate time series through a scale
transformation T ! T 0¼ �T (� > 1). When averaged to-
gether, a rainy segment and a nonrainy segment will result
in a longer segment with nonzero rain, and consequently,
p1(�T) > p1(T) when � > 1, so that p1(T) is a monotoni-
cally increasing function of T. One expects p1(T) to
approach unity (i.e., p0(T) ! 0) as T ! 1 (since a rain
gauge ‘‘must experience rain sometime’’). If we surmise
that gaps in rainfall time series exists at all scales, then it
would be natural to also expect that p1(T) ! 0 as T ! 0.
However, as we shall find later in section 5, the data at the
available resolution suggest that at small scales, p1(T) tends
to a small but nonzero value. These observations apply to
p1(L) in the spatial case as well. One additional topological
feature in that case is the result of the two-dimensional ge-
ometry of rain maps: one can have zeroes as ‘‘voids’’ em-
bedded within a rainy area as well as open areas separating
patches of rain. The upscaling of the rain indicator field can
be elegantly formulated as a suitable morphological trans-
formation of rain images [Kumar and Foufoula-Georgiou,
1994]. The size distribution of the zero-rain voids as a func-
tion of scale can then be expressed in terms of the outcome
of such a transformation. However, the reverse operation of
downscaling is inherently undefined unless augmented by
an additional probabilistic element: a realistic model of the
spatial distribution of voids at different scales, i.e., quanti-
ties such as p00(L ; s). A downscaling algorithm needs to
make specific statistical assumptions in order to generate an
ensemble of downscaled fields compatible with a given rain
field at coarse resolution. We refrain from pursuing this
problem further in this paper and restrict ourselves simply
to the search for a realistic form for the marginal distribu-
tions p0(T) and p0(L) on the basis of empirical evidence.

[21] It is possible to derive a simple analytic expression
for p0(T) by making suitable probabilistic assumptions
regarding rainfall intermittence. We describe such a model
in section 3.

3. A Simple Probabilistic Model
[22] Consider the probability of occurrence of precipita-

tion during a small time period � conditioned on a previous
dry period of duration of at least T. It is expressed by the
conditional probability

	01 T ; �ð Þ � Pr �T �ð Þ ¼ 1 �T 0ð Þ ¼ 0j½ � ¼ p01 T ; �ð Þ=p0 Tð Þ: ð15Þ

We hypothesize that 	01 T ; �ð Þ depends on T according to a
simple power law form,

	01 T ; �ð Þ ¼ CT
�1�þ o �ð Þ ð16Þ

as �! 0, where C is a constant. Validity of the hypothesis
will be checked a posteriori in section 5 by a detailed data
analysis to verify its main consequence, equation (18). We
shall find that the fit to observational data yields 
 < 1,
implying that the probability 	01 T ; �ð Þ decreases with the
increase of T. Physically, this indicates a sort of ‘‘persist-
ence of drought’’: the longer a dry spell persists, the less

likely it is to end. A proper justification of equation (16) is
likely rooted in detailed microphysics of the precipitation
process, which is far beyond the scope of this paper.

[23] Since 	00 T ; �ð Þ ¼ 1� 	01 T ; �ð Þ ¼ p00 T ; �ð Þ=p0 Tð Þ,
application of equation (7) yields a functional equation for
the zero-rain probability p0(T) :

p0 T þ �ð Þ ¼ p0 Tð Þ 1� CT
�1�� o �ð Þ
� �

:

The limit �! 0 results in the differential equation

d ln p0 Tð Þ
dT

¼ �CT
�1: ð17Þ

Integrating with the initial condition p0(T)! �0 as T! 0,
one immediately obtains the solution

p0 Tð Þ ¼ �0 exp � T=T0ð Þ
½ �; ð18Þ

provided the constant C is identified via the relation
C ¼ 
T�
0 . The type of function defined by equation (18)
is often referred to as a (Kohlrausch-Williams-Watts)
stretched exponential function. In probability theory it usu-
ally arises in the context of the Weibull distribution, a mem-
ber of the family of generalized extreme value distributions.

[24] The function p0(T) determined by our model is a
nonanalytic function of T : the origin T ¼ 0 is, in fact, an
essential singularity of p0(T). It should be recognized that
the limiting behavior of p0(T) as T ! 0 is experimentally
inaccessible. As pointed out in section 2.1, although mathe-
matically one can let T become arbitrarily small, in prac-
tice, �, the smallest possible value of T, is nonzero and is
dictated by the finite temporal resolution of the measure-
ment. Moreover, the intrinsic discreteness of rain at the
scale of individual drops ultimately prevents � from becom-
ing arbitrarily small. The limit T ! 0 is thus an idealized
limit that cannot be reached in reality. Note that the value
of the multiplicative constant �0, which, of course, cannot
exceed unity, is not determined by this argument.

[25] It is worth noting that when 
 = 1, 	01 T ; �ð Þ
depends on T, the duration of the prior dry period. Clearly,
this is a reflection of the non-Markovian nature of the pre-
cipitation process. To see this explicitly, consider a dry pe-
riod [0, T] of length T ¼ n� followed by a wet period �.
(Recall that a Markov process is one in which, given the
present state, the future state is independent of the past.)
Markov property of the sequence {��

(j)} implies

	01 n�; �ð Þ ¼ Pr � nþ1ð Þ
� ¼ 1 � nð Þ

� ¼ 0; . . . ; �
2ð Þ
� ¼ 0; � 1ð Þ

� ¼ 0
���h i

¼ Pr � nþ1ð Þ
� ¼ 1 � nð Þ

� ¼ 0
���h i

¼ 	01 �; �ð Þ

for all n. But in view of equation (16) this is possible if and
only if 
 ¼ 1. Incidentally, the special case �0 ¼ 1, 
 ¼ 1
would naturally arise if the statistics of ‘‘events’’ corre-
sponding to occurrence of rain (�� ¼ 1) during a small time
interval � with probability p1(�) ¼ �/T0 could be modeled
in terms of a simple Poisson process [see, e.g., Ross, 1996]
with the quantity � ¼ 1/T0 identified as the rate parameter.
A Poisson process is memoryless since �(� ;�) ¼ 0; that is,
rainfall indicators in two consecutive time intervals � are
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independent. In the general case, the autocorrelation �(T ; �)
is nonzero, signaling the presence of memory. The asymp-
totic falloff rate of �(T ; �) for large � dictates the nature of
the memory [Beran, 1994]. A long memory is characterized
by the condition that the sum Sn �

P1
m¼1 � n�; m�ð Þ is di-

vergent. Typically, power law decay in � indicates long
memory since it satisfies this condition. On the other hand,
for an exponentially decaying �(T ; �), as is the case for
the familiar Markov and autoregressive moving average
processes, the quantity Sn converges to a finite value, and
the process is said to have short memory. We have not
quantitatively explored the exact falloff property of �(T ; �)
in the present work and therefore cannot draw any firm con-
clusion regarding how the memory in rainfall should be
classified. However, if the leading falloff behavior is a
stretched exponential, as seems likely to be the case in view
of our results in section 5, then standard convergence tests
point toward a convergent Sn and thus a short-range
memory.

[26] For area-averaged rain rate rL estimated from radar
data an expression for the probability of zero rain p0(L) can
be derived in a form similar to equation (18) by simply
extending the previous arguments to two dimensions. We
obtain

p0 Lð Þ ¼ �00 exp � L=L0ð Þ

0

h i
; ð19Þ

where we have introduced a new set of parameters, �00, 
0,
and L0. The special case �00 ¼ 1, 
0 ¼ 2 considered by
Gupta and Waymire [1993] arises if the zeroes in contigu-

ous grid boxes are independent. It corresponds to the Pois-
son case �0 ¼ 1, 
 ¼ 1 noted earlier in this section.

[27] The zero-rain probabilities p0(T) and p0(L) can be
estimated from precipitation data. These estimates at differ-
ent scales allow us to directly test the model prediction. In
section 4 we describe an empirical study that examines the
scale dependence of p0(T) and p0(L) on the temporal and
spatial scales from rain gauge and radar observations of
rainfall.

4. Data Analysis
[28] The temporal statistics of dry and wet periods were

obtained from a 10 year long (1997–2006) rain gauge data
set (TRMM standard product 2A-56) collected as part of
the TRMM GV program. The data consist of estimates of 1
min rainfall accumulations from a network of 300þ tipping
bucket (TB) rain gauges located throughout Florida (Figure
1), some of which are within the Melbourne radar field
of view (FOV). The data were divided into 3 month long
seasons: spring (March–May), summer (June–August),
autumn (September–November), and winter (December–
February). The time series from each gauge was subdivided
into time intervals of length T ranging from 1 min to 5
days. The probability of encountering a dry period of length
T, namely, p0(T), was estimated as the ratio of the number
of intervals with zero rain to the total number of intervals
in the time series for all the available gauges during that pe-
riod. In order to get a reasonably large sample we decided
to restrict the upper limit of T to about 5 days. Our 3 month
long data series were not single continuous data streams

Figure 1. Map showing the locations of the tipping bucket rain gauges in Florida operated as part of
the Tropical Rainfall Measuring Mission (TRMM) ground validation program.
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but were assembled from monthly data sets with occasional
missing data, making the identification of genuine long dry
intervals ambiguous. For each season, only those gauges
that had data for all 3 months were considered in the calcula-
tions. In a straightforward partitioning of the time series into
disjoint intervals the number of samples decreases in inverse
proportion to the value of T, leading to a progressively larger
sampling error in the estimate of p0(T) with increasing T. In
order to address this issue to some extent, for increasing val-
ues of T we oversampled the data by considering staggered
overlapping intervals. One should note, however, that rain-
fall is correlated in time, and consequently, the sample count
greatly overestimates the ‘‘effective’’ number of samples in
the data that can be regarded as independent.

[29] There is a complicating aspect of TB rain gauge
measurements that makes the statistics at small T (less than
about 7–10 min) somewhat unreliable [Habib et al., 2001].
In reality, the TB gauge data consist of a sequence of tip
times when a certain fixed amount of rain accumulation
occurs, causing the bucket to tip. The time series of rain
rates is obtained by interpolation of the raw tip data to
equal time intervals of 1 min using a cubic spline algorithm
[Wang et al., 2008]. This interpolation method leads to
approximations when isolated single and double tips occur
at low rain rates. Hence, the estimates of p0(T) at small
scales can conceivably be affected by the artifacts of this
algorithm.

[30] In order to explore the behavior of p0(T) at small T
with greater confidence, we also examined precipitation
data from laser disdrometers [Loffler-Mang and Joss,
2000]. These devices estimate rain rate from direct optical
detection of raindrops by a sensor and are capable of pro-
viding accurate rain rates at time scales of order 1 min and
higher. We utilize the rainfall time series from a particle
size velocity (PARSIVEL) optical disdrometer for three
seasons (spring, summer, and autumn), collected during an
experimental campaign in 2004 at the NASA Wallops
Flight Facility located in Wallops Island, Virginia. The ex-
perimental resolution attained in the disdrometer data is
1 min. Even though the laser disdrometer provides esti-
mates of precipitation during snow, the winter season data
were not used in the present analysis.

[31] Our spatial statistics analysis is based on two
gridded radar precipitation data sets. One of them is a rela-
tively small one, only a little over 3 months long (Novem-
ber 1992 to February 1993), consisting of radar images
from two shipborne Doppler radars during the Tropical
Ocean Global Atmosphere–Coupled Ocean Atmosphere
Response Experiment (TOGA-COARE) [Short et al.,
1997] that was studied in an earlier work [Kundu and Bell,
2003]. The other one is a large 6 year long data set extend-
ing from 1999 to 2004 constructed from the images from a
ground-based radar located at the TRMM ground validation
site near Melbourne, Florida (80.65�W, 28.11�N), made
publicly available by NASA (TRMM standard product
2A-53). The TOGA-COARE data allow us to examine pre-
cipitation in a purely oceanic environment. Each image
from this data set is a 278 
 278 array representing a square
grid assembled from the two partially overlapping circular
radar FOVs (labeled TOGA and MIT). A typical Melbourne
radar (MELB) image consists of a 151 
 151 array contain-
ing rain rate data from a single circular radar FOV. The

spatial grid resolution is 2 km in each case. In order to
reduce the uncertainties of radar attenuation with distance,
the statistics were collected from the 128 
 128 km2 areas
(i.e., 64 
 64 pixel arrays) centered at the radar location
subdivided into L 
 L squares, with L ¼ 2, 4, 8, . . . , 128
km. Only those boxes in a rain map were used for which at
least 95% of the box had valid data. This was done in order
to exclude boxes, especially those at the smaller scales of 4,
8, and 16 km located near the center, which occasionally
suffered from data dropout because of ground clutter.

[32] The conversion of a rain field to a binary indicator
field implicitly assumes a threshold applied to define rainfall
zeroes for both temporal and spatial data at the finest resolu-
tion scale. The estimates of zero-rain probabilities p0(T) and
p0(L) are therefore somewhat sensitive to the choice of this
threshold. For the purpose of this work we simply accept
the thresholds that were applied in defining the TRMM
standard products and the other data sets. It is possible to
relax them and explore the threshold dependence of the
zero-rain probabilities, something we do not pursue here.

5. Results and Discussion
5.1. Temporal Intermittence

[33] Our central finding is that the zero-rain probabilities
p0(T) estimated from rain gauge data are well described by
equation (18), namely,

p0 Tð Þ ¼ �0 exp � T=T0ð Þ
½ �;

over a remarkably large range of T between 1 min and sev-
eral days, where T0 is a characteristic time scale and �0 and

 are dimensionless parameters. Note that for large T,
equation (18) predicts that p0(T) ! 0, p1(T) ! 1, as
expected. On the other hand, for sufficiently small T, we
have the approximation

p1 Tð Þ � 1� �0ð Þ þ �0 T=T0ð Þ
: ð20Þ

Clearly, the parameter �0 can be interpreted as the limit
p0(T! 0þ) and must lie in the range 0 < �0 � 1. If �0 ¼
1, �ln p0(T) has a simple power law dependence on T and
so does p1(T) at small T, p1(T) ! T
, consistent with a
simple fractal picture of the support of the rain rate field.
When �0 < 1, for timescales T << 1� �0ð Þ1=
T0, p1(T)
approaches a small but nonzero value 1 � �0, implying
that when resolved at sufficiently small scales, the temporal
support of precipitation is not a set of measure zero as it
would be for a true fractal set. There is still an approximate
power law behavior for the wet fraction p1(T) in our model
but only for timescales T within the intermediate range

1� �0ð Þ1=
T0 << T << T0: ð21Þ

[34] In Figure 2 we show representative sample plots of
p1(T) versus T for several seasons, illustrating the quality of
fit to equation (18). In fitting the data the parameter �0 was
first selected by trial and error for overall best fit, including
the small T regime, and the remaining two parameters T0
and 
 were then fitted by the usual equal weighted least
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squares method. (Alternatively, one could have estimated
the parameters from a least squares fit to the �ln p0(T) ver-
sus T plot. This would have affected the estimates by mak-
ing the fit disproportionately sensitive to data in the large T
regime. However, these data points are determined from
progressively smaller samples and therefore suffer from
potentially larger finite sample effect. Fitting the p1(T) ver-
sus T plot effectively assigns less weight to the large T
regime.) From Figure 2 it is apparent that there is a depar-
ture from power law dependence at small T less than about

30 min. This signals the presence of an ‘‘inner scale’’ for
the breakdown of the temporal fractal structure of rain. For
the Florida TB gauge data the estimated best fit values of
�0 range between 0.965 and 0.991, with mean and standard
error of 0.980 6 0.001. The time scale T0 denotes the value
of T for which the probability p0(T) drops to �0/e ; its value
is found to exhibit large seasonal variations, being in the
range of 1700–3000 min during summer, 3400–12,200 min
during spring, 2600–5500 min during autumn, and 4000–
7000 min during winter. The index 
 was found to lie in

Figure 2. Plots of the probability of nonzero rain p1(T) at different temporal scales T estimated from
the Florida tipping bucket rain gauge data (TRMM standard product 2A-56) superimposed on the
curves predicted from the model formula equation (18) for four seasons spanning the period December
1999 to November 2000 with the parameters listed in Table 1: (a) winter (December 1999 to February
2000), (b) spring (March to May 2000), (c) summer (June to August 2000) and (d) autumn (September
to November 2000). The fits to the model for all the other years analyzed (not shown) are of compara-
ble quality.
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the narrow range of 0.66–0.88, with mean and standard
error of 0.79 6 0.01 for the entire Florida TB gauge data
set. The central values for each season are listed in Table 1.
The disdrometer data from the NASA Wallops Flight Facil-
ity in Virginia also yield estimates that are broadly consist-
ent with these results (Figure 3). For the three seasons during
2004, we obtain estimates of �0 in the range of 0.941–0.966,

 in the range of 0.59–0.71, and the time scale T0 in the range
of 3200–9700 min. The details are given in Table 2. Intui-
tively, the time scale T0 represents the characteristic time
between two consecutive storm events. As we have seen in
section 3, the fact that 
= 1 indicates the presence of mem-
ory in the rainfall process. We should also point out that the
parameter estimation is dependent on the rainfall detection
threshold and is therefore device sensitive.

[35] An approximate power law scaling p1(T) 	 Tc in
rain gauge data has been known for some time [Hubert and
Carbonnel, 1989; Olsson et al., 1993; Schmitt et al.,
1998], with c ¼ 1 � D being identified with the codimen-
sion of the fractal temporal support of the rainfall events.
In particular, Schmitt et al. [1998] report a value c � 0.45
for a 29 year long time series recorded at Uccle (Belgium)
with a siphon pluviograph between 1 January 1967 and 31
December 1995 for time scales T between 10 min (the sam-
pling time of the recording instrument) and about 3.5 days.
In comparing the value of c with our 
 it should be remem-
bered, however, that they do not quite represent the same
quantity. In our model, power law scaling holds only in the

Table 1. Model Parameters for the Florida TB Gauge Data

Seasona �0 
 T0 (min)

MAM 1997 0.975 0.824 3420
JJA 1997 0.978 0.882 1995
SON 1997 0.985 0.768 4639
DJF 1998 0.967 0.834 3992
MAM 1998 0.985 0.742 12,174
JJA 1998 0.982 0.815 3026
SON 1998 0.972 0.728 3711
DJF 1999 0.989 0.863 6229
MAM 1999 0.990 0.797 7130
JJA 1999 0.972 0.817 2169
SON 1999 0.972 0.662 3359
DJF 2000 0.987 0.812 7187
MAM 2000 0.984 0.835 4899
JJA 2000 0.982 0.844 2666
SON 2000 0.980 0.705 5275
DJF 2001 0.991 0.850 7455
MAM 2001 0.985 0.777 9091
JJA 2001 0.972 0.805 2047
SON 2001 0.965 0.682 2578
DJF 2002 0.981 0.810 5027
MAM 2002 0.988 0.806 7073
JJA 2002 0.970 0.809 1774
SON 2002 0.983 0.810 3637
DJF 2003 0.980 0.863 4828
MAM 2003 0.981 0.765 4478
JJA 2003 0.973 0.818 1705
SON 2003 0.984 0.715 4497
DJF 2004 0.975 0.843 5181
MAM 2004 0.990 0.711 11,942
JJA 2004 0.977 0.830 1823
SON 2004 0.971 0.795 3264
DJF 2005 0.983 0.746 7032
MAM 2005 0.975 0.838 5126
JJA 2005 0.974 0.761 2196
SON 2005 0.980 0.656 3862
DJF 2006 0.983 0.821 6230
MAM 2006 0.988 0.844 6276
JJA 2006 0.976 0.795 2321
SON 2006 0.989 0.757 5493

aMAM, March–May; JJA, June–August; SON, September–November;
DJF, December–February.

Figure 3. Plots of p1(T) as a function of time scale T from the precipitation data from an optical dis-
drometer (PARSIVEL 4) at NASA Wallops Flight Facility (courtesy of Ali Tokay) for three seasons, (a)
spring (March–May), (b) summer (June–August), and (c) autumn (September–November) during 2004.

Table 2. Model Parameters for the NASA Wallops Flight Facility
Data

Season �0 
 T0 (min)

MAM 2004 0.947 0.712 3274
JJA 2004 0.941 0.714 3232
SON 2004 0.966 0.594 9675
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limited range of time scales determined by the inequality
(21) and does not extend to arbitrarily small T even in prin-
ciple. The lower bound of the range (the ‘‘inner scale’’
referred to above) also exhibits some seasonality that arises
mainly from the seasonal dependence of T0. From the pa-
rameter values for the Florida TB gauge data given in Ta-
ble 1 we find that this inner scale lies in the range 9.9–38.0
min, with mean and standard error of 21.3 6 1.3 min, for
the summer and fall seasons and 18.4–66.8 min, with mean
and standard error of 38.9 6 3.2 min, for the winter and
spring seasons. For the single disdrometer data set from the
NASA Wallops Flight Facility whose parameters are listed
in Table 2, the lower bound lies in the range 32.6–61.4
min, which is reasonably consistent with the range dis-
played by the Florida data.

[36] Sometimes a distinction is made between an ‘‘inter-
nal’’ and an ‘‘external’’ intermittency [see, e.g., Bernardara
et al., 2007]. The former is meant to describe the frequency
of dry intervals within a rain event, while the latter is meant
to represent the frequency of dry periods between rain
events. One introduces a time scale Tm separating the two
regimes that is reasonably expected to depend upon the cli-
matic conditions in the geographical area considered. Ber-
nardara et al. [2007] have discussed a rainfall model based
on statistics from two long rainfall time series from Florence
(1962–1986, 5 min resolution) and Milan, Italy (1988–2000,
1 h resolution), divided into 1 year long segments. Assum-
ing Tm to be equal to 6 h, they describe the CDF of the resi-
dence times of dry spells �(T) by a generalized Pareto
distribution [Pickands, 1975] for T > Tm with a power law
falloff of the right tail. (This corresponds to a continuous ver-
sion of our Pn.) They give an asymptotic falloff of the sur-
vival function 1 � �ð Þ 	 T � Tmð Þ�� � � 4ð Þ for values of
T up to about 70 and 35 days for the Florence and Milan
data sets, respectively. From equation (14) it follows that in
our model the survival function has the form

1� � Tð Þ �
Z 1

T
� T 0ð ÞdT 0 	 constT
�1exp � T=T0ð Þ
½ � ð22Þ

away from the origin. This is quite different from the power
law falloff found by Bernardara et al. [2007]. It should be
noted that the apparent failure of the normalization of the
pdf �(T) when 
 < 1 because of the singularity of p00 Tð Þ at
T ¼ 0 does not signal any serious conceptual problem. It
merely reflects an artifact caused by the limitation of our
continuum approximation in the neighborhood of the ori-
gin, as evidenced by the special form of �n in equation
(10), which is regular at n ¼ 0. We have tested the form of
the distribution �(T) for the four seasons of 2000 depicted
in Figure 2 by fitting the functional dependence on T to the
form (22) with the parameters 
 and T0 listed in Table 1.
The multiplicative factor was estimated by least squares fit.
The observed and model-predicted forms of the survival
function 1 � �(T) are shown in Figure 4. The plots show
that for time scales T greater than about 50–100 min, the T
dependence expressed by equation (22), rather than the
power law form suggested by Bernardara et al. [2007], fits
the data quite well. Note that in Figure 4 we have extended
the range of the residence time beyond the time scale con-
sidered in Figure 2. The additional structure (‘‘shoulder’’) of
p00 Tð Þ noticeable at T around 100 min is less conspicuous in

the p1(T) versus T plots of Figure 2 (since integration tends
to smooth out variations) and cannot be described by our
model. It remains to be seen whether this is a general feature
of intermittence. The disagreement at small T is at least
partly attributed to the fact that the singularity in equation
(22) at small T is an artifact of the passage to the continuous
limit. On the other hand, as the listing of T0 in Table 1
clearly shows, the rainfall climate in Florida has consider-
able seasonal dependence. Because of this seasonal varia-
tion it is clearly untenable to regard the statistics of a time
series longer than about 90 days as stationary, and the valid-
ity of the distribution for T larger than about 15–30 days is
therefore questionable. The issue of temporal stationarity
merits a further in-depth study.

[37] In an interesting paper, Lavergnat and Golé [1998]
studied temporal intermittence directly in terms of the dis-
tribution of the interdrop arrival time. Backed by data from
a long time series of high-resolution observation of individ-
ual drops by a single optical disdrometer, they proposed to
consider the drop time series as a renewal process. They
showed that the distribution of the interdrop time interval T
can be fit over a range of time scales spanning 9 decades by
what they call a complete bi-Pareto model, a six-parameter
probability distribution that arises as a mixture of an expo-
nential and a gamma distribution. The survival function in
the model has the form

1� � Tð Þ ¼ e��0� 1� qð Þ 1þ T=�1ð Þ�� þ q 1þ T=�2ð Þ��
h i

:

From a least squares fit to the histogram of drop counts,
Lavergnat and Golé estimate the parameters to be �1 ¼
0.133 s, �2 ¼ 1.22 s, � ¼ 1.35, � ¼ 0.68, q ¼ 0.011, and 1/
�0 ¼ 105 s. They interpret the first component as coming
from the temporal gaps within a rainy episode and the sec-
ond component from the temporal spacing between distinct
episodes that accounts for the longer time intervals. This
interpretation is obscured by the fact that the parameters �1
and �2 differ by less than an order of magnitude, so that
there is no clear separation between the two terms. Intro-
duction of the short time scales represented by �1 and �2
serves to regularize the function at the origin. The pdf
peaks at about 0.2 s, which is not too different from our
estimates of the mean interdrop interval �� obtained in sec-
tion 2. The asymptotic form of the tail of the CDF for large
T is to be compared to the form given by equation (22) in
our model. While the ability of the model of Lavergnat and
Golé to fit the data over a 9 decade time scale is indeed im-
pressive, the large number of adjustable parameters seems
a rather steep price to pay. They also indicated that their
parameters corresponding to the shorter time scale compo-
nent may depend on the collection area a. Also, there was a
considerable amount of noise in the data (their Figure 3a)
at time scales larger than about 10 min. There is no analog
to the short time scales �1 and �2 in our model, which is
validated by data over a much smaller range of scales
between 1 and 104 min. The single constant �0 subsumes
the unknown behavior of the temporal intermittence at the
sub-1 min scale. It may also plausibly depend on the collec-
tion area a.

[38] As another caveat, let us add that we have also im-
plicitly assumed spatial homogeneity of rainfall statistics
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over all of Florida so that all the gauges could be pooled
together. So far, we are unaware of any evidence of major
regional dependence of the rain statistics in Florida, but this
should be investigated further. For our present purpose, it is
sufficient to test the spatial homogeneity of the rainfall indi-
cator field. We here present evidence of spatial homogeneity
for rain at the smallest accessible time scale � ¼ 1 min. Let
p1j denote the probability of nonzero rain for a particular
gauge j (j ¼ 1, 2, . . . , m) at the temporal scale �. The quan-

tity p1(�) is the ‘‘true’’ value of the probability as estimated
from all the gauges. We undersample the time series ��(t)
by choosing the samples to be sufficiently far apart in time
so as to minimize the influence of the time correlation. This
allows us to effectively treat them as independent Bernoulli
trials. It appears that for temporal resolution � ¼ 1 min,
choosing samples with time separation � ¼ 60 min is
adequate. The test of spatial homogeneity can now be for-
mulated as a multiple comparison of a set of binomial

Figure 4. Plots of the survival function corresponding to the distribution of the dry residence time T
estimated from the Florida tipping bucket rain gauge data (TRMM standard product 2A-56) superim-
posed on the curves predicted from the model formula equation (22) with the parameters 
 and T0 taken
from Table 1: (a) winter (December 1999 to February 2000), (b) spring (March–May 2000), (c) summer
(June–August 2000), and (d) autumn (September–November 2000).
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proportions since independent drawings of the rain indicator
obey the binomial distribution. We have carried out statistical
tests of the null hypotheses H0j : p1j ¼ p1(�) (j ¼ 1, 2, . . . ,
m) using standard methods of multiple comparison (see Ap-
pendix B for details) for the four seasons in 2000 that are
depicted in Figure 2. If a sufficiently large number of
hypotheses H0j is rejected out of a total of m, it is deemed
as evidence against spatial homogeneity. We used two dis-
tinct methods of multiple testing, the Holm-Bonferroni
(HB) test [Holm, 1979] based on the family-wise error rate
(FWER) �� and the Benjamini-Hochberg (BH) test [Benja-
mini and Hochberg, 1995] based on the false discovery rate
(FDR) �. The first aims to control the FWER, i.e., the over-
all Type I error rate (false positive) for the gauge system as
a whole. A type 1 error occurs when H0j is rejected even
when it is true. The BH test, on the other hand, fixes the ac-
ceptable level of FDR, which is the average proportion of
rejected hypotheses H0j that are actually true. Our main rea-
son for choosing these particular tests among the many that
are available is that they apply to the case when the tests are
mutually dependent. Because of (generally positive) spatial
correlation among the gauges, the null hypotheses H0j are
also expected to be dependent.

[39] The results presented in Table 3 show the total num-
ber of gauges tested along with the numbers rejected in each
case, with the FWER �� and the FDR � each set at 0.05. We
also carried out the tests by resampling the series at smaller
time separations � ranging between 20 and 60 min and
found that the number of gauges rejected by either method
goes down steadily. We attribute this to the decreasing
effect of time correlation until the samples presumably
become nearly independent. We did not extend the range of
� beyond 60 min as this reduces the number of samples to
the point that the normal approximation to the binomial dis-
tribution becomes inapplicable for more and more gauges.
We notice that, in general, there are fewer rejections arising
from the FWER method than the FDR method. We attribute
this to the greater statistical power of the FDR-based test
compared to the FWER-based test. The statistical power of
a test is defined as (1 � �) where � is the type 2 error rate.
A type 2 error (false negative) occurs when a null hypothe-
sis H0j is accepted even when it is actually false, a possibil-
ity that we consider to be more insidious in the context of
our problem. So it is possible that some of the H0j that are
accepted by the FWER criterion are actually false and are
correctly rejected by the FDR criterion. Fixing the value of �
at 0.05 means that, on average, only 5% of the null hypothe-
ses rejected by the FDR-based test (about 9–10 gauges for
our data sets) are actually true. Thus, we prefer the FDR
method to the FWER method. An inspection of Table 3

shows the assumption of spatial homogeneity to be a reason-
able one. Moreover, our approach provides a diagnostic test
of spatial homogeneity separately for each individual gauge.
Future work can proceed with isolating the suspected gauges
and examining the data from them for the probable cause of
inhomogeneity.

5.2. Spatial Intermittence
[40] A similar analysis of the gridded radar data shows

that formula (19) represents the scale dependence of p0(L)
fairly well over the range of spatial scales studied, namely,
L ¼ 2–128 km. As in the temporal case, for the Melbourne
radar data the parameters �00, 
0, and L0 are estimated for 3
month long seasons during the 6 year period 1999–2004.
The results are listed in Table 4. The estimated best fit val-
ues of �00 range between 0.969 and 0.994, with mean and
standard error 0.983 6 0.001. The exponent 
0 lies in the
range 0.85–1.24, with mean and standard error 1.04 6 0.02.
We notice that 
0 is substantially smaller than the critical
value 2, indicating ‘‘persistence of drought’’ in the spatial
dependence as well. Sample plots of p1(L) versus L illus-
trating the quality of the fit are exhibited in Figure 5.
Unlike in the temporal case, the asymptotic behavior at
small spatial scales implied by equation (19) is barely dis-
cernable in Figure 5. However, the recently available
higher-resolution radar data may allow a more decisive test
of this feature in the near future. Again, there seems to be
some seasonal dependence in the length parameter L0 for
the Melbourne radar data: the values obtained for the win-
ter and spring seasons are generally larger than for the
summer and autumn seasons. Plots for the TOGA-COARE
data are shown in Figure 6. Despite the smaller size of the
data set the quality of the fit to equation (19) is excellent.
The parameters �00, 
0, and L0 for the six data subsets are
listed in Table 5. The values of the length-scale parameter
L0 are much smaller than for the Melbourne radar data,
indicating widespread rain in the TOGA-COARE area.

Table 3. Results of Spatial Homogeneity Testing

Season
Total Gauges

m

Null Hypotheses Rejected

Holm-Bonferroni
Test

Benjamini-Hochberg
Test

DJF 2000 189 17 35
MAM 2000 180 14 43
JJA 2000 195 10 19
SON 2000 184 16 27

Table 4. Model Parameters for the Melbourne Radar Data

Season �00 
0 L0 (km)

MAM 1999 0.989 1.026 418.2
JJA 1999 0.981 1.111 144.0
SON 1999 0.981 0.948 149.9
DJF 2000 0.982 1.073 294.4
MAM 2000 0.991 1.020 358.3
JJA 2000 0.988 1.138 167.5
SON 2000 0.986 1.040 219.8
DJF 2001 0.992 1.126 359.5
MAM 2001 0.984 0.906 397.4
JJA 2001 0.980 1.027 157.0
SON 2001 0.975 1.067 130.3
DJF 2002 0.976 0.965 306.7
MAM 2002 0.991 1.236 243.3
JJA 2002 0.976 0.995 135.1
SON 2002 0.988 1.118 176.6
DJF 2003 0.976 0.845 523.5
MAM 2003 0.984 1.049 254.1
JJA 2003 0.978 1.027 153.1
SON 2003 0.985 1.064 163.2
DJF 2004 0.972 0.928 406.9
MAM 2004 0.994 1.039 358.5
JJA 2004 0.984 1.040 173.2
SON 2004 0.969 1.039 157.0
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6. Concluding Remarks
[41] In this paper we have explored the phenomenon of

intermittence in space-time rainfall. From empirical analy-
ses of rain gauge and radar data we have obtained simple
formulas for the probabilities of occurrence of zero rain,
p0(T) and p0(L), in time- and area-averaged precipitation
data. We have also presented a probabilistic model of rain-
fall intermittence that leads to a simple explanation of the
empirical formula suggested by data. The non-Markovian
nature of the model suggests the presence of memory in the

stochastic process underlying precipitation. The phenom-
enon of persistence of drought implied in the observed
stretched exponential behavior of the zero-rain probability
begs for a physical explanation. It will be very interesting
to see if it can be understood in terms of the underlying
physical mechanism of the formation and evolution of the
rainfall process.

[42] In section 2.1 we raised the question whether inter-
mittence is an aspect of the temporal gaps distinguishable
from inherent temporal discreteness. Our results show that

Figure 5. Plots of p1(L) for the Melbourne radar data (TRMM standard product 2A-53) as a function
of spatial averaging scale L for four seasons spanning the period December 2002 to November 2003
with the parameters listed in Table 4: (a) winter (December 2002 to February 2003), (b) spring (March–
May 2003), (c) summer (June–August 2003) and (d) autumn (September–November 2003). The fits to
the model for all the other years analyzed (not shown) are of comparable quality.
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over a large range of time scales the answer is in the nega-
tive, except possibly for the additional structure seen in
Figure 4. This feature, if it is a general one, may signify a
demarcation between two distinct regimes. The only time
scale present in our formula is the quantity T0, which
can be physically interpreted as the time scale of the dry
period between two separate storm events. Of course, our
work is unable to reveal the presence of very short time
scales, if any, unlike the investigations of Lavergnat and
Golé.

[43] The zero-rain probability is only one particular as-
pect of the mixed distribution governing the space-time
distribution of rain that exhibits dependence on the averag-
ing scales. Moreover, in order to fully quantify the spatio-
temporal structure of rain it is not adequate to just specify
the marginal distribution. Rather, one needs the joint prob-
ability distribution of rain at two different space-time
points, which is also expected to exhibit nontrivial scale
dependence. The intermittence is then more fully charac-
terized by the joint probability of zero rain, i.e., quantities
such as p00(T ; �) introduced in section 2. It will be inter-

esting to see whether the empirical behavior of such quan-
tities can be explained in terms of simple model stochastic
processes.

Appendix A: Formula for the Residence Time �n

[44] The probability of occurrence of a dry spell of dura-
tion T ¼ n� is given by the conditional probability

�n¼
Pr �ðnþ1Þ ¼1; �ðnÞ ¼0; ... ; �ð1Þ ¼0 �ð0Þ ¼1

��� �
; n>0

Pr �ð1Þ ¼1 �ð0Þ ¼1
��� �

; n¼0

(
;
ðA1Þ

where �(i) ¼ ��(i) is the indicator at the finest available tem-
poral scale � in the data. It can be easily expressed in terms
of p0(T). Define the unconditional probability

�n¼
Pr �ðnþ1Þ ¼1; �ðnÞ ¼0; .. .; �ð1Þ ¼0; �ð0Þ ¼1
� �

; n>0

Pr �ð1Þ ¼1; �ð0Þ ¼1
� �

; n¼0

(
ðA2Þ

satisfying �n¼p1 �ð Þ�n. We now establish the following
result :
Theorem. �n is given by the formula

�n¼p0 n�ð Þ�2p0 nþ1ð Þ�½ �þp0 nþ2ð Þ�½ � ðA3Þ

for integers n > 0 and

�0¼1�2p0 �ð Þþp0 2�ð Þ: ðA4Þ

Table 5. Model Parameters for the TOGA-COARE Data Set

Data Set �00 
0 L0 (km)

TOGA cruise 1 0.959 1.181 49.2
MIT cruise 1 0.970 1.070 51.6
TOGA cruise 2 0.887 0.889 45.9
MIT cruise 2 0.893 1.050 46.0
TOGA cruise 3 0.964 0.809 92.4
MIT cruise 3 0.944 0.882 59.7

Figure 6. Plots of p1(L) versus L for the Tropical Ocean Global Atmosphere–Coupled Ocean Atmos-
phere Response Experiment (TOGA-COARE) data for the parameters given in Table 5: (a) TOGA radar
and (b) MIT radar.
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The result is a simple consequence of the additivity of
probabilities of mutually exclusive outcomes of a trial. For
n > 0, we have identically

Pr �ðnÞ ¼0; . .. ; �ð1Þ ¼0; �ð0Þ ¼1
h i
¼Pr �ðnþ1Þ ¼0; .. .; �ð1Þ ¼0; �ð0Þ ¼1

h i
þPr �ðnþ1Þ ¼1; . .. ; �ð1Þ ¼0; �ð0Þ ¼1

h i
:

The second term is the desired quantity �n. The quantity
on the left-hand side can be evaluated similarly:

Pr �ðnÞ ¼0; .. .; �ð1Þ ¼0; �ð0Þ ¼1
h i
¼Pr �ðnÞ ¼0; .. .; �ð1Þ ¼0

h i
�Pr �ðnÞ ¼0; . .. ; �ð1Þ ¼0; �ð0Þ ¼0

h i
¼p0 n�ð Þ�p0 nþ1ð Þ�½ �:

The first term on the right-hand side is obtained by replac-
ing n with n þ 1, i.e.,

Pr �ðnþ1Þ ¼0; . .. ; �ð1Þ ¼0; �ð0Þ ¼1
h i
¼Pr �ðnþ1Þ ¼0; . .. ; �ð1Þ ¼0

h i
�Pr �ðnþ1Þ ¼0; .. .; �ð1Þ ¼0; �ð0Þ ¼0

h i
¼p0 nþ1ð Þ�½ ��p0 nþ2ð Þ�½ �:

Combining the three relations above, we get equation (A3).
[45] Next, we note that

�0 ¼ Pr � 1ð Þ ¼ 1; � 0ð Þ ¼ 1
h i

¼ p11 �; �ð Þ:

Equation (A4) then follows by a straightforward evaluation
taking into account equations (3) and (4):

p11 ¼ p1 � p10

¼ 1� p0 � p01

¼ 1� p0ð Þ � p0 � p00ð Þ:

It is easily verified that the quantities �n satisfy the normal-
ization X1

n¼0
�n ¼ 1;

as they should.

Appendix B: Testing Spatial Homogeneity of
p1(T)

[46] In this appendix we outline several methods of test-
ing spatial homogeneity of the rain indicator field. We con-
sider a sample of wet intervals of a specified length T from
the precipitation time series observed by a rain gauge.
Members of the sample are sufficiently separated in time
from one another so as to be considered independent. Let p

denote the probability of nonzero rain for a particular gauge
and p� � p1 Tð Þ denote the ‘‘true’’ probability estimated
from the entire gauge network. One way to frame the test
of spatial homogeneity is to examine the difference p� p�

for each gauge throughout the network and see whether
some deviate significantly from zero. Formulated in this
manner, statistical testing of spatial homogeneity for a
gauge data set as a whole leads to multiple hypothesis test-
ing, one for each gauge.

[47] First, let us consider each gauge separately. Since the
samples from a gauge are treated as independent, the proba-
bility of recording M rainy intervals out of a sample of N is
determined by the binomial distribution Bin(N ; p). The pro-
portion p̂ ¼ M=N provides a sample estimate of the proba-
bility p for each particular gauge. One can now seek a
suitable confidence interval (CI) for p at a specified nominal
level (1 � �). Each realization of the data for a particular
gauge determines a confidence interval. The significance of
the nominal level is that if we had a large number of such
realizations and we computed the confidence intervals for
each of them, the probability p for that gauge would fall in
approximately 100(1 � �)% of these intervals (i.e.,
Pr p 2 CI½ � ¼ 1� �). If the true probability p� falls within
the calculated confidence interval, we will accept the null
hypothesis H0 : p ¼ p� as opposed to the alternative hypoth-
esis Ha : p 6¼ p� based upon the sample at a level of signifi-
cance �. If H0 is true, the gauge is ‘‘average’’ (analogous to
a coin being ‘‘fair’’ with p ¼ 1/2). The quantity

� ¼ Pr reject H0 H0 is truej½ � ðB1Þ

denotes the false positive, or type 1 error rate for a single
gauge.

[48] The simplest approach for obtaining a CI for a bino-
mial proportion relies on the approximation of the binomial
distribution Bin(N ;p) by a normal distribution N p;ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ=N
p

Þ. Assuming asymptotic normality of the
sample proportion yields the 100(1 � �)% CI for p, the
standard (Wald) interval CIS:

p̂ 6 z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1� p̂ð Þ

N

r
;

where z�=2 is the 100(1 � �/2) percentile of the standard
normal CDF. The standard CI represents the region of ac-
ceptance for p� with a p value (observed significance level)
exceeding � in the test of H0 against Ha employing the
approximately normal test statistic Z ¼ p̂� pð Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ 1� p̂ð Þ=N
p

.
[49] It is well known that the normal approximation is a

poor one, especially when p is close to 0 or 1, which is the
case of interest for us. Many improvements of standard CI
estimates have been proposed. See, for example, the review
article by Brown et al. [2001], which elaborates the hazards
of the normal approximation and describes a number of
superior alternatives. One of their recommended alterna-
tives is the Wilson score CI, first introduced by Wilson
[1927]. It is determined as the range of the values of p� sat-
isfying the inequality

p̂� p�j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 1� p�ð Þ=N

p � z�=2 ðB2Þ
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and is given by the expression

p̂þ z2
�=2=2N

1þ z2
�=2=N

6
z�=2

1þ z2
�=2=N

p̂ 1� p̂ð Þ
N

þ
z2
�=2

4N2

" #1=2

: ðB3Þ

This Wilson CI, denoted by CIW, results as the region of
acceptance from inverting the normal approximation to the
family of equal tail tests of H0 against Ha using the test sta-
tistic

Z pð Þ ¼ p̂� pð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=N

p
: ðB4Þ

One rejects H0 at a level of significance � if and only if p�

lies outside CIW.
[50] Next, we consider the problem of multiple-hypothe-

sis testing. Suppose that we have a data set consisting of m
gauges located over a certain area. Spatial homogeneity
would imply that all the gauges are ‘‘average’’ in the sense
defined here. Testing spatial homogeneity in the present
context therefore entails simultaneously testing H0 for all
the gauges (analogous to testing multiple fair coins). How-
ever, an attempt to test this is expected to occasionally
lead to false positives, in which one would wrongly reject
H0 even when it is true. These will tend to obscure any
signal of genuine spatial inhomogeneity. In order to detect
a possible signal, one needs a control on the overall type 1
error rate. There are several approaches to multiple com-
parisons in the literature that achieve this control. In the
following we consider two of them that apply to our pres-
ent problem.

[51] A traditional method consists of controlling the so-
called family-wise error rate. If V denotes the number of
type 1 errors out of m of tests of H0, then the data set–wide
significance level, the FWER for the entire group of
gauges, is defined as the probability that at least one type 1
error occurs during the multiple comparisons, i.e.,

�� � Pr V > 0½ � ¼ 1� Pr V ¼ 0½ �: ðB5Þ

It is the value of �� rather than � that is central to deciding
how strong the assumption of spatial homogeneity is on the
basis of the data. If all the tests of H0 were independent,
then �� ¼ 1� 1� �ð Þm. If the value of �� is set to a preas-
signed value, the significance level for an individual test �
is obtained from the solution � ¼ 1� 1� ��ð Þ1=m(the
Dunn-�Sidák correction). In practice, this is not the case
because of the spatial correlation among the gauges. How-
ever, for dependent tests one still has the inequality
�� � m�. Thus, for a prescribed ��, say 0.05, if each individ-
ual test of H0 is carried out at significance level � ¼ ��=m,
known as the Bonferroni correction, it is guaranteed that
the total type 1 error rate will not exceed ��. Unfortunately,
the simple Bonferroni correction is overly conservative
since as the individual gauges are tested, the number of
remaining gauges decreases, and the effect of this should
be taken into account. A number of improved sequential
Bonferroni-type correction methods exist. We adopt the
Holm-Bonferroni [Holm, 1979] method, which applies
even when the tests are dependent. Instead of testing the
hypotheses using the same confidence interval, say the

Wilson CI, one now computes the individual p values for
each hypothesis and compares them with an adjusted
threshold. Denote by Z�j the test statistic Z(p) evaluated at p
¼ p� for the jth gauge (j ¼ 1,2, . . . , m) from equation (B4).
Let H0j denote the null hypothesis for the jth gauge and Pj
¼ Pr[jZ(p)j � Z�j ] denote the corresponding p value. First,
one orders the p values from the smallest to the largest, i.e.,
P(1) � P(2) � . . . � P(m). The Holm-Bonferroni method
consists of the following sequential steps.

1. If P 1ð Þ � ��=m, accept all m hypotheses H0j ; otherwise,
reject H01.

2. If P 2ð Þ � ��= m� 1ð Þ, accept H0j (j � 2); otherwise,
reject H02.

3. Continue the process until one reaches the first j such
that P jð Þ � ��= m� jþ 1ð Þ and accept all the remaining
hypotheses.

[52] The multiple testing method based on fixing the
FWER has a number of conceptual disadvantages when
applied to the present problem. These stem from the facts
that some of the H0j may actually be false and, moreover,
how many are false is unknown. Instead of a family-wise
false positive rate, we can also consider a multiple compar-
ison based on the so-called false discovery rate first intro-
duced by Benjamini and Hochberg [1995]. One defines the
FDR as the probability that a rejected null hypothesis is
actually true, i.e.,

� ¼ Pr H0 is true reject H0j½ �: ðB6Þ

In the context of our problem, controlling � is more impor-
tant since R, the total number of rejections of H0, is a ran-
dom variable whose value is known from the result of the
test carried out on the data set. The quantity � can be identi-
fied with the expectation value E[V/R]. Other closely
related quantities include the positive FDR E[V/RjR > 0]
[Storey, 2002], the proportion of false positives E[V]/E[R]
[Fernando et al., 2004], and the posterior error rate Pr[V ¼
1 j R ¼ m ¼ 1] [Morton, 1955]. For a preselected value of
the FDR �, the Benjamini-Hochberg procedure is to reject
all hypotheses H0j whose p values are bounded by

P jð Þ � j�=m: ðB7Þ

[53] Benjamini and Yekutieli [2001] have proved that this
bound also holds for tests with positive dependency, which
we expect to be largely the case in view of the generally
positive spatial correlation among the gauges. (They have
also shown that a somewhat weaker bound holds for nega-
tive dependency.) If  denotes the number of rejected null
hypotheses out of a total of m, the expected number of null
hypotheses that are correctly rejected is, on average, (1 � �).
The latter should be small compared to m if spatial homo-
geneity is to be deemed acceptable. In case a large number
of gauges are rejected by this test, the evidence for spatial
homogeneity is weakened.

[54] In general, a statistical test also has type 2 error, or false
negatives, where H0 is accepted even when it is false. Clearly,
this is an undesirable and yet unavoidable aspect of hypothe-
sis testing. The FDR-based test has the advantage that, in gen-
eral, it has a greater statistical power (1 � �) compared to the
FWER-based test, where � is the type 2 error rate.
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