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ABSTRACT

Accurate determination of snow conditions is important for several water management applications, partly

because of the significant influence of snowmelt on seasonal streamflow prediction. This article examines an

approach using snow cover area (SCA) observations as snow detection constraints during the assimilation of

snow depth retrievals from passive microwave sensors. Two different SCA products [the Interactive Multi-

sensor Snow and Ice Mapping System (IMS) and the Moderate Resolution Imaging Spectroradiometer

(MODIS)] are employed jointly with the snow depth retrievals from a variety of sensors for data assimilation

in the Noah land surface model. The results indicate that the use of MODIS data is effective in obtaining

added improvements (up to 6% improvement in aggregate RMSE) in snow depth fields compared to as-

similating passive microwave data alone, whereas the impact of IMS data is small. The improvements in snow

depth fields are also found to translate to small yet systematic improvements in streamflow estimates, es-

pecially over the western United States, the upper Missouri River, and parts of the Northeast and upper

Mississippi River. This study thus demonstrates a simple approach for exploiting the information from SCA

observations in data assimilation.

1. Motivation

Snow conditions on the land surface are key compo-

nents of the global hydrological cycle, and they play a

critical role in the determination of local and regional

climate. The contribution to the moisture conditions

from snow is vital in supporting agriculture and in de-

termining water management practices. Data assimila-

tion techniques are considered an effective approach to

combine the information from remotely sensed snow

measurements and model forecasts to produce accurate

and spatially and temporally consistent estimates of

snow conditions.

Primarily, there are two types of spaceborne remotely

sensed measurements of snow processes: 1) snow cover

area (SCA) is typically measured using visible or in-

frared satellite sensors, exploiting the high reflectance of

snow-covered areas compared to areas with no snow

cover; and 2) passive microwave (PM)-based measure-

ments of snow depth and snow water equivalent (SWE).

Measurements made in the visible spectrum provide

observations at high spatial resolution, but they are

limited to cloud-free conditions (Hall et al. 2002). On

the other hand, PMmeasurements tend to be at spatially

coarser resolutions and have large errors over areas with

dense vegetation cover and proximity to open water, but

they can observe under cloudy and nighttime conditions.

They are also not sensitive to thin snow packs and are

prone to signal saturation in areas of deep snowpack

(Dong et al. 2005), such as the western United States.

As both SCA and snow depth observations are viable

sources of information to improve model snow esti-

mates, there have been a number of studies that have

examined the assimilation of these measurements

(Rodell and Houser 2004; Andreadis and Lettenmaier

2006; Su et al. 2008; De Lannoy et al. 2012; Arsenault

et al. 2013; Liu et al. 2013; Kumar et al. 2014). The SCA

measurements provide either binary observations (i.e.,
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they simply specify the presence or absence of snow) or

fractional snow cover information derived from nor-

malized difference snow index (NDSI) relationships

(Salomonson and Appel 2004). The typical strategy to

assimilate SCA observations has been to use rule-based

direct insertion approaches or to use snow depletion

relationships to translate the SCA information into the

model prognostic states such as SWE. The PM snow

depth observations, on the other hand, provide quanti-

tative information on the snowpack properties and

therefore do not require such indirect approaches (De

Lannoy et al. 2012; Liu et al. 2013).

In a more recent study, Kumar et al. (2014) examined

the impact of assimilating bias-corrected PM data over

the continental United States. Though improvements

from data assimilation were obtained in the snow depth

fields, these enhancements did not always translate to

downstream improvements in runoff and streamflow.

Most notably, degradations in streamflow simulation

skills due to PM snow depth assimilation over the basins

in the western United States were observed. In this article,

we examine the added impact of using visible SCA obser-

vations as additional constraints during PM snow data as-

similation, as an extension of theKumar et al. (2014) study.

2. Approach

In this study, we employ a modeling domain over the

continental United States, at 1/88 spatial resolution,

similar to the domain configuration used in Kumar et al.

(2014). The Noah land surface model, version 3.3 (Ek

et al. 2003), is used in the simulations, forced with sur-

face meteorology data from phase 2 of the North

American Land Data Assimilation System (NLDAS-2)

project (Xia et al. 2012). Version 3.3 of Noah includes

several snow physics–related enhancements that are

described in Barlage et al. (2010). The simulations are

run with a 30-min time step for the 32-yr time period

1979–2011. The initial conditions are generated by

running the LSM from 1979 to 2011 twice and then re-

initializing the model in 1979. Routed streamflow esti-

mates from the gridded runoff fields from the Noah

LSM are generated using the Hydrological Modeling

and Analysis Platform (HyMAP; Getirana et al.

2012) model.

The data assimilation integrations employ a 1D en-

semble Kalman filter (EnKF) approach to assimilate

PM snowdepth retrievals. An ensemble size of 30 is used

in the simulations with perturbations applied to both

meteorological fields and model prognostics fields to

simulate uncertainty in the model estimates. Note that

compared to the previous study (Kumar et al. 2014) that

employed an ensemble size of 12, here we use a larger

ensemble size to reduce the effects of sampling density

limitations. Based on the parameters used in Kumar

et al. (2014), multiplicative perturbations are applied to

the precipitation and downward shortwave radiation

fields with amean of 1 and standard deviations of 0.3 and

0.5, respectively. In addition, downward longwave ra-

diation fields are perturbed with additive noise (with a

standard deviation of 50Wm22). The Noah LSM vari-

ables for SWE and snow depth are perturbed with

multiplicative noise with a mean of 1 and standard de-

viations of 0.01 and 0.02, respectively. As described in

Kumar et al. (2014), the microwave retrievals [from

three different sensors: Scanning Multichannel Micro-

wave Radiometer (SMMR; used from January 1979 to

July 1987), Special Sensor Microwave Imager (SSM/I;

used from August 1987 to June 2002), and Advanced

Microwave Scanning Radiometer for the Earth Ob-

serving System (AMSR-E; used from July 2002 to

October 2011)] are bias corrected using in situ snow

depth measurements from the Global Historical Clima-

tology Network (GHCN) and the Snowpack Telemetry

(SNOTEL) data prior to assimilation. These PM snow

depth products are available at approximately 25-km

spatial resolution. Similar to Kumar et al. (2014), the

standard deviation of the observation error is assumed

to be 20mm after the bias correction of the snow depth

products.

In this article, we build upon the Kumar et al. (2014)

study by introducing a number of additional constraints

to evaluate the added impact of SCA observations.

Figure 1 shows a flowchart of SCAdatabased constraints

used in the PM snow depth assimilation. Overall, the

SCA observations are used as the default for identifying

the presence or absence of snow. If an SCA observation

is missing at a location, then no passive microwave data

are assimilated. If an SCA observation indicates the

absence of snow (zero snow cover), then the passive

microwave snow depth observation is determined to be

zero and is assimilated. Conversely, if the SCA obser-

vation indicates nonzero snow cover but PM data in-

dicate no snow, then the PM data are not assimilated.

The nonzero snow depth amounts indicated by the PM

data are only assimilated if the corresponding SCA data

also indicate nonzero snow presence. We use two dif-

ferent sources of SCA observations: 1) the Interactive

Multisensor Snow and Ice Mapping System [IMS;

Ramsay (1998), available from 1997] from the National

Oceanic and Atmospheric Administration (NOAA)

and 2) the Moderate Resolution Imaging Spectroradi-

ometer [MODIS; Hall et al. (2006), available from

2000]. IMS data are a blend of visible data from geo-

stationary and polar-orbiting satellites and passive mi-

crowave data and are available at approximately 24-km

AUGUST 2015 KUMAR ET AL . 1737



spatial resolution daily. In this study we use the

MOD10C1 product, which is an aggregated product on

the 0.058 Climate Modeling Grid (CMG). SCA data

from the MODIS product are considered valid if the

associated cloud cover is less than 10% and the obser-

vation of snow cover fraction is greater than 25%.

The experimental setup includes four model in-

tegrations: 1) open loop (OL), the model integration

without data assimilation (DA); 2) DA1, where only PM

data are assimilated; 3) DA2, where PM data are as-

similated but constrained by IMS snow cover (from 1997

to 2011); and 4) DA3, where PM data assimilation is

constrained by IMS (from 1997 to 2000) and MODIS

(from 2000 to 2011) snow cover data. DA2 and DA3 not

only capture the impact of introducing the SCA-based

constraint, but they also quantify the relative impact of

IMS and MODIS SCA data.

The results of the model integrations are evaluated

against a number of independent datasets. To evaluate

the modeled snow fields, the spatially distributed snow

depth estimates from the Canadian Meteorological

Centre (CMC) daily snow depth analysis (Brown and

Brasnett 2010; available at approximately 25-km spa-

tial resolution globally) is used. The downstream im-

pacts on simulated streamflow are evaluated using the

daily streamflow data obtained from the U.S. Geo-

logical Survey (USGS; http://nwis.waterdata.usgs.gov/

nwis) over 572 small, unregulated basins. These basins

range in size from 625 up to 10 000 km2 and had no

visible signs of reservoir operations. In the results

shown below, evaluations of the modeled snow depth

and streamflow fields are conducted for a common time

period 2000–11.

3. Results

We first examine the influence of data assimilation on

improving snow depth estimates. Figure 2 shows the

average seasonal cycle of spatial means of daily RMSE

and bias for the OL and the three DA integrations

compared against the CMC product. Generally, the OL

RMSE is improved by the DA integrations. The in-

clusion of IMS data has a smaller impact, whereas the

addition of MODIS data helps in systematically re-

ducing RMSE, especially in the peak snow months

(approximately 6% aggregate improvement in RMSE

over the DA1 integration is obtained in the peak winter

months). The bias errors are large in the open loop es-

timates and are significantly reduced in the data assim-

ilation integrations, especially in the peakwintermonths

of December–February. Note that the biases of all PM

snow depth assimilation integrations increase during

early spring, relative to the OL bias estimate. One pos-

sible reason for this degradation could be that the PM

radiance observations are noisy for wet snow, leading to

increased errors in the snow depth retrievals during such

conditions (Slaymaker and Kelly 2007). The in-

troduction ofMODIS (DA3) leads to increased biases in

the snow evolutionmonths, compared toDA1 andDA2.

During the late snow peak and spring months, all DA

integrations behave in a similar manner. To provide a

measure of the spatial distribution of the mean RMSE,

Fig. 2 also shows a comparison of the spatial standard

deviation of the RMSE and bias estimates for each

month. The spatial standard deviations of the errors are

large, but they are also systematically improved in the

DA integrations. DA3 shows the smallest spatial

FIG. 1. A flowchart of the SCA databased constraints used in the assimilation of PM snow

depth data.
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standard deviations of RMSE, particularly in the peak

winter months.

To capture the added impact of SCA data on snow

depth estimates relative to the PM-only assimilation,

RMSE difference maps (using CMC as the reference

data) are generated by subtracting the RMSE of DA1

from the RMSE of both DA2 and DA3 integration and

are shown in Fig. 3. Similar to the mean RMSE and bias

seasonal cycles shown in Fig. 2, the use of IMS data has a

minor effect and the areas of improvements are limited

to a few locations over the western United States.

Comparatively, the use of MODIS data is more im-

pactful. DA3 simulation leads to improvements over

several regions, including parts of the Colorado head-

waters, Missouri River basin, and over the upper

Northeast extending into Canada. Some degradations

are also observed, especially over parts of the Rocky

Mountains and the Midwest.

It was shown in Kumar et al. (2014) that though snow

depth estimates were improved through the assimilation

of PM data, the subsequent impact on streamflow esti-

mates was marginal. The most notable degradations

occurred in the western United States and over parts of

the upper Mississippi and Missouri basins. Here, we

examine the added impact of incorporating SCA prod-

ucts on streamflow simulations. Similar to Fig. 3, Fig. 4

shows a comparison of the differences in Nash–Sutcliffe

efficiency (NSE) of DA2 or DA3 relative to DA1. The

NSE is a common metric used to evaluate the goodness

of fit of hydrological models and is defined as

NSE5 12

�
t5T

t51

(Ot 2 St)
2

�
t5T

t51

(Ot 2O)2
, (1)

where St and Ot are the simulated and observed

streamflow, respectively, at time t and O is the time-

averaged observed streamflow. An NSE value of one

indicates a perfect match with observations, whereas an

NSE of zero indicates that the model estimates are only

as good as the mean observation. Negative NSE values

indicate that the simulations are worse than the mean

observation.

FIG. 2. Average seasonal cycle of spatial (top) mean and (bottom) std dev of daily (left) RMSE and (right) bias from the OL and various

DA integrations compared to the CMC product, during the time period 2000–11.
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Figure 4 indicates that the addition of both IMS and

MODIS datasets generally improves streamflow simu-

lations, though the magnitude of improvements is small.

The SCA constraint through IMS helps in improving

streamflow mostly in some western basins. In compari-

son, the incorporation ofMODIS data has more positive

impacts at several basins, including the western United

States, the upper Missouri, and parts of the Northeast

and the upper Mississippi River. The trends of im-

provements in the streamflow estimates are consistent

with the spatial patterns in Fig. 3, which shows similar

regions with improvements in snow depth estimates

from the use of MODIS and IMS data. Note that ap-

proximately 5% added improvements in aggregate NSE

are obtained from the use of MODIS data compared to

the use of IMS.

4. Summary

Though passive microwave observations of snow

states provide quantitative measurements, data assimi-

lation studies employing them have only reported mar-

ginal or no improvements because of the large

uncertainty associated with these products (Andreadis

and Lettenmaier 2006; De Lannoy et al. 2012). The

Kumar et al. (2014) study showed that the use of in situ

measurements for bias correction of the PM retrievals is

an effective strategy to improve the skill of these prod-

ucts for data assimilation. In this paper, we explore the

introduction of the higher-resolution SCA data as a

snow detection constraint for further improving passive

microwave snow depth assimilation.

The modeling study is conducted over the continental

United States in the NLDAS-2 domain configuration

and using datasets with the Noah land surface model.

The model simulations are conducted over the 32-yr

time period 1979–2011, with a number of PM-based

snow depth datasets assimilated into the model with a

1D EnKF algorithm. The IMS and MODIS datasets are

used as additional constraints for snow detection during

assimilation. The added impact of SCA datasets for

improving modeled snow states and their subsequent

contribution toward the estimation of streamflow are

quantified.

The results indicate that the SCA-based constraint

introduced in the assimilation of passive microwave re-

trievals is effective in improving estimates of snow

depth, especially with the use of MODIS datasets. The

FIG. 3. RMSE differences (mm) of snow depth from DA3 (PM assimilation constrained by MODIS and IMS) and DA2 (PM assimi-

lation constrained by IMS) integrations relative to the DA1 (PM assimilation only) integration for the time period 2000–11. Cool colors

indicate areas of improvement and warm colors indicate areas of degradations.

FIG. 4. NSE difference (unitless) of streamflow estimates from DA2 and DA3 integration relative to DA1 simulation for the time period

2000–11. Cool and warm colors show locations where incorporating SCA leads to improvements and degradations in NSE, respectively.
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added impact of using IMS data was small, possibly

because of the low spatial resolution of the IMS product

and the fact that passive microwave snow data are al-

ready used for IMS data generation. Therefore, the use

of IMS here does not provide sufficient enough

independent information over the PM data. In com-

parison, MODIS snow cover data provide more inde-

pendent information and a finer spatial resolution, both

of which help to generate added improvements (ap-

proximately 6% in aggregate RMSE) relative to PM

snow depth assimilation. Though the aggregate im-

provements are small, larger improvements are likely at

finer temporal scales, which are important for applica-

tions such as water management and forecast model

initialization.

The improvements in snow depth fields from the use

of MODIS SCA are also found to translate to small yet

systematic improvements in streamflow estimates over

several basins, most notably in the western United

States. Similar to the trends observed with the snow

depth fields, the MODIS SCA-based constraint was

more effective in improving streamflow estimates

compared to the IMS-based constraint. At the domain-

averaged scale, approximately 5% added improvements

in NSE are obtained from the use of MODIS data

compared to the use of IMS snow cover measurements.
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