
Prospects for Advancing Drought Understanding, Monitoring, and Prediction

ERIC F. WOOD,* SIEGFRIED D. SCHUBERT,1 ANDREW W. WOOD,# CHRISTA D. PETERS-LIDARD,@

KINGTSE C. MO,& ANNARITA MARIOTTI,** AND ROGER S. PULWARTY
11

*Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
1Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

# Research Applications Laboratory, NCAR, Boulder, Colorado
@Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

&NOAA/NCEP/Climate Prediction Center, College Park, Maryland

**NOAA/OAR/Climate Program Office, Silver Spring, Maryland
11NOAA/OAR/Climate Program Office, Silver Spring, Maryland, and NOAA/ESRL/Physical Sciences Division,

Boulder, Colorado

(Manuscript received 29 August 2014, in final form 20 January 2015)

ABSTRACT

This paper summarizes and synthesizes the research carried out under the NOAA Drought Task Force

(DTF) and submitted in this special collection. The DTF is organized and supported by NOAA’s Climate

Program Office with the National Integrated Drought Information System (NIDIS) and involves scientists

from across NOAA, academia, and other agencies. The synthesis includes an assessment of successes and

remaining challenges in monitoring and prediction capabilities, as well as a perspective of the current un-

derstanding of North American drought and key research gaps. Results from the DTF papers indicate that

key successes for droughtmonitoring include the application of modern land surface hydrological models that

can be used for objective drought analysis, including extended retrospective forcing datasets to support hy-

drologic reanalyses, and the expansion of near-real-time satellite-based monitoring and analyses, particularly

those describing vegetation and evapotranspiration. In the area of drought prediction, successes highlighted in

the papers include the development of the NorthAmericanMultimodel Ensemble (NMME) suite of seasonal

model forecasts, an established basis for the importance of La Niña in drought events over the southernGreat

Plains, and an appreciation of the role of internal atmospheric variability related to drought events. Despite

such progress, there are still important limitations in our ability to predict various aspects of drought, in-

cluding onset, duration, severity, and recovery. Critical challenges include (i) the development of objective,

science-based integration approaches for merging multiple information sources; (ii) long, consistent hydro-

meteorological records to better characterize drought; and (iii) extending skillful precipitation forecasts

beyond a 1-month lead time.

1. Introduction

TheNational IntegratedDrought Information System’s

(NIDIS) Implementation Plan states that ‘‘[d]rought is

among the most damaging and least understood of

all natural hazards’’ (NISDIS 2007, p. ii; www.

drought.gov/drought/). It is well understood among

climatologists that drought is a naturally occurring phe-

nomenon. Its slow onset; often long-duration, cumulative

impacts; and widespread extent results in droughts being

the costliest of natural disasters (NCDC2012; Below et al.

2007) with profound economic, social, and environmental

impacts. TheNational ClimaticDataCenter (NCDC) has

recorded droughts in the United States having severe

economic impacts (more than $1 billion in damages)

during 16 of the 21 years from 1980 to 2011, with an es-

timated annual average direct drought loss of $9.5 billion

(adjusted to 2011 dollars; Smith and Katz 2013). It should

be noted that these estimates do not take into account

secondary impacts affecting water resources, recreation

economies, energy, and ecosystems.

Recognizing the economic and social impacts from

drought, the U.S. Congress in 2006 passed the National
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Integrated Drought Information System Act of 2006

(Public Law 109-430) with NOAA as the lead agency.

The subsequent NIDIS Implementation Plan was de-

veloped to ‘‘[f]oster, and support, a research environ-

ment that focuses on risk assessment, forecasting, and

management,’’ among other goals (NIDIS 2007, p. iii).

Given its widespread support, NIDIS was reauthorized

and signed into law by President Obama in March 2014

(U.S. Government 2014). Major foci of the reauthorized

NIDIS Act include the identification of research, mon-

itoring, and forecasting needs to enhance the predictive

capability of drought early warnings on ‘‘(i) the length

and severity of droughts; (ii) the contribution of weather

events to reducing the severity or ending drought

conditions; and (iii) regionally specific drought impacts’’

(U.S. Government 2014).

NIDIS has partnered with NOAA’s Climate Program

Office, which set up a Drought Task Force (DTF) with

the overarching goal of advancing drought understand-

ing, monitoring, and prediction through coordinated

research activities that address a number of NIDIS-

relevant scientific objectives. These include (i) the sci-

entific understanding of the weather and climatic

mechanisms that lead to the onset, maintenance, and

recovery of drought; (ii) improving drought prediction

skill by identifying and exploiting sources of drought

predictability and related aspects such as the de-

pendence on time scales, regions, seasons, and variables,

and improvements in forecast models and procedures;

(iii) improving current drought monitoring capabilities,

including the exploitation of new data, methodologies,

and metrics that would improve society’s capability to

manage drought; and (iv) improving drought informa-

tion systems through incorporating the latest advances

in monitoring and prediction, objective metrics relevant

to various societal sectors, and advanced information

delivery platforms. The DTF, as part of the Modeling,

Analysis, Prediction, and Projections (MAPP) program,

involves scientists from academia, other agencies, and

across NOAA (cpo.noaa.gov/MAPP/DTF). The DTF

both leverages and contributes to drought research

across the federal government as part of the U.S. Global

Change Research Program and international research

programs under the World Climate Research Pro-

gramme. Initiatives such as the Drought Task Force will

be key in advancing current national drought capabil-

ities toward the development of the Global Drought

Information System (Pozzi et al. 2013).

At the outset, the DTF adopted a test bed framework

centered around three working groups (WGs) related to

Metrics, Case Studies, and Drought Early Warning

Systems (DEWS). The focus of the Metrics WG was to

identify and apply metrics for evaluating scientific and

technological advances in monitoring and prediction.

These include metrics that enable a systematic and

comprehensive evaluation of the quality of existing

drought monitoring and prediction services, their per-

formance in a number of drought case studies, and their

potential to support national and global DEWS. The

Case Studies WG focused on identifying and analyzing

several high-profile case studies that appear to have

different drought mechanisms, feedbacks, and potential

predictability. These cases consist of the southeastern

U.S. drought during 2006/07, the Texas drought of 2011,

the central Great Plains drought of 2012, and the west-

ern U.S. drought from 1998 to 2002. The DEWS WG

focus is on supporting the continued development and

evaluation of drought monitoring and prediction tools,

such as the North American Land Data Assimilation

System (NLDAS) and the North American Multimodel

Ensemble (NMME) system. Note that DEWS is used

here to indicate a research focus on monitoring and

prediction. Comprehensive early warning information

systems, such as those intended as part of NIDIS, also

include risk assessments, communication, and engaging

planning and preparedness components in communities

and places at risk (Pulwarty and Verdin 2013).

Building off the foundational work of its WGs, the

DTF has performed drought case study analyses and

developed explanatory narratives that together have

provided insights into the physical mechanisms un-

derpinning drought, our ability to represent and predict

them using models and observational datasets, and the

extent to which new research has shown noteworthy

potential to advance operational drought capabilities.

Focusing on the Research to Capability (RtC) pathway,

the DTF has developed a Drought Assessment Protocol

as the framework to evaluate new experimental

drought monitoring and prediction tools using common

evaluation standards with the objective of informing

strategies for improving operational drought services

(http://cpo.noaa.gov/sites/cpo/Reports/MAPP/drought/

DTF_Assessment_Protocol.pdf). The protocol is de-

scribed in detail in the appendix.

To synthesize our current understanding of and ca-

pabilities for drought monitoring and prediction, the

DTF has convened a special collection of journal articles

published in the Journal of Hydrometeorology (http://

journals.ametsoc.org/page/droughtMonitoring) on the

drought-related research undertaken by its working

groups. This paper provides a synthesis of those contri-

butions and specifically tries to summarize and assess the

research being carried out that addresses the objectives

of the monitoring and prediction WGs. We set the stage

for the synthesis by first presenting in section 2 some

results from the 2012 drought illustrating current
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capabilities and the challenges faced by the DTF in

improving our ability to monitor and predict such ex-

treme events. Section 3 then summarizes current oper-

ational drought monitoring practices and advances from

ongoing research. Section 4 describes advances in

drought prediction and the understanding of drought

predictability. Section 5 summarizes the current status and

research advances and discusses remaining challenges,

research opportunities, and prospects for improving

drought understanding, monitoring, and prediction.

2. An exemplary case: 2012 drought

It has been estimated by Joseph LaVorgna, the chief

U.S. economist at Deutsche Bank Securities Inc. (see

www.bloomberg.com/news/2012-11-12/u-s-drought-may-cut-

gdp-by-one-percentage-point-deutsche-says.html), that the

2012 U.S. drought may have caused damage estimated

to range between $75 billion and $150 billion, with losses

of over $30 billion in agriculture alone, and reducing the

U.S. gross domestic product by;1%. The U.S. Drought

Monitor showed that over 60% of the continental

United States (CONUS) was under drought conditions

in 2012, with over 40% of the regions under severe to

exceptional drought conditions. Through monthly

teleconferences, the DTF drew together and scrutinized

the latest research community assessments of the

drought, some of which are summarized briefly below.

As an overall assessment, it can be noted that the

nation’s current drought monitoring and prediction enter-

prise did not accurately predict the hydroclimatic severity

and rapid development of the 2012 drought. In particular,

the forecast skill of the latest dynamical seasonal climate

forecast models was limited beyond one month lead time,

and the forecasts across models varied significantly.

Figure 1 shows, for example, the 3-month precipitation

and surface air temperature forecasts initialized in early

May 2012 from the NMME, including NOAA’s opera-

tional Climate Forecast System, version 2 (CFSv2; Saha

et al. 2010). Most NMME models predicted a pre-

cipitation and temperature anomaly in the central United

States, but with marked intermodel variability in their

extent, location, and intensity. For some other regions

(e.g., the wet and cool Pacific Northwest), the observed

anomalies were absent in virtually all model predictions.

The ensemble-averaged forecast from NOAA’s oper-

ational seasonal climate forecast model CFSv2 was close

to neutral, yet a closer inspection of the ensemble set from

the last 10 days of April 2012 shows that the four most

skillful and four least skillful ensemble members had

FIG. 1. (left) May–July precipitation PR (mmday21) and (right) 2-m air temperature T2M (8C) anomaly forecasts from six NMME

models (ensemble average). Top row is observed anomaly andNMMEaverage forecast using the individualmodel averages. Precipitation

observations from the Climate Prediction Center are given as OBS/CPC; temperature observations based on ERA-Interim are given as

OBS/ERI.
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dramatically different forecasts—almost mirror images

(see Fig. 2). Given that the SST patterns for these most

and least skillful members were almost identical

(A. Kumar 2012, personal communication), this suggests

that the level of atmospheric noise (at least in this model)

was significant and contributed to the wide spread among

its 40 ensemble members. In fact, all the NMME models

had very similar SST patterns, as can be seen in Fig. 3,

which points to the limited role of SST in the occurrence

of this drought and hence its limited predictability using

traditional seasonal forecasting methods.

The 2012 drought presented a sobering snapshot of

the challenges faced by the drought management com-

munity in leveraging science and technology to better

anticipate and respond to drought. In turn, the drought

also highlighted the remaining challenges for the science

community to improve our understanding of the fun-

damental predictability of droughts and the tools we

use to predict them. Specific research issues include

identifying relevant sources of drought predictability and

determining if models are exploiting such sources to the

greatest extent possible, and whether drought-related

model processes (and related prediction skill) are con-

sistent with observations. To further illustrate this, Fig. 4

presents the correlation between the first principal

component (PC) of averaged June–August (JJA) SST,

labeled S1(SST), and SST itself (Fig. 4, left) and the

average correlation between S1(SST) and JJA pre-

cipitation anomalies over CONUS from the ensembles

(Fig. 4, right) using observational data and NMME

hindcasts from 1982 to 2012. The numbers of ensembles

used are 10, 9, and 24 for GFDLCM2.1, NASAGMAO,

and NCEP CFSv2, respectively. Much of the variability

in tropical Pacific SST (Niño-3 region, western Pacific,

and tropical Atlantic) is captured by S1(SST), regions

believed to have teleconnections to precipitation over

CONUS. Also shown are the S1(SST)–SST patterns for

three NMME models, demonstrating very similar cor-

relation patterns to the observed SSTs and among

themselves. The correlation pattern between S1(SST)

and observed CONUS precipitation is shown in Fig. 4

(top right). The average correlation patterns between

S1(SST) and model-predicted precipitation are signifi-

cantly different among the models themselves, with

FIG. 2. (top) PR (mmday21) and (bottom) T2M (8C) anomaly forecasts for May 2012 based on the four (left) lowest and (right) highest

skill ensembles based on the 40 CFSv2 ensembles during 20–30 Apr 2012. (Figures courtesy of A. Kumar and M. Chen, NCEP/CPC; note

that the color bars are different than in Fig. 1).
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NASA GMAO having the highest similarity with the

observed patterns and NCEP CFSv2 having the lowest.

The different number of ensemble members for each

model makes it harder to generalize across models,

suggesting a need for greater coordination and consis-

tency in designing multimodel experiments. Nonethe-

less, these results imply that while all the models

reasonably capture SST variability, the intermodel-

predicted precipitation variability is large, which shows

that our understanding of the sources of predictability is

incomplete, especially against the background of in-

trinsic atmospheric variability, and that our un-

derstanding of which model parameterizations (and

features such as resolution and reductions in overall

model structural uncertainty including initial and

boundary conditions) are most likely to lead to more

skillful models is limited. This highlights the challenges

in developing multimodel ensemble systems.

These results underscore those from a number of re-

cent studies (e.g., Seager et al. 2014; Hoerling et al. 2014;

Wang et al. 2014; see section 4 for a discussion of these

studies), demonstrating the challenges that remain in

understanding the mechanisms that lead to drought and

improving the predictions of drought onset, duration,

severity, and recovery.

3. Drought monitoring

Assessing research to improve drought monitoring is

particularly challenging because drought represents a

combinationof numerous geophysical phenomena, and the

monitoring and management of drought involves a

synthesis of disparate information sources whose

characteristics vary. This variability in information in-

cludes time, space, quality, format, availability, and in

relative importance depending on the objectives and

FIG. 3. As in Fig. 1, but for SST (8C).
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perspectives of users in different drought-affected sec-

tors. DTF members address the monitoring challenge

through research to improve objective analyses that

contribute to a consistent, accurate, and reliable de-

termination and quantification of drought—including, for

example, assessments of soil moisture, river discharge,

temperature anomalies, and depiction of vegetation

health. Additionally, by carrying out objective historical

reanalyses, a climatology for drought variables such as

precipitation or soil moisture can be developed that aids

in depicting current conditions within a risk framework.

Finally, objective analyses can assist in improving the

process of integrating multiple indicators of drought. This

section first discusses current operational monitoring ca-

pabilities and then provides an overview of the DTF

special collection articles related to monitoring-relevant

research supported by the NOAA MAPP program.

a. Operational U.S. drought monitoring

Improving operational drought monitoring in the

United States offers a major opportunity for DTF

drought monitoring research. At the national level, op-

erational drought monitoring is led by four primary

groups: the National Drought Mitigation Center

(NDMC) at theUniversity of Nebraska–Lincoln, theU.S.

Department of Agriculture (USDA), the NCEP Climate

Prediction Center (CPC), and the NCDC. Climatologists

from these groups alternate to produce the nation’s

drought monitoring information product, the U.S.

Drought Monitor (USDM; http://droughtmonitor.unl.

edu and drought.gov) map of current drought condi-

tions. Established in 1999, the weekly map uses a

ranking/percentile system to facilitate the integration of

numerous input analyses and indices having unique pe-

riods of record and units of measurements. The resulting

classification scheme includes one abnormally dry cate-

gory (labeled D0) and four drought categories (D1,

moderate; D2, severe; D3, extreme; and D4, exceptional)

that reflect dry conditions below the 30th, 20th, 10th, 5th,

and 2nd percentiles, respectively. A rotating lead

author uses his/her best judgment to reconcile differences

in input analyses from a broad range of sources in

FIG. 4. Correlation between (left) first PC of SST [labeled S1(SST)] and SST and (right) S1(SST) and ensemble

mean precipitation for JJA 1982–2012. Top row contains observations. Lower rows contain NMMEmodels. See text

for the number of ensembles in each model. (Courtesy of J. Kam, Princeton University.)
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constructing a draft USDM map (Fig. 5 illustrates the

integration effort). The draft map is reviewed by over 350

local- to national-level drought coordinators, agency

leads, and experts, and their feedback is incorporated by

the lead author, who targets a ‘‘convergence of evidence’’

consensus indicating a single drought severity category.

The resulting final USDM map depicts this category, ei-

ther for only one (specially noted) type of impact or for all

facets of drought combined (i.e., meteorological, hydro-

logical, and agricultural are widely accepted drought as-

pects). The USDM does not attempt to quantify

uncertainty in the final map categories.

The use of indices is a central feature of drought and

climate monitoring because indices provide a readily

communicable description of relative severity and rar-

ity, supporting the intercomparison of drought across a

range of physical aspects, geography, and seasonality

(Heim 2002). Some indices, such as the Palmer drought

severity index (PDSI; Palmer 1965), the standardized

precipitation index (SPI; McKee et al. 1993), and the

surface water supply index (SWSI; Shafer and Dezman

1982), are traditionally derived from direct, in situ

measurements. Others, such as total soil moisture per-

centiles (SMPs; Mo 2008; Sheffield and Wood 2008),

standardized soil moisture index (SSI; Hao and

AghaKouchak 2013), and the standardized runoff index

(SRI; Shukla and Wood 2008) rely on simulation model

outputs. More recently, satellite-based indices such as

the evaporative stress index (ESI; Anderson et al. 2013)

are developed from satellite imagery.

In parallel to the consensus-based integration process

described above, the USDM also merges multivariate

drought analysis inputs using two prescribed-weight

blends of the input analyses: one depicts short-term

drought conditions aimed at meteorological, environ-

mental, and agricultural impacts, and the other is for

long-term conditions aimed at hydrological impacts

(example shown in Fig. 6). The fixed input weights in

these blends were established through expert judgment

rather than through statistically objective analytical

procedures. The blends are reproducible, but their

quantification of drought is nonetheless strongly influ-

enced by the subjective choice of their components and

weights.

Policymakers andmedia use theUSDM in discussions

of drought and in allocating drought relief. Since 2012, in

fact, governmental disaster declarations have become

nearly automatic for a county shown in severe drought

on the USDM for eight consecutive weeks. A number of

states also use the USDM or its input indices to trigger

their local drought task force activities and drought

declaration processes. For many stakeholders, the

USDM and similar agency synthesis efforts are the

mission-critical face of drought monitoring, and USDM

maps provide a categorical measure of the existence of

drought. As an alternative, the experimental research

systems present drought through a collection of sepa-

rate, univariate outputs of objective hydroclimatic

analysis systems or of satellite-based indices. Integrated

multivariate and location-specific analyses, which are

central toUSDM-type efforts, have only lately become a

research focus, as is highlighted in the following section.

Notable intersections of the operational and research

spheres are found in the expanding consideration of

research system results as input in USDM formation

that is being facilitated by the production of those results

in USDM category terms and the increased use of

USDM results as a ground truth for validating experi-

mental monitoring system performance where reliable

observations are lacking.

b. Research to advance operational drought
monitoring

The overarching objective of drought monitoring re-

search is to develop accurate, reliable, high-resolution

characterizations of the geophysical variables involved

FIG. 5. USDM map construction involves surveying numerous science-based objective Earth system monitoring

data products and integrating them into a single indicator map (Svoboda et al. 2002).
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in drought through objective science-basedmethods and

data—the development of Drought Early Warning

Systems. NOAA’s DTF research pursues this objective

through supporting (i) the real-time execution of mac-

roscale land surface models that objectively, quantifi-

ably, and reproducibly depict surface conditions using

operational, real-time forcings; (ii) observational sur-

face analyses based on satellite remote sensing retrievals

of drought-relevant parameters; (iii) development of

long-term retrospective climate system datasets and

reanalyses; and (iv) research toward understanding the

fundamentals of drought processes. Because the USDM

relies on the objective geophysical analyses that benefit

from advances in these areas, the DTF work has argu-

ably benefitted the official USDMmapping process, and

hence management activities. Yet, quantifying this im-

provement is difficult: the integration of map inputs is

subjective, and there is no objective standard by which

to assess the relative accuracy of current USDM ratings

versus DEWS ratings, or versus ratings that would have

emerged from earlier versions of drought monitor in-

puts. More measurable are improvements in the geo-

physical input analyses and the growing availability and

sophistication of DEWS. This section summarizes ef-

forts in the first three general areas above, and the fourth

area is discussed in more detail in the context of pre-

diction (section 4b).

1) LAND SURFACE MODELING AND INDICES

Phases 1 and 2 of NLDAS (NLDAS and NLDAS2,

respectively; Mitchell et al. 2004; Xia et al. 2012) were

initiated in 1999 and have since been steadily enhanced

through NOAA and NASA research programs. Housed

at the NCEP Environmental Modeling Center, NLDAS

runs four land surface models at an hourly time step for a

region enclosing CONUS at 1/88. The associated forcing

inputs (e.g., precipitation, temperature, humidity, wind

speed, and radiation) and land surface model outputs

(e.g., soil moisture, snow water equivalent, and evapo-

transpiration) represent a central thrust of science-based

advances in drought monitoring and the core component

of an effort to advance a national DEWS in support of

NIDIS. For example, the USDM blend products (cf.

Fig. 6) currently make use of the CPC soil moisture

analysis, which is based on a leaky bucket soil moisture

accounting formulation (Huang et al. 1996) that is sur-

passed in physical realism by the NLDAS modeling ef-

forts. Similarly, the USDM climate division precipitation

analysis is now at a coarser resolution than the NLDAS

precipitation input; thus, the NLDAS data products can

support a finer-resolution and higher-quality version of

the USDM objective blends and other inputs.

One of the first such NLDAS-derived drought appli-

cations was the University of Washington Experimental

FIG. 6. (left) Objective long-term blend USDM input analysis with (right) two blending formulas, enlarged. (For more detail, see http://

droughtmonitor.unl.edu/SupplementalInfo/CurrentConditions.aspx.)
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SurfaceWaterMonitor (SWM;Wood 2008; www.hydro.

washington.edu/forecast/monitor/), launched a decade

ago to generate both real-time (1-day lag) analyses of

CONUS-wide land surface moisture field anomalies

and 3-month predictions oriented toward drought.

Follow ups included the development of experimental

continental- to global-scale systems such as the Princeton

University Drought Monitor (Luo and Wood 2007; http://

hydrology.princeton.edu/forecast/) and the University of

California, Irvine, Global Integrated Drought Monitoring

and Prediction System (GIDMaPS; Hao et al. 2014; http://

drought.eng.uci.edu/). Princeton University has leveraged

their work over CONUS to develop an African

drought monitoring and forecasting system (Sheffield

et al. 2014) that has been extended to Latin America

(http://stream.princeton.edu). The NLDAS effort it-

self now supports a drought monitor (www.emc.ncep.

noaa.gov/mmb/nldas/drought/) that provides similar

moisture anomaly maps and other near-real-time (3–

4 day lag) analyses. SWM and NLDAS have also come

to incorporate a small ‘‘poor-man’s ensemble’’ of land

surface models, motivating a new research thrust of

understanding and integrating intermodel differences

in drought depiction. These systems differ in their ap-

proach to monitoring drought from USDM in that they

provide real-time univariate depictions related to

drought (i.e., of soil moisture or of snow) or bivariate

analyses (as in the GIDMaPS combination of pre-

cipitation and soil moisture, described further below),

rather than the broad integration of factors repre-

sented in the USDM. In contrast to the USDM, how-

ever, they provide long, objective, and reproducible

retrospective analyses that allow for assessment of

drought through recent history and clear definitions of

frequency statistics. Such systems are the foundation

of current efforts toward science-based DEWS.

A major current challenge for DEWS is the in-

tegration of multiple geophysical facets of drought to

provide a more comprehensive depiction, similar to the

paradigm of the USDM. To this end, Xia et al. (2014)

developed the Objective Blended NLDAS Drought

Index (OBNDI), which is an optimal blend of drought

indices (monthly mean evapotranspiration, total runoff,

top 1-m soil moisture, and total column soil moisture)

from the NCEP NLDAS multimodel ensemble. The

variable weights are formed by regressing the drought

indices onto USDM drought area percentages for dif-

ferent drought categories. A reconstructed OBNDI

achieved closer agreement with the USDM than any

individual variable. The resulting blended index repre-

sents one promising, explicit pathway from the objective

NLDAS drought analyses to the USDMmap categories

and also provides an increased spatial and temporal

resolution product relative to the USDM. Future re-

search directions include tailoring the weights spatially

and seasonally and using the optimal blend framework

to incorporate a broader range of independent analyses,

for example, the ESI or USGS streamflow percentiles.

Several other DTF efforts also address the integration

challenge through developing methods to combine dif-

ferent indices or model results into a single indicator.

Hao and AghaKouchak (2014) propose the multivariate

standardized drought index (MSDI), which is a multi-

index approach to combine the SPI and SSI. This index

will have higher severity values in the period when both

indices show below-average precipitation and soil

moisture, giving the index a better chance to capture the

timing and intensity of a drought event that is influenced

by more than one physical factor. The joint-probability

estimation framework is extendable to a broader set of

analyses and offers potential for emulating the conver-

gence of evidence USDM philosophy using locally

tailored, objective combinations. Mo and Lettenmaier

(2014) used an averaging approach for combining mul-

tiple monitoring indices (in this case, the SPI, SRI, and

soil moisture SM percentiles from the NLDAS) and the

aforementioned SWM. The ensemble mean index is the

sum of all indices, transformed to a uniform distribution

by using the climatology of the ensemble (percentile)

averages for each of the component variables. To assess

uncertainties in the classifications, Mo and Lettenmaier

(2014) introduce a concurrence measure showing the

extent to which the different indices agree, which could

provide an indication of confidence in the resulting

metric—that is, the classification scheme provides in-

formation about drought severity as well as the repre-

sentativeness of the ensemble mean index. The grand

mean index is also given in the D0–D4 categories used

by the USDM, to increase its relevance to the drought

monitoring community.

2) REMOTELY SENSED OBSERVATIONAL

ANALYSES

In addition to land surface model (LSM)-derived

drought-related analyses, DTF research includes the

development of new strategies for using satellite data to

monitor drought (and floods), which can provide an

assessment of drought characteristics independent of

land surface model analyses. Anderson et al. (2013)

compare the ESI with NLDAS model-based estimates

of SM, evapotranspiration ET, and runoff anomalies,

and with other empirical indices such as the vegetation

health index (VHI) and SPI, using the USDM classifi-

cations as a reference. The ESI uses the thermal infrared

(TIR) satellite-based Atmosphere–Land Exchange In-

verse (ALEXI) energy balance model to estimate ET
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deficits. The authors found that while NLDAS

ensemble-averaged SM anomalies correlated best with

USDM classes, the ESI had the strongest relationship of

the satellite-based indices. Furthermore, the study

found that ESI and SM in combination provided a

skillful indicator of drought severity changes, often

preceding USDM class deterioration by several weeks,

suggesting that in addition to amonitoring resource, ESI

may enhance drought prediction capabilities for rapidly

evolving ‘‘flash drought’’ conditions.

Like most current LSMs, the NLDAS models do not

include a dynamical vegetation component and there-

fore do not capture the reduction in evaporation that can

arise from vegetation changes caused by drought (e.g.,

crop damage or delay). In this regard, while this limi-

tation is being remedied by NLDAS land model

advances, the ESI may provide complementary in-

formation to the NLDAS. Figure 7 shows the compari-

son among the real-time ESI, the fraction green

vegetation cover from MODIS, and the ET anomaly

from theNoahmodel for approximately the same period

(June 2013). The ESI captures the negative ET anom-

alies over California and the Four Corners region. The

negative ESI anomalies over Minnesota and Iowa re-

semble the anomalies in vegetation cover fraction be-

cause of the delayed growth of crops there. On the other

hand, ESI did not capture the vegetation signal in the

Southeast (Fig. 7b), probably because the tree-

dominated vegetation does not have as large a surface

temperature signal as do crops.

Otkin et al. (2013) focused in detail on rapid-onset

droughts and used the meteorology from the North

American Regional Reanalysis (NARR) to show that

these events are typically driven by the combination of

warm temperatures, low rainfall, strong winds, and

below-normal cloud cover that together act to enhance

evaporation and rapidly dry the soil. The study un-

derscored the findings of Anderson et al. (2013) in

showing that the remotely sensed ESI captures these

phenomena and can provide an early warning of drought

impacts on agricultural systems.

Finally, Dong et al. (2014) focused on quantifying

errors in MODIS fractional snow cover (FSC) datasets,

which have been a useful input for hydrological analyses

related to drought. The quantitative uncertainty as-

sessment and a 34-yr high-resolution model climatology

enhance hydrological assimilation and applications.

Comparing MODIS FSC from 2000 to 2005 over the

CONUS with an extensive observational network, the

authors found that themore recentMODIS Collection 6

product generally improves over the prior version

(Collection 5) in detecting the presence of snow cover,

ranging from a 30% increase in probability of detection

(POD) in Nevada to a relatively small improvement

over Colorado (2% POD increase). The authors also

demonstrate a relationship between the MODIS FSC

retrieval errors and temperature, which can become a

FIG. 7. For themonth ending on 7 Jul 2013 (a)mean standardized

ET/potential ET anomaly (ESI) and (b) the fraction of green

vegetation cover fromMODIS. (c) June 2013 ET anomaly from the

NCEP NLDAS Noah model simulation. (Source is CPC July

drought briefing.)
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useful index for filtering out the misclassification of

MODIS snow cover pixels.

3) GLOBAL DROUGHT MONITORING SYSTEMS

The land surface modeling and satellite-based as-

sessments have potential utility beyond CONUS,

though their extensibility depends on the quality of any

in situ measurement networks required for forcing or

calibrating. The DTF included efforts toward the de-

velopment of global drought monitoring approaches,

such as theGlobal Drought Information System (GDIS)

described in Nijssen et al. (2014) and a satellite-based

SPI approach in AghaKouchak and Nakhjiri (2012). In

Nijssen et al. (2014), the authors extended the SWM

(Wood 2008) and NLDAS multimodel monitoring (Mo

and Lettenmaier 2014) systems to a near-global system

(GLDAS; covering from 508S to 508N) and used multi-

ple LSM outputs to form ensemble drought-related in-

dices, such as SMP (Fig. 8). The effort identified

significant fundamental challenges in the establishment

of such a system. For example, there is no global, long-

term, consistent, homogeneous precipitation analysis

from the historical period to near–real time that can be

used as forcing for the LSM (mainly because the station

networks used to form these analyses change over time).

Such key model forcings require careful reconstruction

of long-term records to ensure consistency with near-

real-time records so that anomalies will not be due to the

changes in the observing system. Clearly, the lack of

data for both input and verification of monitoring is a

major challenge in many regions of the world, which

adds to the scientific challenges of drought research.

Reliance on satellite data will be particularly important

for the development of a GDIS, including areas where

data are sparse, but compounds the challenge of

developing a temporally consistent analysis system. The

authors note that developing methodologies to exploit

such data in regions with better data coverage (such as

the United States) may be particularly useful.

4. Advances in drought prediction

As mentioned in the introduction, the DTF has

overarching goals that include improving our un-

derstanding of the physical mechanisms of drought and

improving drought prediction skill through full utiliza-

tion of predictability sources by advanced prediction

systems. Implicit in these goals is that improvements in

understanding can ultimately lead to improvements in

prediction skill, by improving prediction systems to ad-

equately capture key linkages underpinning pre-

dictability. An important aspect of these goals is the

identification of the sources of predictability (the signal)

as well as the nature andmagnitude of the unpredictable

noise. It is now generally accepted that both aspects (the

signal and noise) can be functions of time scale, season,

region, and quantity of interest (e.g., Schubert et al.

2009). An added complication is that predictability itself

can vary with time so that, for example, periods with

large El Niño–Southern Oscillation (ENSO) variability

FIG. 8. GDIS total moisture percentiles on 31 Dec (top) 2008 and (bottom) 2012. [Source is

Nijssen et al. (2014)].
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can potentially have greater predictability than more

quiescent periods in the tropical Pacific (e.g., Pegion and

Kumar 2013).

Specifically for drought, important questions remain

regarding our ability to predict various aspects of

drought, including onset, duration, severity, and re-

covery. These uncertainties largely reflect our differing

abilities to predict precipitation, temperature, soil wet-

ness, snow, and runoff, which in turn reflect the basic

mechanisms by which any predictable signal, say, in a

slow component of the climate system (e.g., SST), is

propagated through the climate system in the presence

of weather and short-term climate noise to impact re-

gional climate. As such, it is arguable that understanding

the nature of (and possible changes in) the unpredict-

able noise is just as important as understanding the na-

ture of the potentially predictable signal. A telling

example of that was already provided in section 1 in the

context of the CFSv2 hindcasts for April 2012, where

basically the same SST forecasts led to very different

outcomes (an example of large intraensemble spread) in

terms of the precipitation and temperature forecasts

over North America. This example also brings up the

issue of what really matters in terms of the SST signal

(spatially and temporally) insofar as what aspect of the

SST drives the atmospheric response over North

America: how accurately do we need to predict the SST,

and are there particular regions (or even ocean basins)

where the large-scale atmospheric response is particu-

larly sensitive to SST anomalies? Other issues include

the need to better understand the importance/role of

land–atmospheric feedbacks and land initial conditions,

as well as large-scale atmospheric variability, in the life

cycle of drought, and key technical issues related to the

need for higher model resolution and the impacts of

model bias on prediction skill.

The DTF has attempted to make the very daunting

task of advancing drought understanding and prediction

manageable by developing a more limited framework

that focuses on specific major drought events over North

America. The basic idea is that these types of events are

highly relevant since they have the greatest impacts on

society, while at the same time the large magnitude of

such events makes them the best candidates for identi-

fying the important physical mechanisms and for un-

derstanding the key elements of successful drought

predictions. Specifically, the DTF has developed a

drought test bed framework that individual research

groups can use to test/evaluate methods and ideas. As

mentioned in section 1, central to this is a focus on four

high-profileNorthAmerican droughts that are key areas

forNIDIS early warning system development (the 1998–

2004 western U.S. drought, the 2006/07 southeastern

U.S. drought, the 2011 Texas–northern Mexico drought

over the southern plains, and the 2012 drought over the

central Great Plains). To provide a more general assess-

ment of prediction skill, the DTF has also embraced the

NMMEprotocol for forecast evaluation covering the 30-yr

(1981–2010) period as described in Kirtman et al. (2014).

In the following, we attempt to review, highlight, and

synthesize the key outcomes of the DTF special collection

in the context of the prediction issues discussed above. The

focus is on how the relevant DTF contributions have ad-

vanced our understanding and contributed to improve-

ments in drought prediction. A key aspect of the synthesis

is to also identify any remaining gaps in our understanding

as well as to identify aspects of problems that constitute

‘‘low hanging fruit,’’ in the sense that one can take ad-

vantage of significant gaps between our current prediction

capabilities and the limits to predictability. The section is

broadly divided into subsections on (i) an assessment of

current prediction capabilities and (ii) a synthesis of our

understanding of drought and its predictability.

The section begins with a review of the contribu-

tions that address state-of-the-art drought prediction

capabilities.

a. Current drought prediction capabilities

Successful drought prediction critically depends on

skill in forecasts of both temperature and precipitation,

knowledge of the current state of drought, and the

ability to accurately model related changes in drought-

relevant moisture stores such as soil moisture, ground-

water, and snowpack. The U.S. Seasonal Drought

Outlook (SDO; www.cpc.ncep.noaa.gov/products/expert_

assessment/sdo_summary.html)1 produced by NOAA

CPC relies on forecaster judgment to combine sources

such as the official CPC temperature and precipitation

outlooks, long-lead forecasts including CFSv2, short-term

forecasts from GFS and ECMWF, and initial conditions

from the USDM. This subjective process currently

produces a forecast map for monthly and seasonal means,

such as that shown in Fig. 9. This example also illustrates

the aforementioned challenges in drought operational

prediction, such as the lack of skill forecasting the 2012

drought in the upperGreat Plains, as discussedbyHoerling

et al. (2014). For the 2011Texas–northernMexico drought,

the SDO generally performed better but predicted im-

provements in areas where they were not observed, as

shown in Fig. 10.

Since 2011, the NOAA MAPP program has been

supporting the evaluation of the experimental NMME

1 See also the monthly outlooks: www.cpc.ncep.noaa.gov/

products/expert_assessment/mdo_summary.html.
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seasonal forecast system as part of the NOAA Climate

TestBed (CTB)andClimatePredictionTaskForce research

(http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysis

PredictionsandProjections/MAPPTaskForces/Climate

PredictionTaskForce.aspx). TheNMME (Kirtman et al.

2014) leverages the considerable research and de-

velopment activities on coupledmodel prediction systems

carried out at universities and various research laborato-

ries throughout North America. As described by Infanti

and Kirtman (2014), the southeastern U.S. precipitation

forecast skill of the NMME system typically equals or

surpasses that of individual models throughout most

seasons and lead times, but the skill tends to be low

overall for summer seasons. There is a tendency for the

southeastern U.S. region to show more skill in winter

seasons versus summer seasons, and NMME was able to

predict winter season variability. During the 2006/07

southeastern U.S. drought, the NMME showedmoderate

skill at short leads during more extreme seasonal phases

of this drought, but a lackof skill at long leads, particularly

during the driest phase of the drought.

Skill in 2-m air temperature and precipitation prediction

is the foundation for NMME drought prediction skill. For

example, Fig. 11 shows 1–3-month lead NMME temper-

ature and precipitation forecast skill in 2011 and 2012. As

the figure shows, the ensemble skill (shown as the green

‘‘mme’’ bar) is robust despite one or more low-skill

members. As expected, temperature skill is generally

higher than precipitation skill, and the ensemble skill for

2012 is reduced overall relative to 2011. In addition to the

forecasts of temperature and precipitation, NMME fore-

casts have been developed of drought indices including the

1-, 3-, 6-, and 12-month SPI (www.cpc.ncep.noaa.gov/

products/Drought/Monitoring/spi_outlooks_3.shtml).

FIG. 9. (left) Seasonal drought outlook and (right) observed drought from USDM for summer 2012.

FIG. 10. As in Fig. 9, but for summer 2011.
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In an effort to improve land surface and drought

forecasting, CTB activities also included the transition

to a seasonal hydrological forecast system using CFSv2

and the VIC LSM (Liang et al. 1994) to NCEP. Yuan

et al. (2013) demonstrated that Bayesian downscaled

CFSv2 precipitation forecasts have higher correlations

and smaller errors for monthly precipitation than the

traditional ensemble streamflow precipitation (ESP).

Further conditioning by ENSO yields skill out to

4 months. Streamflow forecasts using the CFSv2 pre-

cipitation as input to the VIC LSM yield limited skill

beyond 1 month, but soil moisture–based drought fre-

quency skill over the central United States from

2 months out to 6 months is possible when the pre-

cipitation forecasts are skillful. Overall, this study in-

dicates that climate models can provide better seasonal

hydroclimatic forecasts than ESP through appropriate

downscaling procedures, but significant improvements

are dependent on the variables, seasons, and regions.

Closely related work by Madadgar and Moradkhani

(2013) finds that probabilistic forecasts of spring

streamflows in the upper Colorado River basin are more

reliable at predicting drought flows than ESP.

The use of ensembles inNMMEgenerally improves our

temperature and precipitation prediction skill, although

significant precipitation skill beyond 1-month lead is still a

challenge. The resultswith theCFSv2-VIC system indicate

that ENSO conditioning combined with good initial con-

ditions can provide skill in land surface soil moisture

forecasts for up to a 6-month lead time. This, and other

related work, suggests that slowly evolving components of

the land surface, such as soil moisture and groundwater,

may provide additional information for drought fore-

casting. In the next section, recent DTF insights into

drought mechanisms and predictability are discussed.

b. Drought mechanisms and predictability

Several DTF papers focused on improving our un-

derstanding of various hydrological processes (land,

ocean, and atmosphere) and how these contribute to the

FIG. 11. NMMENorthAmerican (top) temperature and (bottom) PR rate skill (anomaly correlationAC;%) for

1–3-month leads in year (left) 1 (2011) and (right) 2 (2012) forNMMEparticipatingmodels (C1, CFSv1; C2, CFSv2;

EA, ECHAM4a; EF, ECHAM4f; G, GFDLCM2.1; NA, NASAGMAO;NC, NCAR;mme, multimodel average).

(Additional information on the participating models can be found at www.cpc.ncep.noaa.gov/products/NMME/

Phase1models.png.)

AUGUST 2015 WOOD ET AL . 1649

http://www.cpc.ncep.noaa.gov/products/NMME/Phase1models.png
http://www.cpc.ncep.noaa.gov/products/NMME/Phase1models.png


development of drought. Here too there was consider-

able focus on the more recent 2010–12 period of intense

droughts over the United States, with Texas and

northern Mexico experiencing record drought during

2010/11 and the U.S. central and upper Great Plains

feeling the grip of intense heat and drought during the

summer of 2012. These studies were largely focused on

providing insights into the physical processes that could

lead to useful prediction skill (e.g., the role of La Niña
conditions), as well as the fundamental limitations

(predictability limits) imposed on prediction skill at

seasonal and longer time scales by the role of internal

atmospheric variability that is unforced by SST. The

latter was especially true for the summer of 2012, where

internal atmospheric variability appears to have

played a key role in the rapid development of the heat

and drought conditions in the central Great Plains.

Specifically, Seager et al. (2014) analyzed the causes of

the 2010/11 drought in Texas and northern Mexico.

They concluded that La Niña conditions in the tropical

Pacific Ocean initiated the drought but also found that a

very negative North Atlantic Oscillation (NAO) con-

tributed to the dryness in the southern plains and

southeastern United States. An important finding was

that intensification of the drought in summer 2011 was

not forced by SST but was most likely due to internal

atmospheric variability. They noted that this was re-

flected in the skill of the models used by the In-

ternational Research Institute for Climate and Society

(IRI) for producing seasonal forecasts, which did predict

drought onset in fall 2010 but did not predict drought

intensification in summer 2011.

Hoerling et al. (2014) examined the central Great

Plains drought of 2012. They noted that seasonal fore-

casts did not predict the intensity or the rapid de-

velopment of the drought at lead times longer than

about 1 month (see also Fig. 1). An assessment of the

drought causes indicated an important role for natural

variations in weather, including a reduction in atmo-

spheric moisture transport from the Gulf of Mexico and

the absence of processes that would provide airmass lift

and condensation. They further concluded that neither

ocean surface temperatures nor changes in greenhouse

gases induced a substantial reduction in summertime

rainfall over the central Great Plains during 2012. In

trying to understand whether there existed some large-

scale factors that might enhance the probability of such

an extreme event, they conducted climate model simu-

lations that revealed a regime shift toward warmer and

drier summertime Great Plains conditions during the

recent decade. This shift, most likely due to natural

decadal variability, is such that the probability for a se-

vere summer Great Plains drought may have increased

fivefold in the last decade compared to the 1980s

and 1990s.

Wang et al. (2014) compared the roles played by SST

forcing in the evolution of the 2011 and 2012 U.S.

droughts. They found that the pronounced winter and

early spring temperature differences between the two

years primarily reflect differences in the contributions

from theAtlantic and IndianOceans, with both acting to

cool the east and upper Midwest during 2011, while

during 2012 the Indian Ocean reinforced the Pacific-

driven continental-wide warming and the Atlantic

played a less important role. During late spring and

summer 2011, the tropical Pacific SST forced a contin-

ued warming over the southern United States, with the

Atlantic acting to extend the warming northward. The

observed anomalies were, however, considerably

stronger than the ensemble mean, though they fell well

within the model’s ensemble spread [consistent with the

Seager et al. (2014) conclusion regarding the important

role of internal atmospheric variability in driving the

intensification of the drought]. Also consistent with

Hoerling et al. (2014), they found that during June and

July 2012, the rapid development of the intense heat and

drying over the central United States was largely the

result of internal atmospheric processes with only weak

controls from (primarily Atlantic) SST forcing.

Additional research carried out by the DTF focused

on basic questions concerning the usefulness of higher-

resolution precipitation information for streamflow

prediction and the nature of evaporative sources that

supply moisture to the continental United States. In

particular, Koster et al. (2014) quantified the degree to

which errors in the initial soil moisture degrade a

streamflow forecast and examined how the information

content of high-resolution precipitation data translates

to streamflow forecast skill. In particular, the linearity

found between imposed soil moisture initialization error

and the degradation of streamflow forecast skill allowed

them to estimate the increase in forecast skill attainable

with improved soil moisture measurement, for example,

as expected from the NASA Soil Moisture Active Pas-

sive (SMAP) satellite mission. Using their land model-

ing system, they demonstrated that high-resolution

precipitation forecasts will only be effective in improv-

ing (large scale) streamflow forecasts in areas with soil

moisture–limited evaporation.

Dirmeyer et al. (2014) applied a quasi-isentropic

back-trajectory scheme to output from the Modern-

Era Retrospective Analysis for Research and Applica-

tions (MERRA; Rienecker et al. 2011) to estimate

surface evaporative sources of moisture supplying pre-

cipitation over land for the period 1979–2005. Their

methodology allows estimating moisture recycling and

1650 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



the partitioning of local precipitation between terrestrial

and oceanic sources. They compared the evaporative

sources for extreme situations like droughts or wet in-

tervals to the corresponding climatological distributions

using the method of relative entropy. A key finding of

that study was that changes in local and remote surface

evaporation sources of moisture supplying precipitation

over land are more a factor in droughts than in wet pe-

riods over much of the globe, though further work is

needed to differentiate between dynamical and hydro-

logical factors causing the changes.

The above results highlight the fact that there are still

considerable gaps in our understanding of the role of the

SST in the different ocean basins (Pacific, Atlantic, and

Indian Oceans) and how they reinforce or counteract

each other to impact the hydrological conditions over

North America. Current models do poorly in predicting

SST in the Atlantic and Indian Oceans, suggesting that

improvements in the predictions of SST in these ocean

basins could help improve precipitation and tempera-

ture forecasts over North America on seasonal time

scales. The results also emphasize that short-term (on

roughly monthly time scales) extremes can have a sub-

stantial, unforced (by SST) component and that more

work needs to be done to understand the nature and

predictability of that variability including such phe-

nomena as the Madden–Julian oscillation (MJO) and

summertime extratropical stationary Rossby waves.

The papers also draw attention to the lack of opera-

tional skill for precipitation in summer and suggest that

this deserves more attention to assess if progress can be

made, for example, by better exploiting antecedent soil

moisture conditions as well as large-scale atmospheric

variability to improve forecast skill at subseasonal time

scales. Results from the current studies suggesting a

limited role for soil moisture in initiating the 2012

summer drought must be tempered by the fact that

current models are still deficient in their representation

of land–atmosphere coupling. Atmospheric reanalyses

are becoming an increasingly important tool for ana-

lyzing the moisture budgets associated with drought.

Unfortunately, despite substantial improvements in the

latest products, there are still differences between them,

and also apparent inconsistencies with observed pre-

cipitation anomalies, that limit progress in un-

derstanding the links between hydrological anomalies

and circulation anomalies.

5. Discussion and conclusions

The investments in drought-related science, technol-

ogy and information systems over the past decade have

clearly enhanced and expanded the quality and range of

drought data products, the number of people engaged in

drought-related activities (such as the NIDIS drought

early warning pilot projects; Pulwarty and Verdin 2013),

and our understanding of drought as a phenomenon in

the United States. This synthesis paper has highlighted

areas in drought monitoring and prediction that can be

considered successes, that remain as challenges, and that

represent opportunities for the community.

a. Monitoring

In drought monitoring, for instance, a key success of

the last decade has been the application and refinement

of a modern class of hydrological models toward ob-

jective drought analysis, including extended retrospec-

tive forcing datasets to support hydrologic reanalyses

that are nearly a century long. Objective drought anal-

ysis is critical for developing retrospective drought in-

dices and forecasts of drought because they provide

objective consistency that is not available from the in-

terpretive approaches behind the USDM. Thus, while

one goal of objective LSM-based drought monitors

aligns with the USDMmission (i.e., to provide real-time

drought analyses), the LSM-based efforts also strive

to provide scientific insights into drought trends and

variability and to serve real-time monitoring systems

globally, reaching areas in which the resources for a

USDM-style convergence of evidence approach are

lacking. Numerous drought products and innovations

have emerged from these simulation/assimilation ef-

forts, among which are newly derived indices and new

objective strategies for integrating indices and multiple

sources of information. Drought monitoring system

websites, drought information clearinghouses (e.g.,

www.drought.gov), outreach efforts, and web services

make such products ever more accessible to the drought

management community, including the USDM authors.

A second key area of success has been the expansion of

near-real-time satellite-based analyses that are relevant

to drought, particularly those describing vegetation and

evapotranspiration. These products further add to the

information resources that can be used for characteriz-

ing current droughts and have been shown to often

complement land model–based approaches.

These scientific and technological advances suggest

that there may be commensurate advances in the accu-

racy of official USDM category maps that integrate

those advances, yet it is difficult to quantify the pre-

sumed increases in skill. This difficulty arises in part

from the multifaceted, poorly defined nature of

drought’s geophysical and social impacts, but it is also a

feature common to operational activities in monitoring

and forecasting that in the United States historically

relies on subjective consensus processes to shape
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information outputs. The human effort arguably adds

value, but it also obscures clear linkages to objective

products and baselines and reduces the personnel time

available for learning about, assessing, and developing

strategies for integrating new data resources ormethods.

Objective approaches for data integration, without los-

ing the advantages of the popular USDM product, are

thus a critical need and an outstanding challenge. Nu-

merous geophysical analyses of different facets of

drought now exist—including, for example, ensembles

of precipitation, soil moisture, and runoff anomalies at

subcounty-scale resolutions, accompanied by estimates of

uncertainty—but the operational USDM product does

not yet reflect many of these potential enhancements.

Investments that have spurred the broad expansion of

drought information systems and products in the science

community need to be matched by investments in oper-

ational arenas to enable the uptake of these advances, and

secondarily to support greater interaction between oper-

ational and research entities [the so-called research-to-

operations (R2O) and operations-to-research (O2R)

interface]; this should not happen at the expense of

foundational drought research. The DTF and the CTB

are an ideal context for such enhanced ‘‘transition’’ in-

vestments. A critical institutional challenge is to create a

pathway for development and testing (or ingesting) im-

provements into USDM—for example, the OBNDI of

Xia et al. (2014) could provide one baseline for strategies

to estimate USDM assessments.

Another institutional challenge is maintaining the

nation’s in situ, gauge-based observing networks for

meteorological, climate, and hydrologic variables. A

number of key measurements are either sparse or de-

clining (see http://water.usgs.gov/streamgaging/), which

impairs the evaluation and implementation of LSM-

based simulations. Critical drought variables such as

soil moisture and evaporation are not well observed,

though several initiatives, such the establishment of the

AmeriFlux network in 1996 to provide observations of

water, energy, and momentum on an hourly basis; the Na-

tional Resources Conservation Service (NRCS) SNOTEL

network for snow and meteorological variables; and the

NRCS Soil Climate Analysis Network (SCAN) and

NOAAU.S. Climate Reference Network (USCRN) for

soil moisture have helped. A multiagency and multistate

national forum on the 2012 drought, convened by NIDIS,

highlighted the need to sustain and even expand these ef-

forts, rather than scaling back (NIDIS 2012). A national

soil moisture network was also discussed as part of NIDIS

(www.drought.gov/drought/news/developing-coordinated-

national-soil-moisture-network-meeting).

Temporal or spatial coverage limitations of our ob-

serving networks and suboptimal reporting characteristics

lead to scientific challenges as well. Many measurement

stations that are active in the historical period do not re-

port in real time because of insufficient gauge automation:

as an example, data from more than one-third of the ac-

tive precipitation stations are not accessible for days or

months later than their recording time. Other data prod-

ucts, such as from radars or satellite platforms, lack long

historical records. Unfortunately, drought is almost uni-

versally described in relative terms—for example, by de-

parture from a mean, by return frequency, or by severity

percentiles—thus, long, consistent hydrometeorological

records are needed to characterize such metrics. Nearly all

real-time monitoring and prediction systems struggle to

enforce consistency between real-time analyses or pre-

diction and historical analyses, such that real-time esti-

mates of anomalies are accurate. The SWM of Wood

(2008) and the GDIS described in Nijssen et al. (2014)

grapple directly with this challenge, suggesting that the is-

sue is resolvable, yet more investigation is clearly needed.

To the extent that monitoring challenges are institu-

tional, they may be addressable through support via con-

certed agency programs and infrastructure development

and greater integrated support for R2O that includes

building operational capacity. Now that satellite-based

remote sensing platforms are available or are about to be

launched for soil moisture [Advanced Microwave Scan-

ning Radiometer 2 (AMSR2), Soil Moisture Ocean

Salinity (SMOS), and SMAP], precipitation [Global Pre-

cipitationMeasurement (GPM)], andwater levels [Surface

Water Ocean Topography (SWOT) mission], one chal-

lenge that needs to bemet is the near-real-timemerging of

these satellite data with in situ observations, perhaps using

techniques developed in Chirlin and Wood (1982) and

utilized inChaney et al. (2014) to develop a high-resolution

meteorological dataset over sub-Saharan Africa.

b. Prediction

The development of the NMME suite of seasonal

model forecasts is a significant success in demonstrating

the potential of having an international collaboration of

operational and research groups focusing on both the

generation of forecasts and their analysis. Of particular

note are the ongoing scientific assessments from the

project’s participants as well as DTF and Climate Pre-

diction Task Force scientists that have deepened our

knowledge about the intermodel variability of forecasts

and the strengths and challenges of using a multimodel

ensemble system for drought forecasting. Key issues that

remain to be resolved are when and why certain mem-

bers of NMME are more skillful than the ensemble

mean, and whether we can form an optimal ensemble

conditioned on the phase of teleconnection patterns

such as ENSO, the Pacific decadal oscillation (PDO), or
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NAO. Current plans for the NMME include archiving

high temporal (6 hourly) hindcasts and forecasts. This

will provide both technological challenges of processing

over 2 PB of model outputs and scientific challenges

of analyzing the ensembles forecasts to answer

drought predictability research questions (www.cpc.

ncep.noaa.gov/products/ctb/nmme/NMME_Phase2_data_

description.pdf). These archives being open and acces-

sible to the community represent a great opportunity for

drought research that, it is hoped, will result in impor-

tant progress in the coming years in drought forecasting.

An important goal for NOAA and the drought impact

community is the concept of ‘‘seamless’’ monitoring and

forecasting of drought. A notable success is the im-

plementation at NCEP of the NLDAS multi-LSM

drought monitoring system discussed earlier. Also suc-

cessful was the transition from Princeton University to

NCEP via the Climate Test Bed of the CFSv2-VIC LSM

seasonal hydrological forecasting system that offers a

monitoring–forecasting capability as described earlier.

The next logical goals in the seamless monitoring–

prediction system would be implementing the four

NLDAS drought monitoring LSMs into the CFSv2

seasonal forecasting system, and then the NMME suite

of seasonal forecasting models together with the suite of

NLDAS LSM to offer a comprehensive multimodel

seasonal drought monitoring–forecasting system.

Substantial progress has been made in our un-

derstanding and quantification of the role of SST in pro-

ducing drought over North America. The importance of

La Niña in the southern Great Plains is now well estab-

lished, and there are new results to suggest that the other

oceans (Indian andAtlantic) can play an important role in

either enhancing or suppressing the role of the Pacific.

There is now also a better appreciation of the role of in-

ternal atmospheric variability in producing some of the

most extreme droughts, limiting the predictability of such

events on seasonal and longer time scales. Despite such

progress, there are still important limitations in our

understanding and ability to predict various aspects of

drought, including onset, duration, severity, and recovery.

A key challenge in that regard is to extend skillful pre-

cipitation forecasts beyond 1-month lead, or more gen-

erally, beyond lead times at which initial conditions

(atmosphere and land) control the skill. Current results

suggest that skillful precipitation forecasts combined

with a well-initialized landmodel provide longer lead skill

for predicting soil moisture than for streamflow, pre-

sumably reflecting differing predictability characteristics

of these two aspects of drought.

As suggested above, improving the prediction of the full

life cycle of droughts requires a better understanding of

how any predictable signals propagate through the

ocean–atmosphere–land system. This in turn should shed

light on the necessary model improvements for improving

drought predictions as well as the fundamental pre-

dictability limitations imposed on our ability to produce

skillful forecasts of the various facets of drought involving

precipitation, temperature, soil wetness, snow, and runoff.

These limitations manifest themselves as signal-to-noise

ratios that depend on quantity, region, season, forecast

lead time, and potentially on the climate state itself.

Quantifying such dependences requires better un-

derstanding the nature of (and changes in) the potentially

predictable signal (e.g., that associated with SST anoma-

lies) as well as the unpredictable noise (e.g., that associated

with internal atmospheric variability).

Key challenges regarding potentially predictable sig-

nals beyond 1-month lead time involve better isolating

what matters in terms of the SST signal (spatially and

temporally) insofar as what aspect of the SST drives the

atmospheric response over North America: that is, how

accurately do we need to predict the SST, and are there

particular regions (or even ocean basins) where the

large-scale atmospheric response is particularly sensi-

tive to SST anomalies? At these time scales the un-

predictable signal is typically dominated during the cold

season by well-known atmospheric teleconnections

(e.g., the NAO, Arctic Oscillation, and Pacific–North

American patterns), while during the warm season there

is now mounting evidence that large-scale planetary

(Rossby) waves (also largely driven by processes in-

ternal to the atmosphere) play an important role in

contributing to some of the most extreme events (e.g.,

limiting our ability to predict the 2012 central Great

Plains drought more than 1 month in advance). Land

initialization (soil moisture and snow) is another key

source of predictability at 1–2-month lead times. In ad-

dition to improving land–atmosphere coupling in cli-

mate models, there are uncertainties about the

sensitivities to the land models, including how the skill

lead times vary with LSM and how the skill in both soil

moisture and streamflow depend on the model physics.

Recent advances in the development of ultrahigh-

resolution global climate models (so-called cloud-

permitting models run at 10-km and higher resolution)

offer new capabilities for addressing these challenges.

c. Assessment of drought capabilities and research

The challenge of assessing advances in operational

drought monitoring and prediction through research has

motivated the DTF to establish a Drought Capability

Assessment Protocol. The fundamental goal of the

protocol is to guide researchers toward evaluating their

research outcomes through performance metrics that

provide insights on their competitiveness with existing
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operational or state-of-the-art capabilities, which are

treated as baselines or benchmarks. The protocol en-

courages U.S.-focused researchers to assess their efforts

in the context of four recent drought case studies, the

better to allow for intercomparison of research efforts

from different and support synthesis. The protocol is

described in more detail in the appendix.

This synthesis paper summarizes recent work that

appears in this special collection, and the activities of the

NOAA Climate Program Office’s Drought Task Force,

which through its working groups has supported and

coordinated improvements in drought monitoring,

drought prediction, and the development of metrics to

assess these improvements. As witnessed over the last

few years, the United States is highly vulnerable to

droughts—2011 over Texas, 2012 over the Great Plains,

and 2014 in the westernUnited States and particularly in

California—that have severe social and economic im-

pacts. Over the last decade, there have been significant

improvements in monitoring droughts, particularly the

development of objective monitoring systems leveraged

off the North American LandData Assimilation System

(NLDAS). Currently, a multimodel NLDAS runs at

NCEP, with its information being integrated into the U.S.

Drought Monitor system along with their observer-based

information. Understanding drought mechanisms—the

hydroclimate drivers that lead to drought—that can lead to

improved predictive skill of droughts on seasonal time

scales has proven to be a larger challenge. This is a research

area that will require sustained support and effort for

achieving progress. Nonetheless, as discussed earlier in this

paper, progress is occurring, and with advances from the

North American Multimodel Ensemble (NMME) project

(Kirtman et al. 2014), there is the expectation that un-

derstanding of drought mechanisms will advance signifi-

cantly. Supporting the monitoring and prediction work

critically includes developing assessment metrics, verifica-

tion datasets, and benchmarking so progress can be mea-

sured objectively. Starting in 2014, theDrought Task Force

will enter a new 3-yr phase based on a new set of drought

research projects that will address several high-priority

research areas. Despite these new investments, it is ex-

pected that the broad challenges laid out in the synthesis

paper will remain and will necessitate sustained research

and programmatic attention.

APPENDIX

Drought Capability Assessment Protocol

The DTF Drought Capability Assessment Protocol

was established to guide researchers toward quantifying

the benefits of their research with respect to existing

drought monitoring and prediction capabilities. Scien-

tists should be able to apply the common protocol to

help provide quantitative answers to the basic question:

Is my research effort improving upon current capabil-

ities to monitor or predict drought, and by how much?

The protocol centers attention on four high-profileNorth

American droughts and requires the use of drought-

specific performance metrics that are applied, where ap-

propriate, to standard evaluation periods and datasets.

The elements of the protocol are described below.

a. Assessment metrics

As part of the protocol, researchers should apply the

metrics in Table A1 to assess their work’s ability to

quantitatively detect (for monitoring) or forecast (for

prediction) drought. The performance metrics can be

extended, but in general should

d define criteria that separate drought conditions from

other system states and
d describe key geophysical drought features that are of

interest to decision makers in applications sectors and

that are motivated by societal impacts. Examples

include the onset, severity, duration, and change in

intensity of a drought variable.

Metrics should be assessed by lead time for prediction,

but not monitoring, and other conditional factors should

be considered where warranted.

b. Verification datasets

A central part of drought capability assessment is

the use of verification, and the protocol defines the

following guidance on the use of verification

datasets.

d Precipitation and temperature: Station observations

and gridded analyses where appropriate (e.g., satellite,

gauge, radar blends of sufficient period coverage,

extent, and quality).
d Drought categories: USDM categories may be used as

verifying observations for categorical estimates or

predictions unless other impact-based quantifications

of drought existence or severity are available. In some

cases it may be appropriate to verify categorical

drought against univariate percentiles, for example,

from NLDAS soil moisture.
d Hydrologic fields: In situ observations or derived

analyses are a primary verification resource. Examples

include soil moisture from NRCS SCAN or the

NOAA USCRN soil moisture networks; snow water

equivalent from SNOTEL or USHCN; snow cover

from IMS, MODIS, or Landsat; and streamflow from
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USGS gauge observations. For predictions, verifica-

tion fields may also include observation-driven

analyses or simulations (e.g., from NLDAS2) or

quality-controlled input fields to the USDM. In gen-

eral, verifying monitoring simulations on other simu-

lations is discouraged.

c. Verification periods and case studies

Researchers’ analyses should focus on one or more of

the following four case studies to facilitate comparison

with other community research.

1) From winter 2001 to spring 2002 severe western U.S.

drought: Focus roughly on an area consisting of the

six states of California, Nevada, Utah, Arizona, New

Mexico, and Colorado from December 2001 through

May 2002; evaluation on the overall 1998–2004 is also

encouraged.

2) From fall 2005 to summer 2008 sustained southeastern

U.S. drought: Focus roughly on an area consisting of

the four states Tennessee, Mississippi, Alabama, and

Georgia from fall 2005 through summer 2008.

3) The 2010/11 water year drought over the southern

plains: Focus roughly on Texas, from October 2010

through September 2011.

4) The 2012 summer drought over the central Great

Plains: Focus roughly on a region consisting of the six

states Wyoming, Colorado, Nebraska, Kansas, Mis-

souri, and Iowa from May to September 2012.

Forecast capability evaluation over a 30-yr (1981–2010)

period or longer is encouraged if relevant and feasible.

Hindcasts or retrospective simulations of these events

should be utilized, including, for example, the Climate

Forecast SystemReanalysis and Reforecast (CFSRR), the

NCEPESRLGEFS reforecast, andNARRandMERRA.

d. Baselines and benchmarking

The use of familiar operational or current capability

baselines is critical to making drought research relevant

for potential transition to operational usage. Primary

baselines include but are not limited to following:

d For monitoring or assessment capabilities: USDM,

NLDAS2 drought monitor, SNOTEL-based analyses,

NCDC PDSI, and Vegetation Drought Response

Index (VegDRI).
d For prediction capabilities: CFSv2 or IRI SPI forecast;

CPC monthly and seasonal drought outlooks; stream-

flow predictions created via the ESP approach or by

statistical water supply forecasting procedures (oper-

ational center datasets) are preferred if available; and

NCDC’s PDSI forecasts, if appropriate.

The benchmarking activities apply the assessment met-

rics over the selected verification period or case studies,

focusing on variables including precipitation, tempera-

ture, snow water equivalent, soil moisture, evaporative

variables, runoff, and streamflow for the periods, case

studies, or regions described above. Assessments of fu-

ture new capabilities should follow the same approach

but apply the metrics to new methods or models to the

variables, periods, and regions defined in this protocol.

The improvements and impacts will be compared to the

benchmark performance values.
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