
Interactive Vegetation Phenology, Soil Moisture, and Monthly
Temperature Forecasts

R. D. KOSTER

Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

G. K. WALKER

Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, and Science Systems and

Applications, Inc., Lanham, Maryland

(Manuscript received 17 October 2014, in final form 20 February 2015)

ABSTRACT

The time scales that characterize the variations of vegetation phenology are generally much longer than those

that characterize atmospheric processes. The explicit modeling of phenological processes in an atmospheric

forecast system thus has the potential to provide skill to subseasonal or seasonal forecasts. We examine this

possibility here using a forecast system fitted with a dynamic vegetation phenology model. We perform three

experiments, each consisting of 128 independent warm-season monthly forecasts: 1) an experiment in which

both soilmoisture states and carbon states (e.g., those determining leaf area index) are initialized realistically, 2)

an experiment in which the carbon states are prescribed to climatology throughout the forecasts, and 3) an

experiment in which both the carbon and soil moisture states are prescribed to climatology throughout the

forecasts. Evaluating themonthly forecasts of air temperature in each ensemble against observations—aswell as

quantifying the inherent predictability of temperature within each ensemble—shows that dynamic phenology

can indeed contribute positively to subseasonal forecasts, though only to a small extent, with an impact dwarfed

by that of soil moisture.

1. Introduction

The numerical models responsible for near-term

weather forecasts (out to ;10 days) extract most of

their forecast skill from the realistic representation of

atmospheric conditions at the start of the forecast,

as obtained through atmospheric analysis. The in-

formation content of atmospheric initial conditions,

however, is soon dissipated by chaotic atmospheric

dynamics, and thus, forecasts at longer time scales must

rely on connections with other, slower-moving com-

ponents of the Earth system. Seasonal forecasts, for

example, have long relied on models of the ocean cir-

culation (e.g., Shukla 1998). By coupling an ocean

model to an atmospheric model, a predictable feature

of the ocean circulation (or a predictable mode of the

coupled ocean–atmosphere system) several months

into a forecast can affect the atmosphere at this later

time, potentially adding skill to the atmospheric fore-

cast at that time. At subseasonal scales, soil moisture

plays a similar role. The second phase of the Global

Land–Atmosphere Coupling Experiment (GLACE-2;

Koster et al. 2011) showed that an accurate initializa-

tion of soil moisture state can add significant skill to

surface air temperature forecasts out to 2 months.

The ‘‘lushness’’ of vegetation [as represented by the

leaf area index (LAI)] also has a persistence that ex-

ceeds that of atmospheric variables (Wang and Eltahir

2000; Zeng et al. 1999; Guillevic et al. 2002). Because

vegetation state has a direct impact on, for example,

surface albedo and canopy transpiration conductance,

models that include prognostic treatments of vegetation

state—models that determine, in effect, variations in

LAI in response to meteorological factors as well as the

persistence of an LAI anomaly so induced—have, at

least in theory, the potential to provide additional

forecast skill at subseasonal or seasonal leads.
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Such dynamic vegetationmodels (DVMs) already exist

and have been implemented into the systems of many

global climate modeling centers (e.g., Boussetta et al.

2013; Dunne et al. 2013). These DVMs monitor the

storage of carbon in various vegetation and soil reservoirs

and, in the process, provide estimates of the responses of

vegetation phenology (e.g., LAI) to variations in mete-

orological forcing. Their use to date, however, has gen-

erally not focused on the meteorological prediction

problem; mostly, they have been used in studies of the

global carbon cycle (e.g., Friedlingstein et al. 2014; Shao

et al. 2013).

Indeed, very few studies have addressed the role of

vegetation in meteorological variability and pre-

diction. Guillevic et al. (2002) quantified the impact of

prescribed LAI variability (i.e., from satellite-based

observations rather than from a DVM) on the vari-

ability of evapotranspiration and precipitation pro-

duced in an atmospheric general circulation model

(AGCM). Impacts on evapotranspiration were signifi-

cant, but those on precipitation were largely drowned

out by atmospheric noise. Using a similar series of

simulations,Weiss et al. (2012) quantified the impact of

LAI variability on the potential predictability in an

AGCM, and they also showed where the prescription

of accurate LAI variations leads to reduced tempera-

ture biases compared to observations. Bali (2015) fol-

lowed the guidelines of the first GLACE (Koster et al.

2006) to determine coupling ‘‘hot spots’’ associated

with variations in vegetation phenology. Weiss et al.

(2014) used a fully interactive DVM in an Earth system

model to explore vegetation impacts on predictions at

the decadal scale.

Given the availability of DVMs and the importance

of predictions at all time scales, the time is ripe for

additional analyses. Here we focus on the subseasonal

(in particular, monthly) forecasting problem. We

perform a series of forecast experiments with the

National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center (GSFC) Earth

modeling system Global Earth Observing System,

version 5 (GEOS-5), fitted with an explicit treatment

of dynamic phenology. Our analysis focuses both

on the idealized predictability associated with in-

teractive phenology at subseasonal time scales and on

the actual forecast skill contributed by the use of re-

alistically initialized interactive phenology, as de-

termined by comparing forecasted quantities with

observations.

The system used and the experiments performed are

discussed in section 2. Results for predictability and

forecast skill are presented in section 3, with additional

discussion provided in section 4.

2. Framework for analysis

a. Modeling system

The Global Modeling and Assimilation Office of

NASA GSFC hosts GEOS-5, a state-of-the-art Earth

system model (Molod et al. 2012). In its complete form,

the GEOS-5 modeling system consists of coupled atmo-

sphere, ocean, land, and sea ice models. When run with

full data assimilation machinery, GEOS-5 has produced,

among other things, a well-utilized climate reanalysis

(Rienecker et al. 2011). Data assimilation is also used to

initialize the coupled models for seasonal forecasts of

precipitation and temperature; the GEOS-5 seasonal

forecasts are accessible on the web (http://gmao.gsfc.nasa.

gov/cgi-bin/products/climateforecasts/GEOS5/index.cgi)

and contribute to the North American Multimodel En-

semble (Kirtman et al. 2014).

In this study we utilize the land and atmosphere com-

ponents of GEOS-5, prescribing persisted sea surface

temperature (SST) and sea ice anomalies through each

1-month forecast period.As with othermodels of its kind,

the GEOS-5 atmospheric model supplements its treat-

ment of atmospheric dynamics with parameterizations of

unresolvable physical processes. For example, it treats

convection with the relaxed Arakawa–Schubert param-

eterization scheme (Moorthi and Suarez 1992), and it

treats prognostic cloud cover using the techniques of

Bacmeister et al. (2006), accounting for such processes as

the autoconversion and accretion of cloud water particles

and the reevaporation of falling precipitation. It treats

long- and shortwave radiation processes (with absorption

from various chemical and aerosol species) as described

by Chou and Suarez (1994) and Chou (1990, 1992), re-

spectively. Turbulence near the surface is parameterized

according to Lock et al. (2000). The surface layer pa-

rameterization used is based on the Monin–Obukhov

approach described by Helfand and Schubert (1995). We

modified the surface layer parameterization so that it

includes a viscous sublayer over land; the default appli-

cation of the parameterization applies the viscous sub-

layer only over nonland surfaces.

The Catchment land surface model (Koster et al.

2000a), the model standardly used within operational

GEOS-5 systems, performs a complete energy and water

budget calculation at every time step, accounting for such

processes as canopy interception, vegetation resistance to

transpiration, and runoff production through both base

flow and overland flow. The model treats statistically the

subgrid-scale spatial variability of soil moisture known to

exist in nature—at each time step, the areal fractions of

the surface element existing in different hydrological re-

gimes are computed from the model’s soil moisture

prognostic variables and from a statistical description of
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the topography within the element. Different, regime-

specific treatments of evaporation and runoff production

are applied within the different areal fractions.

Again, the present forecasting study is unique in its

consideration of dynamic vegetation phenology at the

land surface. The Catchment land surface model was

recently enhanced through the inclusion of the prog-

nostic carbon (and thus prognostic phenology) elements

of the National Center for Atmospheric Research–U.S.

Department of Energy (NCAR–DOE) Community

Land Model, version 4 (CLM4), DVM (Oleson et al.

2010). The CLM4 DVM’s photosynthesis physics pro-

duces, as a matter of course, an estimate of canopy

transpiration conductance that is consistent with its

calculation of carbon uptake. This conductance is pro-

vided to the Catchment model, which uses it to update

the surface energy and water budgets. Koster et al.

(2014) describe how the models were combined and

highlight some unique features of the merged model

(hereafter referred to as the Catchment-CN model),

including its ability to represent multiple hydrological

regime–specific vegetation states within a surface

element.

Koster et al. (2014) also analyze offline simulations

(i.e., uncoupled from the atmosphere) performed with

this model. Their comparisons of simulated fraction of

absorbed photosynthetically active radiation (FPAR;

a key indicator of phenology) with satellite-based esti-

mates from the Global Inventory Modeling and Map-

ping Studies (GIMMS) dataset (Tucker et al. 2005)

demonstrate that the merged model, while biased, does

capture well the key controls of water supply on vege-

tation behavior. The Catchment-CN model was shown

in the study to be a useful tool for the analysis of

climate–vegetation connections.

b. Experiments performed

Using GEOS-5 (with a grid resolution of 2.58
longitude 3 28 latitude), we perform three forecast ex-

periments, also summarized briefly in Table 1:

d Experiment ocean–atmosphere (OA): Initial atmo-

sphere and ocean conditions differ between forecasts,

whereas soil moisture and vegetation prognostic

variables are maintained at (seasonally varying)

climatological values determined for the period 1979–

2010 from the offline simulation discussed below.
d Experiment ocean–atmosphere–soil moisture (OAW):

Same as experiment OA, but with soil moisture no

longer prescribed, and with its initial conditions set to

observations-based values.
d Experiment ocean–atmosphere–soil moisture–

vegetation (OAWV): Same as experiment OA, but

with both soil moisture and vegetation state no longer

prescribed, and with both sets of initial conditions set

to observations-based values.

Each experiment consists of 128 independent monthly

forecasts, four (initialized on 1 May, 1 June, 1 July, and

1 August) for each year of the period 1979–2010. Each

forecast in turn consists of 21 ensemble members, gener-

ated through slight perturbations of the atmospheric initial

conditions. For all forecasts, atmospheric initial conditions

were extracted for the given start date froman independent

free-running AGCM simulation, and the prescribed SST

and sea ice distributions consist of observed SSTand sea ice

anomalies for the start date (derived fromwww-pcmdi.llnl.

gov/projects/amip/AMIP2EXPDSN/BCS/amip2bcs.php)

added to corresponding climatological seasonal cycles.

The soil moisture initial conditions for experiments

OAW andOAWV and the vegetation initial conditions

for experiment OAWV were extracted from an offline

simulation with the Catchment-CN model covering the

period 1948–2010, performed following the approach

outlined in Koster et al. (2014). Because this offline

simulation utilized observations-based meteorological

forcing (Sheffield et al. 2006), the soil moisture and

carbon states produced and then used for forecast ini-

tialization are arguably realistic, with, for example,

high soil moisture and possibly high LAI following

extended rainy periods. As a result, these initial mois-

ture and vegetation states can potentially contribute

skill to the monthly forecasts.

We quantify here the contributions of soil moisture and

vegetation to predictability and forecast skill by differ-

encing the results of the different experiments. The con-

tributions of soil moisture are isolated by differencing the

results of experiments OAW and OA; likewise, the con-

tributions of vegetation state are isolated by differencing

the results of experiments OAWV and OAW.

TABLE 1. Summary of forecast experiments.

Forecast experiment

identifier Soil moisture treatment Vegetation phenology treatment

OA Climatological Climatological

OAW Initialized realistically; prognostically followed Climatological

OAWV Initialized realistically; prognostically followed Initialized realistically; prognostically followed
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c. Observations used for forecast evaluation

Forecast skill evaluations are made against monthly

2-m air temperature values produced by ERA-Interim

(Dee et al. 2011). To ensure a clean comparison, the

reanalysis fields were regridded to the 2.58 3 28 resolu-
tion used by our forecast system.

3. Results

a. Predictability

Predictability is a fundamental property of nature and

of a modeling system (National Research Council 2010).

In essence, it describes how long the effects of an initial

state are felt in the climate system before the ‘‘memory’’

of that state is erased by chaotic dynamics. Predictability

for a modeling system is typically characterized by ex-

amining how the spread among the ensemble members

of a forecast increases with time. While such pre-

dictability is an intrinsic property of the model and is

necessarily model dependent, the hope is that it reflects

the (unmeasurable) predictability that exists in nature;

in any case, it provides one upper limit for the forecast

skill attainable with that particular forecast system.

We compute predictability here as follows. First, every

ensemble member of every forecast is standardized into a

Z score (i.e., forecasted values are converted to anomalies

divided by standard deviation) so that forecasts for dif-

ferent months can be considered together. The first en-

semble member of each forecast is then considered the

‘‘truth’’ against which the ensemble mean of the remain-

ing ensemble members is tested—an established pro-

cedure in predictability calculations (e.g., Becker et al.

2014). We compute the square of the correlation co-

efficient r2 between the truth simulation results and the

ensemblemean results.We then repeat the process taking

the second ensemblemember in each forecast as the truth,

and so on. The average of the 21 r2 values so computed is

our measure of predictability. This average can range

from 0, implying that the initial conditions have no impact

whatsoever on the forecast, to 1, implying that they

completely determine the forecast.

The results for 2-m air temperature are shown in Fig. 1.

Figure 1a shows high predictability over the oceans in

experiment OA, certainly a reflection of the prescribed

interannually varying SSTs. These SSTs are presumably

also responsible for the high predictability levels over

tropical land (Koster et al. 2000b), whereas the smaller

but still significant values over midlatitude land probably

stem in part from the atmospheric initialization.

Figure 1b shows the equivalent map for experiment

OAW, and more importantly, Fig. 1c shows the differ-

ence between Figs. 1b and 1a, that is, the contribution of

soil moisture initialization and dynamics to surface air

temperature predictability. The contributions are high over

many midlatitude land areas, particularly in the transition

zones between dry and wet areas—places where the

evaporation is both reasonably high and sensitive to soil

moisture variations (Koster et al. 2000b).

Indeed, Fig. 1c is comparable to the predictability map

presented by Koster et al. (2011), with similar patterns

over all continents except perhaps Australia. [Perfect

agreement would not be expected in any case, since the

patterns in Koster et al. (2011) represent a multimodel

estimate of predictability.] Figure 1c is presented here

mainly as context for Fig. 1e, the difference between

Figs. 1d and 1b. Figure 1e offers the isolated contribution

of initialized vegetation state and subsequent interactive

vegetation phenology to surface air temperature pre-

dictability.While this contribution is substantially smaller

than that for soil moisture, it is still generally positive,

particularly equatorward of about 458. Low contributions

are seen in the deserts, where vegetation is always sparse,

and in lushly vegetated tropical areas, where presumably

variations in phenology do not limit transpiration; at-

mospheric demand (energy availability) is known to limit

total evapotranspiration in the lush tropics (e.g., Koster

et al. 2000b), so variations in the leafiness of the trees

should have minimal impact there. The negative values

seen in higher latitudes presumably reflect sampling er-

ror; results for individual months (not shown) indicate

that negative high-latitude differences are by far the

largest in May and June, when snow may still be present

and vegetation may not have a large impact.

Importantly, the pattern seen in Fig. 1e agrees strongly

with patterns of interannual vegetation variability known

to exist in the model [see Fig. 7c of Koster et al. (2014)].

The spatial correlation of the pattern in Fig. 1e with that

of the average monthly standard deviation of FPAR

produced in experiment OAWV (an indication of where

we would expect vegetation to have an effect) over all

non-ice land points is 0.35, which far exceeds the 99.99%

confidence level. Such pattern agreement gives us confi-

dence that the differences seen in Fig. 1e reflect true

vegetation contributions to predictability, even ifmany of

the values seen in the figure are too small to pass a sig-

nificance test when examined in isolation.

Figure 2a shows, as a function of forecast month, the

estimated predictability contributions from soil mois-

ture and phenology averaged over land. Interactive

phenology is seen to contribute the most in July and

August, but in every month its contribution is much

lower than that of interactive soil moisture. The final two

histogram bars show the contributions when all months

are considered together (i.e., the global land averages of

the differences shown in Figs. 1c,e). Phenology
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contributes an average of about 0.004 to the total pre-

dictability, which is much smaller than the correspond-

ing value (0.024) from soil moisture.

b. Forecast skill

Predictability, while important to quantify, is not as

tangible as forecast skill. Our experimental design allows

us to quantify the contributions of both soil moisture

initialization/dynamics (as in GLACE-2; Koster et al.

2011) and vegetation initialization/dynamics to the skill

of surface air temperature forecasts through a compari-

son of the forecasts with observations.

Such skill, however,must not be evaluated everywhere.

In regions with poorly estimated precipitation, the land

FIG. 1. (a) Surface air temperature predictability as generated in experiment OA. (See text for details of the

calculation.) (b) As in (a), but for experiment OAW. (c) Differences between the fields in (b) and (a), effectively

showing the contribution of soil moisture initialization and dynamics to air temperature predictability. (d)As in (a),

but for experimentOAWV. (e)As in (c), but for the difference between the fields in (d) and (b), effectively showing

the contribution of vegetation initialization and dynamics to air temperature predictability.
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surface conditions produced by our offline Catchment-

CN simulation will themselves be poor. The forecast

initializations in these regions therefore cannot be

trusted, and neither can the locally forecasted 2-m air

temperatures. We mask out these regions in our fore-

cast evaluation using the map of rain gauge density in

Fig. 3 (which was derived from data at www.esrl.noaa.

gov/psd/data/gridded/data.precl.html). This density map is

relevant, for example, to the construction of the Global

Precipitation Climatology Project (GPCP) product, which

underlies the Sheffield et al. (2006) forcing dataset used in

our offline simulation. In essence, any 2.58 3 28 grid cell

containing less than one precipitation gauge on average

over the period 1979–2010 is not considered in our forecast

evaluation.

The spatial distributions of intrinsic model pre-

dictability associated with soil moisture and vegetation

should also be considered. If a region shows a negligible

contribution of predictability from either soil moisture or

vegetation in Fig. 1, any skill (negative or positive) in the

region seemingly derived from the land variable must in

fact reflect sampling error and is not real. We therefore

apply a second mask to the forecast skill results based on

the predictability contributions shown in Figs. 1c and 1e.

We do not consider skill contributions from soil moisture

if the predictability associated with soil moisture is below

0.005. Similarly, we do not show skill contributions from

vegetation phenology if the predictability contributions

from phenology lie below 0.005.

With these masks in place, we present in Fig. 4a the

contribution of soil moisture initialization and sub-

sequent dynamics to skill in the 1-month forecast of 2-m

air temperature, where skill is measured as the square of

the correlation coefficient between the standardized

observations and the standardized ensemble means of

the forecasts. In analogy to Fig. 1c, soil moisture con-

tributions to skill are obtained by subtracting the skill

levels of experiment OA from those of experiment

OAW. Much of the world in Fig. 4a is indeed masked

out; our ability to evaluate skill is limited. North

America, however, does host a continental-scale region

with both adequate rain gauge density and inherent

contributions to predictability from soil moisture, and

here, large contributions to forecast skill, up to 0.1, are

seen in a swath extending from the southern Great

Plains toward the northwest. Other regions with signif-

icant skill contributions include the Nordeste region of

Brazil and the eastern part of southern Africa. Negative

skill contributions do show up in various areas, in-

dicating that sampling error is still an issue despite the

masks applied. The positive values, however, show field

significance, far outweighing the negative values.

Figure 4b shows the corresponding contributions from

phenology initialization and dynamics, obtained by

subtracting the skill levels in experiment OAW from

those of experiment OAWV. Phenology contributions

to skill are clearly smaller than those of soil moisture,

but they still appear mostly positive across the globe.

Contributions in the southwestern United States, for

example, are as high as 0.05. Regions of positive skill

contributions are also seen inNordeste, southernAfrica,

and northeastern China.

The global averages of the skill contributions from soil

moisture and phenology are compared in Fig. 2b. For the

averaging, only the rain gauge density mask is applied so

that both sets of skill contributions are averaged over the

same land areas. Average phenology contributions to

skill are small but positive in every month; in August, the

FIG. 2. (a) Soilmoisture (blue) and vegetation (green) contributions

to air temperature predictability for each month individually and for

all four months considered together, averaged over all land points

(excluding Greenland and Antarctica). (b) As in (a), but for air tem-

perature forecast skill, and averaged over all non-ice land points with

a rain gauge density exceeding 1 gauge per 2.58 3 28 grid cell.
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contribution rivals that of soil moisture. (Of course, lo-

cally the phenology contributions can be much higher

than indicated in the histogram—see Fig. 4b.) The spatial

correlation between the increase in skill levels (for the

combined months) and the average monthly standard

deviation of simulated FPAR in the unmasked areas of

Fig. 4b is 0.45, which is significant at the 99.99% level and

thus indicative of a true impact of vegetation phenology

initialization and dynamics on skill.

4. Discussion

The results above show that initializing vegetation

phenology at the start of a monthly forecast and allow-

ing it to interact with the climate system during the

forecast leads to a small increase in monthly tempera-

ture forecast skill in certain locations—a contribution

dwarfed by that of soil moisture and yet still promisingly

important, given the current state-of-the-art in monthly

forecasting. Corresponding analysis (not shown) sug-

gests that phenology contributes no significant skill to

the forecasts of monthly precipitation.

Caveats to the analysis are, of course, worth noting.

First, the design of the forecasts was not ideal in every

way—the atmosphere, for example, was not initialized

with fields from a reanalysis, and SST anomalies were

persisted rather than predicted using a coupled ocean

model. Arguably, though, the experimental frame-

work makes these particular issues secondary. Be-

cause we isolate soil moisture and phenology

contributions by subtracting the results of different

experiments, the atmosphere and ocean contributions

to skill (presumably the same in the experiments) ef-

fectively cancel out.

Presumably more limiting are inherent deficiencies in

the models used and in the soil moisture and carbon

initializations applied. Like all models, the Catchment-

CN land surface model has its biases (Koster et al. 2014),

and the data used to initialize the model are based on

biased measurements. The question that must be asked

in all modeling studies is how experimental results and

associated scientific conclusions are affected by these

biases. It seems reasonable to assume that any biases

that do exist would only hamper the model’s ability to

take advantage of soil moisture and phenology initiali-

zation and dynamics. That is, we can reasonably assume

that the forecast skill contributions shown in Figs. 2b and

4 are lower bounds for the skill that would be achieved

with a perfect system. How much the skill levels could

still increase is unknown, though one upper bound for

the current modeling system, under perfect initialization

data, is effectively provided by the predictability levels

shown in Fig. 1.

Prospects for improving the initialization of the soil

moisture and carbon reservoirs (and thus LAI) rest

largely with the development of data assimilation sys-

tems that combine, through a modeling framework,

observations-based meteorological forcing data with

satellite-based estimates of soil moisture and vegetation

state (e.g., Reichle et al. 2007). New soil moisture esti-

mates from L-band sensors (Kerr et al. 2010; Entekhabi

et al. 2010) show particular promise for assimilation ef-

forts, and estimates of FPAR, as derived from

the normalized difference vegetation index (NDVI)

FIG. 3. Average rain gauge density (number of gauges per 2.58 3 28 grid cell) underlying the

Precipitation Reconstruction over Land (PREC/L) and GPCP monthly rainfall products

during 1979–2010.
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through established techniques (e.g., Sellers et al. 1996),

can also theoretically be assimilated, given the existence

of FPAR-related variables in DVMs. A substantial

amount of satellite-based soil moisture and vegetation

data does indeed exist (or will soon exist) but remains

currently untapped for the subseasonal forecasting

problem.

We close with a final note about the role of dynamic

phenology in forecast systems.We have been careful not

to imply that the phenology-related skill contributions in

Fig. 4b stem only from the initialization of the carbon

states underlying the phenology, for they could also

stem from the interaction of the phenology with the rest

of the climate system during the forecast period. This is a

subtle yet important point. Even if phenology is not

initialized accurately, the fact that the phenology can

interact with soil moisture during the forecast period, so

that phenological variations can move in concert with

soil moisture variations during the period, may provide

skill to a forecast beyond what can be derived from soil

moisture alone. In other words, interactive phenology,

regardless of its own initialized state, may be able to

amplify the impact of a realistic soil moisture initiali-

zation for the better. More work is needed to address

this particular idea, but preliminary analyses (not shown

here) do suggest that the idea has merit.

FIG. 4. (a) Contribution of soil moisture initialization and dynamics to air temperature

forecast skill. Twomasks are applied; results are shown only for 1) grid cells with a rain gauge

density greater than one gauge per 2.58 3 28 grid cell and 2) grid cells for which the pre-

dictability associated with soil moisture initialization is greater than 0.005 (see Fig. 1c). (b) As

in (a), but for the contribution of vegetation initialization and dynamics to air temperature

forecast skill, and with the predictability contribution mask derived from Fig. 1e.
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5. Summary

The experiments described above isolate the impact

of dynamic vegetation phenology—its initialization and

subsequent prognostic treatment—on the monthly air

temperatures generated in a forecast system. Phenology

is seen to contribute to both the predictability of 2-m air

temperature (Figs. 1e, 2a) and the skill of air tempera-

ture forecasts (Figs. 2b, 4b). The contributions are not

large and are indeed dwarfed by those of soil moisture,

which are also quantified and are presented for context.

Nevertheless, the inclusion of dynamic phenology does

have a positive impact on the forecast system.

Again, the study is naturally limited by deficiencies in

the modeling system used and in the data underlying its

initialization. Addressing these deficiencies would

presumably only increase the ability of phenology ini-

tialization and dynamics to contribute to skill. We

consider the extraction of some phenology-related

skill, even in light of existing limitations, to be an

encouraging result.
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