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ABSTRACT

Understanding the cloud response to external forcing is a major challenge for climate science. This crucial

goal is complicated by intermodel differences in simulating present and future cloud cover and by observa-

tional uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era.

Presented herein areCMIP5model-derived fingerprints of externally forced changes to three cloud properties:

the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal

average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous

changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to

external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these

changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that

a detectable multivariate signal should have already emerged. A search is then made for signals of external

forcing in two observational datasets: ISCCP andPATMOS-x. The datasets are both found to show a poleward

migration of the zonal CLTpattern that is incompatible with forced CMIP5models. Nevertheless, a detectable

multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the

dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts

to improve these existing satellite observations, in addition to planning for new missions.

1. Introduction

Because of thewidely varying radiative feedbacks that

they induce (Andrews et al. 2012; Bony et al. 2006;

Stephens 2005; Vial et al. 2013), the responses of clouds

to a warming planet represent the largest source of un-

certainty in model projections of future climate change.

An abiding goal of climate science is to evaluate the cloud

changes simulated by models against those that have

occurred in nature to determine whether models have

a basis in reality and whether the human influence on

cloud properties is discernable in observations. However,

the relative magnitudes of forced and unforced cloud

changes on the time scales allowed by the observed re-

cord have yet to be systematically quantified. Achieving

this goal is difficult because a long, reliable, bias-free, and

artifact-free record of cloud properties does not exist, as

most long-term cloud records are plagued by spurious

trends arising from various artifacts. Moreover, many of

the robustly simulated cloud responses to external forcing

can also arise as a result of natural climate variability

alone, with the magnitude of the unforced response rel-

ative to the forced response increasing as shorter time

scales are considered. Nevertheless, models project ro-

bust climate changes that are likely to affect large-scale

cloud properties: poleward shifts of key atmospheric

circulation features (Yin 2005), an intensification of the

hydrological cycle (Held and Soden 2006), and changes to

the vertical temperature structure (Santer et al. 2003,

2013). In this studyweuse these properties to perform the
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first formal detection and attribution study on observed

cloud trends. This requires that we first consider a num-

ber of related questions:

d Can we identify the fingerprints of external forcing on

model cloud properties, and if so, are they distinct from

patterns that arise from internal variability alone?
d How long an observational record is theoretically

required to ensure detection of an externally forced

signal above the noisy background of natural climate

variability?
d Does a multivariate fingerprint that encompasses co-

herent changes in multiple cloud properties present

advantages over a fingerprint tracking changes in

a single variable?
d How strongly are the fingerprints of external forcing

agents expressed in two long-term satellite records?

To answer these questions, we first define indicators that

track features of interest in modeled cloud fields (section

2). These indicators are then used in section 3 to derive

fingerprints of externally forced cloud changes that char-

acterize the robustly simulated coherent response of three

relevant cloud properties to external forcing. In section 4

wequantify the strength of the ‘‘signal’’ of externally forced

cloud changes and the ‘‘noise’’ arising from natural cloud

variability inmodels, and determine in section 5 the year in

which the multimodel average signal of externally forced

cloud change emerges, along with the uncertainty in this

estimate. Finally, in section 6, we perform a formal de-

tection and attribution of the externally forced fingerprint

in the observational cloud record.

2. Cloud change indicators used in this study

In this study, we rely both on observations and on

model results from phase 5 of the Coupled Model

Intercomparison Project (CMIP5). We make use of

unforced preindustrial control (piControl) simulations

and historical simulations extended to 2100 by splicing

with the appropriate representative concentration path-

way 8.5 (RCP8.5) simulation (ALL18.5). Further details

of the models used are given in appendix A.

To detect and track coherent changes across multiple

models, we require indicators that can identify robust

physical processes even in the presence of model errors

and biases. Marvel and Bonfils (2013) introduced

a method to simultaneously track changes in the loca-

tion and intensity of major precipitation features. Here,

we build on these techniques to introduce three simple

indicators of cloud change, which we will use to detect

changes in the latitude L of the cloudiest and clearest

regions, the total cloud amount C in these regions, and

the height H of high clouds.

a. CLT-derived indicators: L and C

Latitude and cloudiness indicators are derived from

boreal winter [December–February (DJF)] mean total

cloud fraction (CLT; Fig. 1a). There are several reasons

for restricting our analysis to DJF averages; these are

discussed in section 3. In almost all CMIP5ALL18.5 and

piControl simulations, there are exactly five local ex-

trema in the smoothed CLT field: maxima over the

tropics and midlatitude storm tracks, and minima in the

subtropical dry zones. We do not consider models for

which this is not true in the 1980–2005 climatology, as

described in section 2. Ourmethod identifies the latitudes

and cloud amounts at these five locations to define two

time-varying indicators. For every year that every month

in DJF is available, we analyze the data as follows:

1) Zonally average the total cloud fraction.

2) Apply a Gaussian filter with width 58 latitude to the

zonal average.

3) Use a peak-finding algorithm to determine the local

extrema (Fig. 1b).

4) Formostmodels, there are exactly two localminimaand

three local maxima for every year’s DJF average. The

latitudes at which these extrema occur are recorded, as

are the values of the smoothedCLT.Thesewill form the

basis for our L and C indicators, respectively.

5) In the rare (fewer than 3.4% of model years in the

ALL18.5 simulations) cases for which there are more

or fewer local extrema than anticipated, missing values

are returned at all five extrema in that year. In sub-

sequent fingerprinting and projection, if any value is

missing in a model at a given year, the model does not

contribute to the multimodel average (MMA) at that

time. Figure 2 shows that when the analysis is restricted

to DJF, there is no discernible trend in the fraction of

models that contribute to the MMA over time.

The resulting MMA time series, measuring the latitudes

and total cloud fraction at these local extrema, are both

of dimension nT 3 5, where nT is the analysis length.

We define the L and C indicators as the anomalies

of the resulting latitude and total cloud fraction time

series, respectively. Anomalies are calculated on a

model-by-model basis with respect to the 1983–2007

time average (in the spliced ALL18.5 runs and the

observations) or the 200-yr climatology (for piControl

simulations).

b. CL-derived indicator: H

Our height indicator H is constructed from the three-

dimensional cloud fraction (CL; Fig. 1c). As with CLT,

we consider DJF averages. For every year, we calculate

the H indicator as follows:
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1) To emulate what a satellite might see, we estimate the

cloud fraction at each vertical level that is visible from

space CL(visible) assuming random overlap (Tian and

Curry 1989). This step is illustrated in Fig. 1d.

2) We compute each model’s temporally and spatially

varying pressure field on the native grid levels upon

which CL is defined.

3) For each grid box, we determine the index of the

lowest native grid level ‘ such that the pressure at the

lower boundary of the cell P(‘) , 440hPa. This is

the standard ISCCP criterion for high cloud.

4) Three-dimensional model cloud fields are reported

on pressure levels that vary spatially, temporally, and

across models. We therefore require a step to de-

termine model CL at the bottommost level closest to

440 hPa. Assuming that P(‘) decreases with increas-

ing ‘, we interpolate between the levels just above

and just below 440hPa (‘ and ‘ 2 1) as follows:

A5
440 hPa2P(‘)

P(‘2 1)2P(‘)
,

CL
(visible)
bottom 5A3CL(visible)(‘2 1), and

Pbottom 5
P(‘)1 440 hPa

2
.

5) To measure the altitude of high clouds, we calculate

the weighted cloud-top pressure (WCTP) at every

grid cell, defined as

WCTP5

"
�
‘
0

i5‘

CL(visible)(i)P(i)

#
1CL

(visible)
bottom Pbottom

�
‘
0

i5‘

CL(visible)(i)1CL
(visible)
bottom

.

(1)

Here, ‘0 is the highest vertical level in the model.

6) We zonally average the resulting WCTP.

7) We spatially smooth the zonal average WCTP with

the same Gaussian filter applied to the CLT-derived

indicators (L and C).

FIG. 1. Cloud indicators used in this study, illustratedusing the cloud fraction froma representative climatemodel (CCSM4) inDJFof year 2000.

(a) Total cloud fraction is first (b) zonally averaged and smoothed. TheL andC indicatorsmeasure the latitude and smoothed total cloud fraction,

respectively, of the five local extrema in the smoothed zonal average [filled circles in (b)]. (c) Starting with the cloud fraction on model vertical

levels (s; hPa), we calculate (d) the nonoverlapped cloud fraction that is visible to space, and then obtain (e) the weighted cloud-top pressure for

clouds above the 440-hPa level. TheH indicator is the value of weighted cloud-top pressure at each of the five latitudes [filled circles in (e)].
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8) Having previously calculated L, we determine the

WCTP at each of the five latitudes that correspond to

local extrema in CLT at the time step in question.

9) TheH indicator at time t is the WCTP at each of the

five latitudes multiplied by 21, such that a decrease

in WCTP, which corresponds to an increase in cloud

height, leads to a positive change in H.

The result is a time series of dimension nT 3 5 repre-

senting the WCTP at the cloudiest and clearest lati-

tudes. As for L and C, the height indicatorH is defined

as an anomaly time series relative to the respective

model climatology.

We note that several models have made use of the

ISCCP simulator (Klein and Jakob 1999; Webb et al.

2001) to directly calculate output that is more similar

to observations. Were we to make use of this output,

we could eliminate the ‘‘visible cloud’’ calculation

described in steps 1–4 above. However, because of the

computational time required to implement the ISCCP

simulator, relatively few models have done so: at the

time of writing, only eight have contributed valid

ISCCP simulator output to the CMIP5 piControl re-

pository, seven to the historical repository, and none

to the RCP8.5 repository. [Note that ‘‘valid’’ means

that the simulator was implemented properly, which

rules out the IPSLmodels; see Zelinka et al. (2013) for

details.] Thus, to ensure a sufficiently large sample

size in the multimodel archive, we rely instead on in-

dicators derived from standard cloud diagnostics as

described above.

c. Further details

1) ANOMALIES

It is well known that major features of the zonal cir-

culation simulated by models are not always found at

exactly the same latitudes (see, e.g., Levy et al. 2013,

2014; Scheff and Frierson 2012). This means that simply

performing a multimodel average may blur or even

eliminate boundaries between, for example, relatively

cloudy and relatively clear latitudes.

The indicators for each simulation we consider are

thus defined as anomalies relative to that particular

simulation’s climatology. Operating in this anomaly

space is useful because models vary in their simulation

of absolute values of cloud fraction, the latitudinal lo-

cations of C extrema, and the vertical distribution of

clouds (Fig. 3). This strategy yields estimates of trends in

L,H, andH that are less affected by model biases in the

locations or intensity of major features, which may be

substantial (Fig. 3). Marvel and Bonfils (2013) used

similar methods to detect poleward shifts of the mid-

latitude storm tracks that are robust across multiple

models, despite model errors in the locations of the

storm tracks.

2) MODEL SELECTION

The ‘‘five extrema’’ structure identified in section 2a

is physically motivated: we expect to see peaks in the

tropics and midlatitudes associated with tropical convec-

tion and storm tracks, respectively. We also expect the dry

subsidence regions in the subtropics to be relatively clear.

FIG. 2. (a) Fraction of models with all five CLT extrema present as a function of time. In July–August (JJA), less

than half the models contain five distinct extrema in the smoothed zonal average CLT. In September–November

(SON) and March–May (MAM), most models have five extrema in the earlier part of the record, but the number of

models with five extrema decreases with time. (b) Boreal autumn (SON) average CLT for a representative model

(CCSM4). Initially, five CLT extrema are detected, but with time, the northern polar cloud fraction increases somuch

that the NH peak corresponding to the storm track ceases to exist.
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As we shall see in section 6, we also find this to be true for

both observational datasets considered. The combination

of physical expectation and presence in the observations

leads us to define afive-extrema test formodel simulations:

if there are not exactly three maxima and two minima in

a model’s smoothed 1980–2005 zonal average DJF CLT

climatology, we mask out (i.e., do not consider) all data

from thatmodel. All models, with the exception of the two

NASA Goddard Institute for Space Studies models

(GISS-E2-R and GISS-E2-H; see Table A1 for more in-

formation about individual models), pass this test.

As noted in point 5 of section 2a, we alsomask individual

model years in which the five-extrema test fails. This rep-

resents a more ad hoc model selection criterion, but be-

cause many simulations contain at least one year in which

there aremore than or fewer than five extrema, we judge it

necessary to maintain a large sample size of models. We

findnoevidence that the years inwhich this test fails are not

randomly distributed, and this results in our discarding

fewer than 4% of model years in our analyses.

3) JUSTIFICATION FOR BOREAL WINTER

In this study, we confine our analysis to boreal winter.

There are three reasons for this choice. First, there are

exactly five local extrema at every time step in the ob-

servations and in most models for DJF. Both Northern

and Southern Hemisphere storm tracks are apparent

and detectable in boreal winter; the Northern Hemi-

sphere (NH) storm tracks weaken in summer and will

not necessarily be present as a local maximum in the

zonal average CLT. In general, however, Southern

Hemisphere (SH) storm tracks are detectable in all

seasons. Second, the ISCCP dataset used relies on ob-

servations in the visible range and thus has no coverage

over the very high latitudes in the winter hemisphere. In

DJF, however, the NH storm tracks are sufficiently far

south to be detectable.

Finally, considering the DJF average ensures that all

five extrema are likely to be present in models over the

entire observed time period; this is not the case for other

seasons (Figs. 2a,b). In the RCP8.5 scenario, all models

predict increasing global temperatures and associated

loss of sea ice. In all seasons except boreal winter, the

replacement of NH sea ice with open water results in

large increases in total cloud fraction in the northern

polar regions. This means that in later years the NH

storm track is no longer detectable as a local extremum.

Because our methodology masks out years in which

fewer than five extrema are detected, this will spuriously

weight earlier times in the MMA quantities.

d. Indicator summary

In summary, L, C, and H provide measures, re-

spectively, of

FIG. 3. Histograms of the climatological locations, obtained from CMIP5 preindustrial control simulations, of (top) total cloud fraction

(CLT) extrema, (middle) values of smoothed CLT at these locations, and (bottom) weighted cloud-top pressures at these locations.
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1) where the cloudiest and clearest regionsmay be found

in a particular model,

2) how cloudy these regions are, and

3) the altitude of high clouds in these regions.

These indicators are restricted to boreal winter and,

being derived from zonal averages, fail to capture im-

portant cloud features that are nonzonal, particularly in

northern latitudes. However, L, C, and H are compu-

tationally efficient to derive from a large ensemble of

models and experiments, inherit many of the useful

features described by Marvel and Bonfils (2013), and

summarize key features of the global pattern of cloud

cover that are highly relevant to cloud feedback.

3. Fingerprints

In the parlance of climate change detection and at-

tribution (D&A), the ‘‘fingerprint’’ is the spatial pat-

tern that characterizes the climate system response to

external forcing (see, e.g., Allen and Stott 2003; Gillett

et al. 2002; Hegerl et al. 1996; Stott et al. 2000; Tett et al.

2002). In this study, we use techniques developed and

refined by, for instance, Barnett et al. (2008) and Santer

et al. (1995, 2013). We calculate this pattern using the

externally forced ALL18.5 simulations spanning the

period 1900–2100.

The multivariate fingerprint is calculated as follows.

1) For every ALL18.5 simulation, we obtain time-

varying indicators La, Ca, and Ha using the methods

described in section 2. The superscript a indicates that

these indicators are derived from ALL18.5 spliced

model simulations.

2) As we are constructing a fingerprint across multiple

variables measured in different units, we require

some means of removing dimensional information

from the indicators. We therefore define normalized

indicators La
norm, Ca

norm, and Ha
norm by dividing

through by the standard deviation of each indicator’s

time series at each location. This ensures that, for any

X 2 fLa
norm, C

a
norm, H

a
normg, the matrix XTX is a cor-

relation rather than a covariance matrix. This has the

effect of giving all five extrema (and all three in-

dicators) equal weight in our subsequent EOF cal-

culation.

3) We then average the ALL18.5 indicators, first over

an individual model’s realizations if more than one is

available, and then over all models to obtain MMA

indicators La
norm, Ca

norm, and Ha
norm. This double

average over realizations and models effectively

damps internal variability because manifestations

of random natural phenomena such as ENSO are

uncorrelated across models. It also effectively guards

against a model with many realizations unduly

influencing the mean.

4) We compute the joint correlationmatrixMTM, where

M is a 15-element vector made up of the three

normalized indicators at five locations, averaged

across all realizations and models:

M5 (La
norm,C

a
norm,H

a
norm).

5) The multivariate climate change fingerprint (Santer

et al. 1995) is then defined as the eigenfunction of

MTM corresponding to the largest eigenvalue (i.e.,

the leading EOF of M).

The resulting multivariate fingerprint Fm(L, C, H) is

shown in Fig. 4a. This pattern is characterized by three

robust physical processes that are consistently simulated

in anthropogenically forced model experiments: pole-

ward shifts of major climate zones (Wetherald and

Manabe 1988; Zelinka et al. 2013; Bender et al. 2012),

increases in midlatitudes and decreases in subtropics of

total cloud fraction (evident here only in the Northern

Hemisphere) (Zelinka et al. 2013), and a global rise in

high cloud (Hansen et al. 1984; Hartmann and Larson

2002; Wetherald and Manabe 1988; Zelinka et al. 2013;

Singh and O’Gorman 2012). The leading EOF explains

over 91% of the variance in the MMA indicators.

Figure 4b, by contrast, shows the leading noise mode,

defined as the leading EOF of the concatenated

piControl indices (section 4b). One phase of this mode is

characterized by an equatorward contraction of the

major cloud features in the subtropics, and a rise of high

cloud especially in the tropics and subtropics. This is

unsurprising given that ENSO (the leading mode of in-

ternal variability in most models) is known to cause an

equatorward contraction of the Hadley circulation (Lu

et al. 2008), movement of the ITCZ (Deser andWallace

1990), and a rise in tropical and subtropical high cloud

tops (Zelinka and Hartmann 2011).

The fingerprint estimated from the ALL18.5 runs is

the response to combined anthropogenic and natural

external forcing. The relative contributions to the fin-

gerprint from purely natural changes in solar irradiance

and volcanic aerosol loadings is therefore unclear in

Fig. 4a. Previous D&A work illustrates that differences

between the anthropogenic and ALL18.5 fingerprints

are relatively small over the satellite era [see, e.g., Fig. 2

in Santer et al. (2013)]. This suggests a relatively small

natural contribution. The fingerprint obtained from the

ALL18.5 model simulations is very similar to that ob-

tained from the multimodel ensemble average of model

experiments in which atmospheric CO2 is increased

at 1% per year (Fig. 4c), indicating that the ALL18.5
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fingerprint primarily reflects the response of clouds to

anthropogenic changes in CO2.

In subsequent sections, we will see that searching for

coherent changes in the three indices simultaneously leads

to earlier signal detection times. First, however, we con-

sider the individual fingerprints of L, C, and H by calcu-

lating the correlation matrices ofLa
norm,C

a
norm, andHa

norm,

respectively. The resulting five-element fingerprint for

FIG. 4. (a) The multivariate fingerprint Fm(L, C, H). The black curve shows, for illustrative

purposes, the MMA piControl zonal average smoothed CLT. The L (H) components are

represented as horizontal (vertical) arrows at each extremum of the smoothed CLT. The EOF

loadings of L andH components are scaled according to the legend (bottom-right corner). The

C components are represented as colored circles at the five extrema. (b) As in (a), but for the

leading noise mode from concatenated control runs. (c) As in (a), but calculated from

the multimodel average of CMIP5 1pctCO2 simulations.
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each index is shown in Fig. 5. These patterns resemble their

counterparts in the multivariate fingerprint Fm(L, C,H). As

expected, the latitude fingerprint F(L) corresponds to

poleward movement in both hemispheres. The cloudiness

fingerprint F(C) is described by clearing in the subtropical

dry zones (albeit more in the Northern Hemisphere), little

change in the tropics, and increasing cloudiness in the

midlatitudes. The cloud height fingerprint F(H) is char-

acterized by a rise in high cloud at all latitudes considered.

4. Signal detection

a. Signal

The fingerprint F for some indicator or collection

of indicators X is a function of location x. Given

suitably normalized observed or simulated data

OX(x, t) with analysis length period nT, the projection

PX(t)5�xO(x, t)F(X, x) provides a measure of the

spatial covariance between the data and the fingerprint.

If the data increasingly resemble the fingerprint, then

the projection PX(t) will trend upward with time. We

define the signal of external forcing SX(nT) to be the

slope of the best-fit line toPX(t), obtained by least squares

regression. This is a standard method commonly used in

D&A research to detect signals of external forcing in ob-

servations (see, e.g., Barnett et al. 2008; Hasselmann 1979;

Santer et al. 2007, 2013). The signal is, of course, a function

of the analysis length nT. In this paper, we calculate uni-

variate signals, obtained by projecting any one indicatorX

onto its corresponding univariate fingerprint F(X, x), as

well as themultivariate signal. The latter is calculated by

constructing a 15-element vector from normalized ob-

servational ormodel data and projecting this vector onto

the multivariate fingerprint Fm(L, C, H).

FIG. 5. Individual fingerprints (leading EOFs of the MMA correlation matrix) for the

(a) latitude indicator L, (b) cloud amount indicator C, and (c) high cloud height indicator H.
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b. Noise

How likely is a given signal to result from natural

climate variability alone? To assess the significance of an

observed signal, we require a null distribution of trends

(i.e., information on the behavior of trends in pattern

similarity between the fingerprint and natural internal

variability). This distribution is constructed using natu-

ral internal variability estimates from the preindustrial

control simulations. For each control run in the CMIP5

archive we derive latitude, cloudiness, and height in-

dicators Lc, Cc, and Hc following the procedures de-

scribed in section 2. Each indicator time series is divided

by the temporal variance at each of the five extrema to

obtain normalized indicators Lc
norm, C

c
norm, and Hc

norm.

We then construct a time series of length 6800 years by

concatenating each of the 34 control simulations (using

only one control simulation per model). To prevent

models with longer runs from dominating our calcula-

tion of internal noise, we use only the first 200 years of

every model control simulation. By using multiple

models with various amounts of noise, we might con-

verge on a more realistic estimate (assuming no sys-

tematic error across models) of noise variability; we do

not assume homogeneity of internal variability across all

models. Moreover, including the first, rather than the

last, 200 years of each simulation means that our noise

estimate is likely to include long-termmodel drift, which

may also result in a more conservative signal-to-noise

estimate. It is these long piControl indicators that de-

termine the leading noise mode shown in Fig. 4b.

We project these concatenated and normalized

piControl indicators onto the univariate and multivariate

fingerprints shown in Figs. 4a and 5.We then calculate the

distribution of nT-length trends in nonoverlapping seg-

ments of the resulting projection time series. This distri-

bution is quasi-normal and distributed around zero, and

its standard deviation NX(nT) provides a measure of in-

ternal climate variability, or noise. The value of NX(nT)

will therefore vary with the analysis time scale nT as well

as the indicator X under consideration (Santer et al.

2013). Rather than recalculate noise on a model-by-

model basis, we use the same noise estimate derived

from the concatenated control runs for all models. This

allows us to take advantage of the larger sample size that

results from concatenation.

c. Signal-to-noise ratios

Dividing the univariate or multivariate signal SX(nT)

by this noise measure yields the signal-to-noise ratio. If

the signal-to-noise ratio exceeds (and remains above)

1.96, then we can claim to have detected a signal with

95% confidence relative to our best current multimodel

estimates of natural internal variability.We use this two-

tailed z test throughout to provide a conservative esti-

mate of significance.

5. Detection times

When might we expect a detectable signal to emerge

from the background of natural internal variability?

Previous studies (see, e.g., Hawkins and Sutton 2012;

Mahlstein et al. 2011) have recognized that, even in cases

where the externally forced signal has not yet emerged

from climate noise, there is still utility in calculating the

‘‘time of emergence’’ when it is predicted bymodels to do

so.Unlike those studies, we focus not on regional patterns

but on the global signal, defined as the projection onto

a univariate or multivariate fingerprint. Our ‘‘detection

time’’ is thus the time at which the global signal is pre-

dicted, in the MMA, to emerge from the noise.

The importance of trend detection for cloud studies

was previously highlighted by Loeb et al. (2007), who

calculate the time needed to detect a statistically sig-

nificant trend in top-of-atmosphere flux assuming a sta-

tistical model (Weatherhead et al. 1998) for natural

variability. Rather than rely on a statistical model, we

instead use the piControl simulations in the CMIP5 ar-

chive for an estimate of internal variability. By treating

individualALL18.5 simulations as equally plausible, we

define the detection time (DT) (Santer et al. 2013) to be

the year in which the signal-to-noise ratio for a model

ALL18.5 trend, beginning in 1983, exceeds and remains

above the 95% significance threshold. The year 1983 is

chosen because it is the first full year for which DJF

satellite observations are available (section 6). The red

line in Fig. 6 shows the MMA signal-to-noise ratio for

the multivariate fingerprint. As expected, it increases

with increasing trend length as trends in the models in-

creasingly resemble the fingerprint while simultaneously

becoming less and less likely to arise as a result of nat-

ural variability alone. The DT of the multivariate signal

is 2010 in the MMA but ranges from 2001 to 2033 in

individual simulations.

We then determine the signal-to-noise ratios for each

univariate fingerprint and calculate the detection time

for each indicator in isolation. Figure 6 illustrates the

utility of the multivariate approach. The multimodel

average H signal is strongest relative to internal noise

(DT5 2026; individual models range between 2005 and

2050), while the MMA C and L signals emerge later in

2036 (2016–78 in individual models) and 2063 (from

1992 to later than 2100 in individual models), re-

spectively. On average, a multivariate representation of

signal and noise results in detection more than a decade

earlier than would be expected from the strongest
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single-variable detection time results, and five decades

earlier than the L signal alone. The uncertainty in DT is

also considerably reduced in themultivariate case, as the

intermodel spread ofL andCDTs exceeds a century but

is only about 30 years for the multivariate DT.

6. Observations

In this section, we apply formal D&Amethodology to

satellite observations, using the two longest satellite-

based records of global cloud properties available. The

International Satellite Cloud Climatology Project data-

set (ISCCP; Rossow and Schiffer 1999) covers the pe-

riod July 1983 through June 2008, while the slightly

longer Pathfinder Atmospheres–Extended dataset

(PATMOS-x; Heidinger et al. 2012, 2014) spans the

period January 1982 through December 2009. Both data-

sets have near-global coverage and provide independently

retrieved estimates of total cloud fraction and its vertical

distribution. Details of both datasets are provided in

appendix B.

As discussed in the GEWEX Cloud Assessment

(Stubenrauch et al. 2013), cloud retrievals from ISCCP

and PATMOS-x are subject to errors and biases arising

from numerous sources. For example, passive satellite

retrievals can have difficulty distinguishing cloud from

underlying cold and bright surfaces (Stubenrauch et al.

2013), and thus we expect considerable uncertainties in

the observed high-latitude cloud properties in DJF.

Moreover, numerous studies (e.g., Evan et al. 2007;

Norris 1999, 2007) have identified potential sources of

unphysical trends in existing observational datasets, in-

cluding spurious drifts due to changes in satellite view

angle and sensor calibration. For these reasons, the

ISCCP and PATMOS-x datasets are not generally

considered to be reliable for long-term trend analysis. In

the following sections, we will show that, despite sub-

stantial observational uncertainty and known artifacts,

useful trend information can be extracted from the ex-

isting observations.

a. Observational indicators

Observational Lo and Co indicators are calculated

from the ISCCP and PATMOS-x datasets as for the

model data. We omit the random overlap calculation

(step 2 in section 2b) in calculating the observed height

indicator Ho(t) because the datasets already report vis-

ible cloud, and define weighted cloud-top pressure as

WCTP5

�
7

i55

CTPiCL
(visible)
i

�
7

i55

CL
(visible)
i

. (2)

Here, CTP is the observed cloud-top pressure. The sum is

over pressure bins 5 through 7, which represent clouds at

FIG. 6. Signal-to-noise ratio as a function of analysis length nT. Solid lines represent the

average of the multimodel signal-to-noise ratio; envelopes are 62 intermodel standard de-

viations from the mean. Vertical lines show the MMA detection time.
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pressures below (altitudes above) 440hPa, in keeping

with the standard ISCCP high cloud classification. As in

the model indicators described in section 2, the obser-

vational indicatorsLo,Co andHo are defined with respect

to the climatology in the relevant observational dataset.

Figure 7 shows the resulting indicator time series, as

well as the temporal correlation between the ISCCP and

PATMOS-x datasets over the ISCCP analysis period.

The correlations are largest in the latitude indicator,

particularly in the tropics and subtropics. This suggests

that that satellite records largely agree on trends in the

locations of the cloudiest and clearest latitudes, and show

the same temporal evolution. The same cannot be said of

the cloud fraction at these latitudes. The observed

cloudiness indicators Co are weakly correlated (or even

anticorrelated) at all locations, except at the tropical

FIG. 7. The (left) L, (middle)C, and (right)H indicators for the ISCCP (black) and PATMOS-x (red) datasets. The correlationR between

the observational datasets over the period 1984–2008 is indicated in each panel.
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peak. This makes it difficult to draw robust conclusions

regarding total cloud fraction from the observations.

There are likewise large differences in themeanweighted

cloud-top pressure at all locations, and positive but small

temporal correlations in the height indicator, with the

weakest correlation found for the SH storm track. Thus,

we identify consistency between observations in the L

indicator, but not in the C or H indicators.

b. Observed trends

Figure 8 shows the observed and modeled trends for

each indicator over the common period 1983–2007. Here,

the indicators have not yet been normalized in order to

report trends in physical units. At every location except

the SH dry zone, both observational datasets agree with

each other and with the MMA on the sign of the L trend.

It is noticeable that the poleward migration of the storm

tracks in both hemispheres is larger in ISCCP and

PATMOS-x than in the model average, as seen in

(Bender et al. 2012) for themodels from phase 3 of CMIP

(CMIP3). The sign of the C trends in the two observed

datasets is in agreement in three of the five extrema, but

differs in the storm tracks. The large ISCCP trend toward

decreasing C in the tropics and subtropics is outside the

range of model results, which may reflect temporal

changes in satellite view angle (Norris 1999). The MMA

trends in H indicate rising high clouds at all locations.

While PATMOS-x shows large positive trends in cloud

height at four of the five extrema, the height trend is

within the model-predicted range only in the SH storm

track. The ISCCP results, however, are even more in-

consistent with the model predictions, and show an up-

ward trend only in the tropics.

7. Detection and attribution results

By projecting suitably normalized observedL,C, andH

indicators onto each of the individual-variable and mul-

tivariate fingerprints, we canmeasure the spatial similarity

between the time-varying observations and the time-

invariant model pattern of externally forced change.

The observed signal is either the 27-yr PATMOS-x trend

or the 25-yr ISCCP trend found in the projection time

series. Because there are no observations of unforced

natural variability, we rely on model piControl runs for

our noise estimates. The observed signal-to-noise ratio for

each indicator is therefore obtained by dividing the signal

by the appropriate length noise term (section 4b), and this

serves to normalize the indicators. Figures 9a–c show the

projection of ISCCP and PATMOS-x L, C, and H in-

dicators onto the individual normalized fingerprints F(L),

F(C), and F(H) (Fig. 5). Figure 9d shows the simultaneous

projection of all three indicators onto the multivariate

FIG. 8. The 1984–2008 trends in the (a) L, (b) C, and (c) H in-

dicators in observed datasets [PATMOS-x (squares) and ISCCP

(circles)]. The boxes in the box-and-whisker plots show the inter-

model interquartile range (IQR) of the trends from historical runs for

the recent historical period; red lines indicate themultimodel median.

The whiskers show the range of model results after excluding outliers

using the standard criteria of 1.5 times the IQR.
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fingerprint Fm(L, C, H) (Fig. 4a). In Fig. 9e, we

compare the observed signal-to-noise ratio to forced

and piControl model signal-to-noise ratios. Model/

observation comparisons are performed over the same

time periods; also, to ensure accurate comparison be-

tween the models and observations, 27-yr forced trend

distributions in Fig. 9e are calculated by masking (ex-

cluding data from) ALL18.5 models in the years in

whichDJF PATMOS-x data aremissing. Suitable noise

distributions are calculated by masking the kth year

in each 27-yr chunk of the concatenated piControl

distribution, where k is the duration into the PATMOS-x

record where data are missing.

In standard D&A methodology, an observed signal

can be said to be detected at 95% confidence with

a positive projection that lies more than 1.96 standard

deviations away from the piControl distribution mean,

a range indicated by the gray shading in Fig. 9e. If a de-

tected signal lies within the distributions estimated from

the individual ALL18.5 models, it can reasonably be

attributed to the collection of external forcings included

in the historical and RCP8.5 simulations.

FIG. 9. (a)–(c) Projection of ISCCP (dashed lines with dots) and PATMOS-x (solid lines with squares) L, C, andH

indicators onto the single-variable fingerprints F(L), F(C), and F(H), respectively. (d) Multivariate projection of

ISCCP and PATMOS-x indicators onto Fm(L, C,H). (e) Modeled and observed signals, normalized by the relevant

noise measure. Gray shading indicates 61.96 noise standard deviations away from 0. Values that lie outside this

envelope are incompatible with internal variability at 95% confidence. The 95% confidence intervals of ALL18.5

trend distributions over the ISCCP (dashed) and PATMOS-x (solid) analysis periods are shown as horizontal lines.

Observed trends are shown as squares (PATMOS-x) and circles (ISCCP).
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a. Observed poleward migration incompatible with
forced models

Consistent with previous studies (Bender et al. 2012;

Eastman et al. 2011), we find observational evidence for

a poleward shift in the major features of the zonal CLT

pattern. The L-only fingerprint F(L) is increasingly ap-

parent in both observational datasets and is in-

compatible with internal variability. However, it is also

inconsistent with the 95% confidence interval of the

ALL18.5 model simulation. This is in agreement with

previous studies that suggest models fail to capture the

observed poleward expansion (Johanson and Fu 2009;

Seidel et al. 2008). We note, however, that several au-

thors have suggested that cloud shifts may not be trivi-

ally related to changes in the jet (Grise and Polvani 2014;

Ceppi et al. 2014; Kay et al. 2014), and further study of

the interaction between clouds and the circulation is

necessary to understand this response.

b. Observational uncertainty in total cloud fraction
changes

The observations disagree on trends in the projection

onto F(C), with PATMOS-x showing the amplitude of

the cloudy-get-cloudier pattern decreasing and ISCCP

showing it increasing. However, neither observed trend

differs significantly from model-predicted noise. We

note that themodels do not predict a detectable signal in

the C-only pattern over the ISCCP and PATMOS-x

observational time periods.

c. Observational uncertainty in high cloud changes

Note that F(H), in which high clouds rise everywhere,

is increasingly strongly expressed in PATMOS-x but not

in ISCCP. The PATMOS-x H-only signal is, in fact, on

the cusp of detectability, although signal emergence is not

predicted by the models. The 95% confidence levels of

the ALL18.5 forced model signal-to-noise distributions

overlap the noise distributions, indicating that models do

not predict a detectable signal over the PATMOS-x or

ISCCP observational time periods.

d. Multivariate signal detection in PATMOS-x

Finally, both observational datasets show multivariate

signals that overlap with the distribution of model ex-

ternally forced results. The ISCCP multivariate signal is

positive and compatible withALL18.5 models, but is not

detectable above the noise background. We do not ex-

pect it to be so, however, as the ALL18.5 trend distri-

bution overlaps the noise distribution. In the PATMOS-x

dataset, however, the multivariate signal is both com-

patible with ALL18.5 model signals, but incompatible

with natural variability at the 95% confidence level. Thus

with PATMOS-x, the model-predicted multivariate fin-

gerprint of cloud changes has been detected and attrib-

uted to external forcing. But this result should be

interpreted with caution given the large discrepancies

between observational datasets and the fact that the

modeled distribution of forced signals overlaps sub-

stantially with the noise distribution. The overlap is

consistent with the fact that the PATMOS-x record ends

at the average multivariate model detection time, as de-

termined in section 5.

8. Summary, discussion, and conclusions

Clouds are inherently noisy in space and time. Obser-

vational estimates of multidecadal cloud changes are rel-

atively short andmay contain spurious trends.However, in

this study we have shown that the framework of climate

change detection and attribution may be productively

applied to both modeled and observed cloud properties.

Our results rely on new indicators to track simulta-

neous changes in three cloud properties: the latitudes at

which the zonal average total cloud fraction reaches its

maximum and minimum, the total cloud fraction at these

cloudy and clear latitudes, and the height of high clouds at

these latitudes. By tracking changes with respect to each

model’s climatology, the use of these indicators may

partially eliminate complications that arise from model

errors in the location or intensity of cloud features. Our

indicators are defined at five spatial locations, a choice

that restricts our analysis to boreal winter. Future work

will consider annual means in the tropics and subtropics;

our analysis suggests that observational uncertainty is

highest in the midlatitudes and that the agreement be-

tween datasets is greatest in the tropics. Thus, studies

restricted to low latitudes may reveal more robust trends

in the observational datasets.

Our study indicates that a multivariate fingerprint that

captures coherent changes across multiple variables may

yield shorter detection times. Further work may incor-

porate other cloud properties such as optical depth or

liquid water path that may have robust responses to an-

thropogenic forcing and can be observed from space.

Using these indicators, we identified robust patterns

characteristic of externally forced changes to each in-

dicator. These univariate fingerprints show that models

generally predict poleward shifts in the major latitudinal

features of total cloud fraction, an increase in total cloud

fraction in the tropics and storm tracks and a decrease in

the NH subtropics, and a global rise in high cloud. We

then combined these indicators to construct a multivar-

iate fingerprint that captures variation between and

among the three properties measured. Using multiple

indicators resulted in a decreased detection time, with
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the model-expected signal emerging as early as 2010.

However, we find that multimodel average detection

times are not equal across the three indicators. Our re-

sults suggest the model-predicted height H signal will

emerge earlier than the latitude or total cloud amount

signals, although H trends are not significant over the

observational period. This is consistent with Bellomo

et al. (2014), who found observed trends in regional

patterns of cloud cover from ship observations to be of

the same sign as model-predicted trends, although

model trends over the observed period were not statis-

tically significant.

Applying formal D&A methodology to ISCCP and

PATMOS-x observational data does not result in an

unambiguous signal detection, but rather yields impor-

tant insights into areas where the datasets agree and

disagree. In particular, ISCCP and PATMOS-x both

show a strong trend in the projection onto our L-only

fingerprint. This is consistent with previous work (Lucas

et al. 2014; Quan et al. 2014; Adam et al. 2014) that has

identified strong latitudinal shifts that exceed model

predictions in several diagnostic variables (Davis and

Rosenlof 2012). The detection and attribution literature

also reveals poleward migrations of the Hadley cell edges

(Min and Son 2013) and the major features of zonal av-

erage precipitation (Marvel and Bonfils 2013) consistent

with this picture. The width of the Hadley cell may be

affected by external forcing such as ozone depletion

(Polvani et al. 2011), black carbon (Allen et al. 2012), and

other anthropogenic aerosol emissions (Allen et al. 2014)

and is primarily governed by the SST gradient (Adam

et al. 2014), which changes under internal variability and

external forcing. Our results indicate that useful, consis-

tent trend information can indeed be derived from cur-

rent satellite-based data and provides more evidence for

a discrepancy between modeled and observed changes to

the major features of the circulation.

Our work raises several questions, which will guide fu-

ture work. First, is the observational uncertainty reduced

when known spurious trends are removed from the ob-

servational datasets? Future work will consider artifact-

corrected data (Norris and Evan 2015) and will compare

trends in the ‘‘raw’’ data considered here to trends in the

corrected datasets. Second, how well do models simulate

internal variability? D&A studies rely on models to esti-

mate underlying climate noise and to determine the signal-

to-noise ratio; confidence that the amplitude of natural

variability is not undersimulated is crucial if we wish to

trust these studies. Third, howandwhy does detection time

vary across models? It may be the case that models with

differing equilibrium climate sensitivities or transient cli-

mate responses to the doubling of atmospheric CO2 show

differing signals in the univariate or multivariate patterns.

However, the role of model sensitivity in determining the

amplitude or structure of internal variability in cloud

properties is relatively understudied. Finally, our finger-

print is derived from CMIP5 historical and RCP8.5 simu-

lations, which are dominated by anthropogenic forcings.

However, the observational period includes small changes

in solar forcing, along with a large volcanic event (the

eruption of Mt. Pinatubo in 1991). Future work is neces-

sary to attribute observed and predicted cloud changes to

anthropogenic or natural forcings, as well as to different

anthropogenic forcings such as ozone depletion or the

emissions of greenhouse gases or tropospheric aerosols.

The results presented in this study support ongoing

efforts to improve existing long-term satellite records.

By highlighting areas of disagreement, and by showing

that the extraction of useful trend information is possi-

ble, we provide motivation for continuing study of

ISCCP and PATMOS-x. However, we find that multi-

variate signals of externally forced cloud change are

predicted to emerge on relatively short time scales: an

encouraging result for planned future missions such as

the Climate Absolute Radiance and Refractivity Ob-

servatory (CLARREO; Wielicki et al. 2013).
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APPENDIX A

Model Data

We use model output from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012). All data are available for download via the Earth
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TABLE A1. Official acronyms and modeling center information of the CMIP5 models used in this study. (Expansions of model name

acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Model Country Modeling center

ACCESS1.0 Australia Commonwealth Scientific and Industrial Research Organisation

(CSIRO), and Bureau of Meteorology (BoM)

ACCESS1.3 Australia Commonwealth Scientific and Industrial Research Organisation

(CSIRO), and Bureau of Meteorology (BoM)

BCC-CSM1.1 China Beijing Climate Center (BCC), China Meteorological Administration

BCC-CSM1.1-M China Beijing Climate Center (BCC), China Meteorological Administration

BNU-ESM China College of Global Change and Earth System Science, Beijing Normal

University

CanESM2 Canada Canadian Centre for Climate Modelling and Analysis

CCSM4 United States NSF, DOE, and National Center for Atmospheric Research (NCAR),

Boulder, Colorado

CESM1(CAM5)–1-FV2 United States NSF, DOE, and National Center for Atmospheric Research (NCAR),

Boulder, Colorado

CESM1(WACCM) United States NSF, DOE, and National Center for Atmospheric Research (NCAR),

Boulder, Colorado

CMCC-CMS Italy Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC),

Bologna

CNRM-CM5 France Centre National de Recherches Météorologiques (CNRM), Météo-
France, and Centre Européen de Recherches et de Formation Avancée
en Calcul Scientifique (CERFACS), Toulouse

CSIRO Mk3.6.0 Australia Australian Commonwealth Scientific and Industrial Research Organisa-

tion (CSIRO) Marine and Atmospheric Research, Melbourne, in

collaboration with the Queensland Climate Change Centre of

Excellence (QCCCE), Brisbane

EC-EARTH European Union EC-Earth Consortium

FGOALS-g2 China Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences

(CAS), Beijing, and Tsinghua University

FGOALS-s2 China Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences

(CAS), Beijing

FIO-ESM China First Institute of Oceanography (FIO), State Oceanic Administration

(SOA), Qingdao

GFDL CM3 United States NOAA/GFDL, Princeton, New Jersey

GFDL-ESM2M United States NOAA/GFDL, Princeton, New Jersey

GISS-E2-H United States NASAGoddard Institute for Space Studies (GISS), NewYork, NewYork

GISS-E2-R United States NASAGoddard Institute for Space Studies (GISS), NewYork, NewYork

HadGEM2-CC United Kingdom Met Office Hadley Centre, Exeter (http://www.metoffice.gov.uk)

HadGEM2-ES United Kingdom Met Office Hadley Centre, Exeter (http://www.metoffice.gov.uk)

IPSL-CM5A-LR France L’Institut Pierre Simon Laplace (IPSL), Paris

IPSL-CM5A-MR France L’Institut Pierre Simon Laplace (IPSL), Paris

IPSL-CM5B-LR France L’Institut Pierre Simon Laplace (IPSL), Paris

MIROC-ESM Japan Japan Agency for Marine-Earth Science and Technology (JAMSTEC),

Kanagawa, Atmosphere and Ocean Research Institute (AORI), The

University of Tokyo, Chiba, and National Institute for Environmental

Studies (NIES), Ibaraki

MIROC-ESM-CHEM Japan Japan Agency for Marine-Earth Science and Technology (JAMSTEC),

Kanagawa, Atmosphere and Ocean Research Institute (AORI), The

University of Tokyo, Chiba, and National Institute for Environmental

Studies (NIES), Ibaraki

MIROC5 Japan Atmosphere and Ocean Research Institute (AORI), The University of

Tokyo, Chiba, National Institute for Environmental Studies (NIES),

Ibaraki, and Japan Agency for Marine-Earth Science and Technology

(JAMSTEC), Kanagawa

MPI-ESM-LR Germany Max Planck Institute for Meteorology

MPI-ESM-MR Germany Max Planck Institute for Meteorology

MPI-ESM-P Germany Max Planck Institute for Meteorology

MRI-CGCM3 Japan Meteorological Research Institute (MRI), Tsukuba

NorESM1-M Norway Norwegian Climate Centre

NorESM1-ME Norway Norwegian Climate Centre
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System Grid (see http://cmip-pcmdi.llnl.gov for further

information). Table A1 lists the official acronyms and

modeling center information for all models used in this

study. The following CMIP5 experiments are used:

Historical simulations with estimated changes in

anthropogenic and natural forcings over the period

1850–2005. Because not all models start in 1850, we

use data over the period 1900–2005.

TABLE A2. CMIP5 historical and RCP8.5 simulations used in this study, with their tracking IDs.

Model EM Tracking ID (historical) Tracking ID (RCP8.5)

ACCESS1.0 r1i1p1 07cc4198–3b18–442e-878a-00d7c8483c8b 56184ffb-a040–4808–8232-a8378233e17e

ACCESS1.3 r1i1p1 3d81c1bc-c025–4d77–8add-284a51e53c09 3234b999–0748–4c66–8927-cf8cc89f37d7

BNU-ESM r1i1p1 1b040afc-6f9c-4df0-b5e1–4177f19c35e9 d1da0098–54bc-433a-a903–8ca448c8ef56

CCSM4 r6i1p1 eee235fe-e187–4294-bd62–47cfb30ef6dc c9eb13f7-afac-4ece-bd92-efc0e0ebd317

CCSM4 r1i1p1 c8cb47c1-f7bd-438f-90f2-bf22f98165ca b2970ac9–9a96–495f-8e12–471b666aa066

CCSM4 r2i1p1 de28ae8b-5cb0–4095-b592-dbae0feb14fd 03d9022e-bb7a-4da1–8325–1b691233f0e2

CESM1(CAM5) r1i1p1 35eef327–3456–4d80-a1a2-edda919d57d3 0e476841–2b58–43ec-972a-de46dc585707

CESM1(CAM5) r2i1p1 3e3e9a33–3e56–4bf2–8565–8a81e478d129 8177b544-a4dd-4c10-b415–19e2a4d248d0

CESM1(CAM5) r3i1p1 1ac5d672-c228–4cf3–8f6e-50cfb3b97a43 61a92830–3674–4e2f-b335–7d071225a7fc

CSIRO Mk3.6.0 r8i1p1 cfeb53f2-dfa4–4b4a-ab5e-4ca2d4d4e23f d82adc46-e9a1–416f-b9b8–75f0499d3d3e

CSIRO Mk3.6.0 r3i1p1 9c2c11ad-e83d-40ad-b1be-a24f3be21951 f7621835–34f7–4f7e-b141-d0bf541287f1

CSIRO Mk3.6.0 r2i1p1 99ff1ca5–3b74–4ac8-b4ef-6b7a674ead99 66aa656b-86d9–4015–88da-06612d7d2c6f

CSIRO Mk3.6.0 r7i1p1 a99200c6–457f-4d04–8c5a-a5570dd6bd9e 7a132928–519c-458c-abe4-e4abec9e354b

CSIRO Mk3.6.0 r5i1p1 7486f9aa-df58–438b-86da-d96ffa44b998 065a25b7–2589–499a-9048–8c810c2ff680

CSIRO Mk3.6.0 r1i1p1 d947aa41–6e68–45d7-acac-8079fc080d03 c0201043–4333–43a3-b03a-3fd625e778a2

CSIRO Mk3.6.0 r10i1p1 c4f50cb9-bcbc-4761–90db-1df2dfee8dbd f2fb218f-906d-4fc6-ba61–1f32a5d38536

CSIRO Mk3.6.0 r4i1p1 fa9cbe73–56c7–4666-a56f-6ef8564ca895 79cf2399-ad2a-4a6c-943e-14c5970920a7

CSIRO Mk3.6.0 r9i1p1 262cc548–80f8–42dd-8c16–87d8ea2c6bba 8ac24227–4dd1–472c-83bf-b2a3d621b755

CSIRO Mk3.6.0 r6i1p1 98b30a21–4b5c-4f15–9c67–4082092050f6 43e47dcd-640c-442d-9e33–5b7341b3b166

CanESM2 r1i1p1 2df1c4ad-343f-46e1–96e7–3167d84b817c 5442b468-b1e7–4c6b-80bb-0ddc076b791c

CanESM2 r5i1p1 d0b8b532–1265–4f77-ae9f-fe1afa871d93 beb43e50–155e-4ae9–8b36-eb705ee25298

CanESM2 r4i1p1 724f6df4–6da6–4495–8fe4–44599e4840b4 4f466345–303a-4b06-b194-c2eee0b1ac71

CanESM2 r3i1p1 83b128d5–29f3–41cd-9da5–46d852e15f6a 2461bd03-ab25–425d-a81b-a6424d861cbd

CanESM2 r2i1p1 37be7fdc-eb55–4ffa-86ff-95e9b4845a23 12aa33bf-360b-4a3c-a855–973f33fadd86

FIO-ESM r2i1p1 0826ea58–82ee-4132-bb62–229888510ddb c1540d5c-6419–44ae-ae08–3ed65aa00aaf

FIO-ESM r3i1p1 b549d654–02b6–4a2b-baf1–3267255c8f7e c22d3392-db5d-47ec-8794-f558899a9a86

FIO-ESM r1i1p1 d64d596f-808f-45bf-8296–32e7885e40a5 8ef2d106–4e8e-4c18-bbda-3387e7a15c8b

GISS-E2-H r1i1p1 845fee88–5c0d-42f0-ba0b-7f18b599aafe 0fb02189–6bee-46c6–8dea-faa2eb22d086

GISS-E2-H-CC r1i1p1 005af1c0-d53e-4f5b-960d-f8df902b8c20 56376f9b-cb71–40c9-a239–54e213f74a3b

GISS-E2-R r1i1p1 706ad5e5-ed2c-46bd-9516-a0e918f8c08c 84646c9b-d664–4ad6-acae-3c5bc902e1f8

GISS-E2-R-CC r1i1p1 c641b9ff-2c30–482c-9507–684e0e8872ba f0b72f30–97c3–4ed2-b0a7–307fca540ee8

HadGEM2-CC r1i1p1 82204e34–95a3–460f-a6e2–73132fb6b84a 2599a217-edc3–4366-ac44-fd155154eba0

HadGEM2-ES r4i1p1 fd53b119–2d73–4e92–8eb3–60cf0048a30c b93a15dd-5926–4704-a336–977d7a81e69f

HadGEM2-ES r2i1p1 40febdb8–89c3–4223–8d59-b7f394f77319 6978cbf6–3eaa-4ebb-b42a-85044e67d830

IPSL-CM5A-LR r3i1p1 5c88d37c-b9cf-4b6e-95cc-c7ea3791f435 bbfc4f16-cc35–45d4–922e-4de0bf313bd2

IPSL-CM5A-LR r2i1p1 e9c4f130-cf25–44fd-b703–746f63267f8a aa0b2f53–48cb-44fc-94db-ed35634aaae7

IPSL-CM5A-LR r4i1p1 25b29b55–795a-49ea-b598–7349e3c62862 c8d8e363–26f8–41c3–8837–78badfac6eea

IPSL-CM5A-LR r1i1p1 aa67f13a-c715–496d-aecd-e38d5638c5f8 62216563-b6af-410c-8370–9a1073b0b92b

IPSL-CM5A-MR r1i1p1 f7bc4758-f7f0–4fa5–9499–8318a5927e52 6785a7ad-9831–4a1d-8866–3f0fefe076fb

IPSL-CM5B-LR r1i1p1 1e03a655-c3b9–4711–923d-6ce7168a093a d9fc377b-e172–4264–9f46–1ecbeb940e1a

MIROC-ESM r1i1p1 79c76029–2052–4649-b49b-ff358acc01b9 ce97b1e9–1fce-4875–99f6–43dcd0f9f91d

MIROC-ESM-CHEM r1i1p1 6e7bd582–5a27–4c35–83a0–8a864ad68bb8 566ccd86-aab3–4f9c-b7f8–1fe14932dc9f

MIROC5 r3i1p1 bd1809ef-2764–4088–9d7f-4bf913e56216 a92a05fe-f4c9–4511-b4ab-a9df33e65402

MIROC5 r1i1p1 aa74f88c-2bb5–4fcb-9d7c-783fb3e593f7 589be518–8e9a-4733-abf8-d50ecbc7c7e5

MIROC5 r2i1p1 d86f27d8–5680–46f2–9209–243d5c33d087 21173ca3–4c02–4e58–8f90–0815711d5037

MPI-ESM-LR r2i1p1 19956499–5ac2–4651-ae2d-7fbe63db0ca9 e2240ab7–5efe-4a7f-8db9–791b133d7ef6

MPI-ESM-LR r1i1p1 12e33eea-ce66–4339–9716–2111ea20d89e addae416-bf2a-480c-a6aa-eaac68b2deaa

MPI-ESM-LR r3i1p1 9de44f96–931b-4634–812d-affde6e85e1f fd783166-c28e-4e89–8bbd-71030d1e0fb6

MPI-ESM-MR r1i1p1 067abb42–5677–4834-b6b2-abf5c5b42dbd 2d0aa880-fb46–47eb-8c36–679e19be31a2

MRI-CGCM3 r1i1p1 dcfcecd5–7743–4368–98cd-94f4d2b52cf1 51f46dfb-b9bf-4a13-a1f3-bb80c028dca4

NorESM1-M r1i1p1 d52fcaf2-e063–4a1a-b95d-9c294a5b0cec 135123c9–10b4–46d5-a272-e47ec37cb7c9

NorESM1-ME r1i1p1 b710e60f-8c76–46f6-ad35-ace4aac731c8 455f89da-f438–4b4e-bf86–78fa08ced19a

BCC-CSM1.1 r1i1p1 c988e4b8-e9bf-454a-bd61-d9b63109c921 87d68a6f-2684–41de-af8d-81a834ca60d5

BCC-CSM1.1-M r1i1p1 d164ac2d-a51c-449f-a583–6859f7bc99be 21f14252–533a-416d-9bee-b7fa98d1adc2
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RCP8.5 simulations in which twenty-first-century

changes in greenhouse gases and anthropogenic aero-

sols are prescribed according to representative con-

centration pathway 8.5 (van Vuuren et al. 2011),

generally over the period 2005–2100.

piControl simulations: preindustrial runs with no

changes in external climate forcings.

1pctCO2 simulations: runs in which CO2 is increased

at 1% per year for 140 years.

Models with known problems (see http://cmip-pcmdi.

llnl.gov/cmip5/errata/cmip5errata.html) are excluded:

CMCCmodels are removed because of errors in vertical

coordinates, and FGOALS models are removed be-

cause of a number of problems including data corrup-

tion, omission of volcanic forcing in the historical

experiments, and missing RCP8.5 scenarios. To prevent

overdependence on models from NASA’s Goddard

Institute for Space Studies, we considered only physics

version 1 of the GISS-E2-H and GISS-E2-R models.

However, because these models fail the five-extrema

test, data from these models do not contribute to

our results. Tables A2 and A3 list the CMIP5 historical,

RCP8.5, 1pctCO2, and piControl simulations used,

along with the unique tracking identifier (ID) found in

the metadata.

Splicing of historical and future simulations

For extended analysis, CMIP5 historical simulations

are combined with RCP8.5 runs to create the ALL18.5

simulations used in this paper. Model metadata are

checked and a spliced file is created provided that

d the designated parent experiment of the RCP8.5

simulation is ‘‘historical,’’
d the ensemble member (EM) identifiers (as defined in

the CMIP5 Data Reference Syntax Document) of the

RCP8.5 run and indicated parent match,
d historical experiments end in December 2005 (No-

vember 2005 for Hadley Centre models), and

TABLE A3. CMIP5 preindustrial control simulations.

Model EM Tracking ID

Control run length

(months)

ACCESS1.0 r1i1p1 0c065cf1–6c81–4a83-a45d-1e13f369f966 6000

ACCESS1.3 r1i1p1 2c89e8e8–2b3d-4583-b6cd-b1875d27dc4d 6000

BNU-ESM r1i1p1 9b5a570b-5901–4b36–9349–6ebb4507c258 6708

CCSM4 r1i1p1 bdb87549-ca51–416e-8caa-aecf10f4d6ae 12 612

CESM1(BGC) r1i1p1 271aefea-3f97–455f-8a6a-d9ecec96f645 6000

CESM1(CAM5) r1i1p1 4bb892de-4446–4c93-a1c2–652c62848b8f 3828

CESM1(FASTCHEM) r1i1p1 81535be4–714d-4283-a931–2e3fca062d57 2664

CESM1(WACCM) r1i1p1 5f37abfd-7096–4d19-bc4f-cfb707f6446a 2400

CSIRO Mk3.6.0 r1i1p1 a6ba79f2-fc43–4bda-bef8–3b7fd916ba7a 6000

CanESM2 r1i1p1 2ae535c3-e293–48f0–9994–6904699963fa 11 952

FIO-ESM r1i1p1 9ecd9564-fb75–41cf-9aea-06f70b45fed9 9600

GFDL CM3 r1i1p1 5793a2ef-6ab9–414d-a264–44a260e2a608 6000

GFDL-ESM2G r1i1p1 4d7efe9c-534e-4900–81e0-c1a0cd6e862d 6000

GFDL-ESM2M r1i1p1 f4aaa9c0-ae2c-4953-bcb1-d5b332a80d48 6000

GISS-E2-H r1i1p1 eb36f5c6–480f-4bb0–80b5–47b1cd36a0f5 9360

GISS-E2-H-CC r1i1p1 a2d519a2–27bd-49d1–853e-5ce5c9d9a746 3012

GISS-E2-R r1i1p1 67b127d9–9545–467a-b13f-25198e099fad 1200

GISS-E2-R-CC r1i1p1 828e1d58-b7bd-4111–9bc4-d1fd604fa2fd 3012

HadGEM2-CC r1i1p1 edca00c5–36f6–49e4-bb20–0ed673d1bacf 2881

IPSL-CM5A-LR r1i1p1 10cdc455-d825–44f3-bef8-d2a97eae9c23 12 000

IPSL-CM5A-MR r1i1p1 abe410cd-c539–45df-9a83–106bc64f45be 3600

IPSL-CM5B-LR r1i1p1 668308bb-2205–4132–8a75-cb6a7716c744 3600

MIROC-ESM r1i1p1 16ba40d8–3532–4abf-b346–66c09f2efa90 7560

MIROC-ESM-CHEM r1i1p1 375ce3c6–4a26–448d-b0cf-bd57004a995c 3060

MIROC5 r1i1p1 8c59969d-e245–4852–8e54–2c90de6f2961 8040

MPI-ESM-LR r1i1p1 92c55a3c-2086–407f-a759–9f0c5cc8bacd 12 000

MPI-ESM-MR r1i1p1 ae44c27e-395d-4890–8da6–54215626027b 12 000

MPI-ESM-P r1i1p1 a619277a-6763–43e9-a4a1–84ce746f8d23 13 872

MRI-CGCM3 r1i1p1 6787659a-2400–463c-a4f6-ec623991ca16 6000

NorESM1-M r1i1p1 a6a2cbdd-d01b-4337–8707-e58b299a6963 6012

NorESM1-ME r1i1p1 18d58b18–80c4–4c65-b8d8-d831d72f7ac4 3024

BCC-CSM1.1 r1i1p1 e6be09df-1cb7–4c9f-841f-dc4c56700071 6000

BCC-CSM1.1-M r1i1p1 a419cc89-c6b0–41a1-be2e-eba830c20262 4800

INM CM4 r1i1p1 9a7cbe25–70dd-4ab2–98d7–32cf7b40a167 6000
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d RCP8.5 experiments begin January 2006 (December

2005 for Hadley Centre models).

Imposing these criteria excludes several available

models from the splicing process; those considered for

use in this study are listed in Table A2.

APPENDIX B

Observational Datasets

a. ISCCP

The International Satellite Cloud Climatology Project

(ISCCP; Rossow and Schiffer 1991, 1999) provides es-

timates of the area coverage of clouds stratified by the

apparent cloud-top pressure of the highest cloud in

a column and by the column integrated optical thickness

of clouds. These estimates are the results of retrieval

algorithms applied to radiance observations from the

visible and infrared window channels of geostationary

and polar-orbiting satellites. In the retrieval algorithm,

scenes are classified as cloudy if the visible or infrared

radiance in the 1–5-km field of view differs from the

clear-sky value by more than the detection threshold.

Optical thickness and cloud-top temperature are com-

puted for each cloudy scene by comparing the observed

visible or infrared radiance with that computed from

a radiative transfer model, and a temperature profile

from the TIROS Operational Vertical Sounder is used

to convert cloud-top temperature to cloud-top pressure.

These data are accumulated for 280 km 3 280 km re-

gions every 3 h starting in July 1983.

In this study we make use of the GCM simulator-

oriented ISCCP cloud product, which is constructed

from daytime-only monthly averages of the ISCCP D1

cloud dataset (Rossow and Schiffer 1999) over the period

July 1983–June 2008. Estimates of cloud coverage are

provided in a joint histogram with six optical depth bins

and seven cloud-top pressure bins. This product is de-

scribed more fully in Pincus et al. (2012) and is available

from http://climserv.ipsl.polytechnique.fr/cfmip-obs/.

Vertical profiles of cloud fraction are computed by

summing the joint histograms over all optical depths.

Total cloud fraction is computed by summing over all

bins of the histogram.

b. PATMOS-x

The Pathfinder Atmospheres-Extended (PATMOS-x)

dataset is derived from measurements from all five

channels of NOAA’s Advanced Very High Resolution

Radiometer (AVHRR) sensor on board the polar-

orbiting platforms of NOAA and EUMETSAT. Cloud

detection is based on six Bayesian classifiers computed

separately for seven surface types. These Bayesian clas-

sifiers were derived through the objective analysis of

collocated AVHRR observations from NOAA-18 and

Cloud–Aerosol Lidar with Orthogonal Polarization

(CALIOP) observations from Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO)

(Heidinger et al. 2012). Retrievals of cloud temperature

and cloud emissivity are based on an optimal estimation

approach applied to AVHRR split-window observations

(Heidinger and Pavolonis 2009).

Here we make use of PATMOS-x data between Jan-

uary of 1982 and December of 2009 that is provided by

the GEWEX Cloud Assessment (Stubenrauch et al.

2013). Total cloud fraction estimates from up to four

local observation times are averaged together in gen-

erating the monthly-mean total cloud amounts used in

this study. For vertically resolved cloud fraction in-

formation, we use joint histograms of cloud fraction

segregated into seven cloud-top pressure bins and five

cloud infrared emissivity bins. These are taken from the

1330 local time retrievals, and we sum themover all cloud

emissivity bins. The PATMOS-x data are available from

http://climserv.ipsl.polytechnique.fr/gewexca/.
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