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ABSTRACT

The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evalu-

ation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison.

Unlike the traditional methods of LSMevaluation or comparison, benchmarking uses a fundamentally different

approach in that it sets expectations of performance in a range ofmetrics a priori—beforemodel simulations are

performed. This can lead to very different conclusions about LSM performance. For this study, both simple

physically basedmodels and empirical relationships were used as the benchmarks. Simulations were performed

with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks

was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies

considerably when compared to the different benchmarks. All models outperform the simple physically based

benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear re-

gression against downward shortwave radiation.Whilemoisture information is clearly central to latent heat flux

prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous

atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the

limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to

other LSMs without a mechanism to objectively quantify the expectations of performance. The authors con-

clude that their results challenge the conceptual view of energy partitioning at the land surface.

1. Introduction

Since the Project for the Intercomparison of Land-

Surface Parameterizations Schemes (PILPS; Henderson-

Sellers et al. 1993, 1995b) began to compare land surface

models (LSMs) in 1993, the landmodeling community has

used a range of methods to examine how and why these

models differ from each other and from observations.

PILPS began with offline synthetic forcing (e.g., Pitman

et al. 1999) but moved to using observational atmospheric

forcing for multiple sites, including midlatitude grasslands

(Chen et al. 1997; Schlosser et al. 2000), midlatitude

catchments (Wood et al. 1998), high-latitude sites (Bowling

et al. 2003), and the urban environment (Grimmond et al.

2010, 2011; Best and Grimmond 2013, 2014). The suc-

cess of PILPS also led to regional-scale experiments
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such as the African Monsoon Multidisciplinary Analysis

(AMMA) Land Surface Model Intercomparison Pro-

ject (ALMIP; Boone et al. 2009), which produced a

multimodel ensemble of land surface states for regional-

scale hydrological and meteorological studies. The

spatial extent of most PILPS experiments was limited

to point locations or catchments, and the need to

broaden this scope was recognized by the Global Soil

Wetness Project (GSWP). GSWP was global in extent,

using atmospheric forcing at a 18 resolution to compare

models and to produce a global soil moisture product

(Dirmeyer et al. 1999). Like PILPS, GSWP led to a

very large suite of science outcomes (Dirmeyer 2011),

but both projects were limited by being uncoupled with

the atmosphere and therefore lacking possible land–

atmosphere feedbacks. This led tomodel intercomparison

projects like the Global Land–Atmosphere Coupling

Experiment (GLACE), which introduced the concept

of coupling strength (Koster et al. 2004) and in turn led

to major analyses of land processes coupled with

atmospheric models (Koster et al. 2006; Guo et al.

2006). Most recently, the GLACE methodology has

been used within phase 5 of the Coupled Model

Intercomparison Project (CMIP5) to examine how soil

moisture feedbacks might evolve into the future under

changing climate and increasing greenhouse gas con-

centrations (Seneviratne et al. 2013).

These projects have led to a growth in our under-

standing of land surface processes and land–atmosphere

interactions in the recent past and the future. However,

there has also been a growing recognition of how pro-

foundly challenging it is to compare LSMs given their

varied complexity (Henderson-Sellers et al. 1995a) and

that intercomparisons do not necessarily readily provide

answers as to why LSM simulations differ from obser-

vations or each other.

Over the last few years, recognition of a major change

has emerged within the land modeling community. The

community has been developing a growing understanding

of the distinctions between ‘‘evaluation,’’ ‘‘comparison,’’

and ‘‘benchmarking.’’ This paper focuses on these dis-

tinctions to arrive at a new mode of intercomparison

that should catalyze a long-term revolution in how

LSMs and perhaps natural systemmodels in general, are

evaluated, compared, and benchmarked. A schematic

emphasizing the difference between evaluation, com-

parison, and benchmarking is shown in Fig. 1. We de-

scribe each in turn below.

1) Evaluation.Model outputs are typically compared to

observations to derive an error measure (Fig. 1a).

The metrics used to do this can involve a number of

variables from the model, various locations, or

different statistical measures that may focus on mean

values, variability, or properties of variable distribu-

tions. Metrics with errors deemed to be large are

usually identified as important markers for develop-

ment programs. For example, in Fig. 1a, metrics 4

and 11, plotted along the x axis, have the largest

relative errors and might be target metrics for model

development.

2) Comparison. In this case, a model is not just com-

pared to observations, but also to alternative models.

In addition to identifying the metrics that have the

largest relative errors, this type of analysis also

identifies metrics for which one model performs

better than another, or where errors in multiple

models are systematic. This has the advantage over

evaluation of giving a clear indication that perfor-

mance improvements are achievable for those met-

rics where another model already performs better.

For example, in Fig. 1b, metrics 4 and 11 apparently

have the largest relative errors for both models A

and B (and are hence likely to be flagged as de-

velopment priorities). Note that while we might

expect to be able to improve the models’ perfor-

mance for these metrics, there is no categorical

guarantee that improvements are in fact achievable.

We can, however, see that model B has substantially

larger errors for metrics 2, 8, and 9 than model A,

meaning that improvements to model B for these

metrics are attainable. The same can obviously be

said for model A for metric 12.Wemight also deduce

from this type of analysis that model A performs

better than model B (since it performs better in a

larger number of metrics), working under the as-

sumptions that these metrics are of equal weight and

that both models are essentially designed for the

same purpose. A rarely discussed but worrisome

aspect of model comparison is the risk that a model

is developed to be more similar to other models

without necessarily understanding the causes of

differences. Models therefore become more similar,

but not necessarily because they are becoming more

like the observations.

3) Benchmarking. The fundamental characteristic of

benchmarking is that performance expectations—in

this case, benchmark values for each error metric—

are defined and perhaps prioritized a priori. There

are several ways performance expectations might be

defined before running a model.

(i) Better than another model. The most common,

and perhaps weakest, approach is to set the

results from a different model as the perfor-

mance benchmark. This could either be a pre-

vious version of the samemodel or an alternative
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model or ensemble. The distinction here be-

tween benchmarking and comparison is subtle,

but important nevertheless: the analysis fo-

cuses on what is required from the model

rather than just a relative error assessment.

We describe setting the performance of an

alternative model as the benchmark as weak

because it neglects the possibility that both

models are poor, or the possibility that both

models are already within observational error.

(ii) Fit for a particular application. A stronger

application of benchmarking is to define the

levels of performance required for amodel to be

fit for a particular application. For example, in

fluvial flood forecasting applications, metrics

might focus on set tolerance criteria for both

the timing and volume of water that breaches a

riverbank, defining the severity of the event.

This can lead to very different conclusions for

both model performance and development re-

quirements. For example, in Fig. 1c, metrics 4

and 11, which were previously identified as foci

for development because they had the largest

relative errors, are now within the benchmark

expectations and hence need no further de-

velopment for this particular purpose. On the

other hand, metrics 1 and 6 have errors that are

greater than benchmark expectations and are

now a development priority, even thoughmetric

1 apparently has one of the smallest relative

errors. Note also that model A fails to beat the

benchmark for metric 12 and that there are no

other metrics where the benchmark discrimi-

nates between the two models. In this case, we

can draw the opposite conclusion to the one we

outlined when describing comparison: model B

actually performs better than model A, as it

passes more of the benchmarks and is hence

more suitable for this application.

(iii) Effectively utilizes available information. A

third example of benchmarking defines a priori

expectations based on the complexity of a

model and the amount of information provided

to it. For example, an LSM that is given in-

formation about vegetation and soil at a loca-

tion in addition to time-varying meteorology

should be expected to perform better than one

that is not. Similarly, a model that allows for

nonlinear relationships between its input and

output variables should be expected to perform

better than one that prescribes linear relation-

ships. This approach tries to quantify how well a

model utilizes information available in the input

data when generating its output variables

(Abramowitz 2005, 2012). Imagine, for exam-

ple, that the green line in Fig. 1c represented a

linear model that predicted land surface carbon

fluxes purely as a function of incoming radiation.

FIG. 1. Conceptual figure showing the performance of models through (a) evaluation, (b) comparison, and (c) benchmarking. The x axis

represents a series of metrics a modeler might use to evaluate the model, and the y axis represents the normalized error from each metric

used to assess model performance. The dotted lines are a visual guide and have no scientific relevance.
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The knowledge that there are metrics in which

this very simple model outperforms models A

and B (i.e., metrics 1 and 6) tell us that 1) both

models A and B have scope for improvement

and 2) that models A and B do not require any

more information (i.e., more input variables/

parameters) to achieve this improvement.

Moreover, Gong et al. (2013) show that it is

possible to establish a benchmark that can

identify a potential upper bound on the best

achievable performance of a model. This could

be used, for example, to determine if the struc-

ture of models A and B can be improved for

metrics 4 and 11 in Fig. 1.

While this conception of benchmarking is positioned

broadly within ecological and Earth system model

evaluation in Luo et al. (2012), efforts to resolve these

issues within the land surface modeling community are

led from within the Global Land–Atmosphere System

Study (GLASS; van den Hurk et al. 2011). These efforts

continue the history of international LSM inter-

comparison projects but have been extended to use a

common online LSM benchmarking system, the Pro-

tocol for the Analysis of Land Surface Models (PALS;

Abramowitz 2012; pals.nci.org.au/home).Most recently,

the PALS Land Surface Model Benchmarking Evalua-

tion Project (PLUMBER) was created to explore these

distinctions in contemporary LSM evaluation. Simula-

tions from 13 LSMs are compared at 20 flux tower sites

using five predetermined benchmarks across a range of

metrics for sensible QH and latent QE heat fluxes. We

omit consideration of carbon fluxes because only a small

subset of the models in PLUMBER provided data.

PLUMBER is intended as a foundation experiment,

isolating common features of land model performance

so that the community can target areas requiring im-

provements common to all groups, as well as areas

specific to individual modeling groups.

2. Methods

a. Datasets and experimental methods

We use observations as the basis of our experiment,

obtained through the FLUXNET LaThuile free fair-use

subset (fluxdata.org; see Acknowledgments). The 20

flux tower sites used here are listed in Table 1 with lo-

cations shown in Fig. 2. Further gap filling and quality

control specifically focused on use by LSMs were per-

formed before netCDF versions of LSM forcing mete-

orological variables were made available through PALS

for PLUMBER participants. This process included 1)

removing time periods where any significant LSM

forcing variable was not present (e.g., downward short-

wave radiation, surface air temperature, rainfall, or hu-

midity), 2) only allowing whole years of data that

satisfied the first criterion, and 3) gap filling or entirely

synthesizing downward longwave radiation using the

approach outlined in Abramowitz et al. (2012). Log files

giving details for this process at each site are accessible

through PALS. Sites were chosen to obtain a global

spread, giving broad coverage of different vegetation

types (Fig. 2) and a range in climates (Fig. 3; the codes

for each site are given in Table 1). Of the datasets that

TABLE 1. Information about the 20 flux tower sites.

Name Code Country Lat Lon Plant functional type Duration

Amplero Am Italy 41.908N 13.618E Grassland 2003–06

Blodgett Bl United States 38.908N 120.638W Evergreen needleleaf 2000–06

Bugac Bu Hungary 46.698N 19.608E Grassland 2002–06

El Saler El Spain 39.358N 0.328W Evergreen needleleaf 2003–06

El Saler 2 E2 Spain 39.288N 0.328W Cropland 2005–06

Espirra Es Portugal 38.648N 8.608W Evergreen broadleaf 2001–06

Fort Peck FP United States 48.318N 105.108W Grassland 2000–06

Harvard Ha United States 42.548N 72.178W Deciduous broadleaf 1994–2001

Hesse He France 48.678N 7.068E Deciduous broadleaf 1999–2006

Howard Ho Australia 12.498S 131.158E Woody savanna 2002–05

Howlandm Hl United States 45.208N 68.748W Evergreen needleleaf 1996–2004

Hyytiala Hy Finland 61.858N 24.298E Evergreen needleleaf 2001–04

Kruger Kr South Africa 25.028S 31.508E Savanna 2002–03

Loobos Lo Netherlands 52.178N 5.748E Evergreen needleleaf 1997–2006

Merbleue Me Canada 45.418N 75.528W Permanent wetland 1999–2005

Mopane Mo Botswana 19.928S 23.568E Woody savanna 1999–2001

Palang Pa Indonesia 2.358N 111.048E Evergreen broadleaf 2002–03

Sylvania Sy United States 46.248N 89.358W Mixed forest 2002–05

Tumbarumba Tu Australia 35.668S 148.158E Evergreen broadleaf 2002–05

University of Michigan UM United States 45.568N 84.718W Deciduous broadleaf 1999–2003
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fulfilled these requirements, preference was given to

those with longer records.

It is known that many of the FLUXNET datasets do

not have long-term energy balance closure (e.g., Wilson

et al. 2002; Kidston et al. 2010), a problem that could

affect our results. Unfortunately, a comprehensive list of

sites with good energy balance closure is not available,

and indeed knowing which sites come close to

conserving energy, or the extent to which they do, would

not resolve whether or not this is a cause of the empirical

models’ performance. We suspect energy balance clo-

sure in the FLUXNET data will not significantly affect

our conclusions, but note that significant additional

work will be required to determine this conclusively.

Results were returned from eight LSMs, which have

been developed by different research groups. In addition, a

FIG. 2. Locations and biomes of the 20 flux tower sites.

FIG. 3. Relationship between annual mean shortwave radiation and precipitation for each site. The codes for each site are given in Table 1.
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TABLE 2. Participating land surface models.

Model Model version Reference Notes

Community Atmosphere

Biosphere Land

Exchange (CABLE)

2.0 Wang et al. (2011);

Kowalczyk et al.

(2006)

This is identical to CABLE-2.0 tagged version

(Trunk revision 304) but has extra spinup options

for this study. For two sites, Kruger and Mopane,

a fix for dry conditions was implemented. This fix

did not have significant impact on other sites.

(https://trac.nci.org.au/trac/cable/wiki)

CABLE Soil–Litter–Iso

(CABLE-SLI)

2.0_SLI Haverd and Cuntz

(2010)

This uses the SLI soil model in place of the default

soil scheme in CABLE-2.0.

Tiled ECMWF Scheme for

Surface Exchanges over

Land (TESSEL),

uncoupled version

(CHTESSEL)

1.0 Balsamo et al.

(2009); Boussetta

et al. (2013)

Carbon module only used to drive carbon allocation

and carbon flux, but evaporation parameterized

using the Jarvis–Stewart approach.

Center for Ocean–Land–

Atmosphere Studies

Simplified SiB

(COLA-SSiB)

2.0 Dirmeyer and Zeng

(1999); Guo and

Dirmeyer (2013)

Default configuration.

ISBA-3L Surface Externalisée,
version 7.2
(SURFEXv7.2)

Boone et al. (1999);

Masson et al.

(2013)

Three-layer force–restore approach for the soil

(superficial, root zone, and subroot zone layers).

ISBA_dif SURFEXv7.2 Decharme et al.

(2011); Masson

et al. (2013)

N-layer (N 5 14) soil moisture–temperature model

(Richard’s equation, heat diffusion, root profile).

Joint UK Land Environment

Simulator (JULES)

3.1 Best et al. (2011) Default configuration.

JULES_altP 3.1 Best et al. (2011) This is identical to the default JULES 3.1 configu-

ration, except 1) the emissivity of each surface has

been reduced; 2) the spectral albedo, interactive

phenology, and soil moisture heterogeneity for

enhanced runoff have been turned off; 3) the van

Genuchten soil hydraulic scheme is used;

4) supersaturated soil moisture is drained into

lower layers; and 5) the snow canopy option has

been turned off for each vegetation type except

needleleaf trees.

Mosaic — Koster and Suarez

(1992, 1994)

This is currently used in North American Land Data

Assimilation System, version 2 (NLDAS-2), but is

no longer used in the GSFC GCM.

Noah2.7.1 2.7.1 Ek et al. (2003) The community Noah LSM is used operationally in

NCEP models: 1) 2.7.1 currently in GFS and CFS,

2) 2.8 in NLDAS, and 3) 3.0 in NAM.

Noah3.2 3.2 www.ral.ucar.edu/

research/land/

technology/lsm.php

This is identical to Noah 2.7.1, except for 1) updated

roughness length and snow albedo over snow-

covered surfaces; 2) updated soil moisture avail-

ability; 3) added the exchange of heat required to

change the temperature of falling precipitation from

air temperature to skin temperature; 4) calculation

of roughness and emissivity

dependent to vegetation fraction; 5) added

capability to use MODIS land-use dataset for

vegetation categories; 6) added option to use 2D

LAI; 7) significant changes to the treatment of

glacial ice; 8) included multilayer urban; and

9) cold-start initialization with soil moisture

initialized at 0.2 and soil temperature initialized

at 290K.
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further five variants or alternative versions of these eight

models were also submitted, giving a total of 13 LSMs

(Table 2).

All model output for PLUMBER was uploaded and

analyzed in PALS. PALS hosts modeling experiments

with each experiment containing downloadable driving

data and experimental protocols. Resulting model output

is uploaded to the system and is used in automated

analyses against observational data and benchmarks as-

sociated with the experiment. PALS also automatically

calculates a suite of empirically based benchmarks, de-

scribed in more detail below, that provide predefined

levels of performance against which LSMs can be tested.

Themodel simulations used in PLUMBERand analyses of

themare available onPALSonce access to thePLUMBER

workspace is requested from PALS administrators.

The initial conditions for soil moisture can have a sig-

nificant impact on the surface heat and moisture fluxes

from LSMs, so it is important to ensure that a consistent

spinup strategy is used for all sites and all models. A

challenge with some sites was that only 2 years of atmo-

spheric forcingwas available, which is not always sufficient

to ensure that soil moisture is fully spun up. To ensure we

could use awide range of sites with good geographical and

vegetation diversity, while also retaining consistency be-

tween all of the sites to ensure a thorough comparison, we

required a spinup strategy that allowed us to use these

sites with only 2 years of data. We therefore initialized all

LSMs as saturated and then repeated the first year of

forcing 10 times. Beginning at a saturated state accelerates

spinup relative to a dry initial state because gravitational

drainage helps remove excess soil moisture.

Formostmodels andmost sites this spinup procedure is

more than adequate (Yang et al. 1995; Rodell et al. 2005).

However, some sites remain problematic. For example,

Kruger only had 2 years of forcing data, and the first year

was a very dry year (274mm of rain) relative to the cli-

matological average (525mm of rain; www.fluxdata.org:

8080/SitePages/siteInfo.aspx?ZA-Kru). This led to very

dry soil moisture, which may or may not be reflective of

the previous period immediately before our chosen year.

This may affect the simulation of QE and QH at this site

for the 13 physically based LSMs and theManabe bucket

model (Manabe 1969) benchmark (M69) described later.

However, this issue would not affect a second physically

based benchmark [the Penman–Monteith (PM) model;

Monteith and Unsworth 1990] or empirical benchmarks,

as described below.

b. Statistical metrics

Evaluation studies typically use canonical statistical

metrics such as mean bias, root-mean-square error, nor-

malized mean error, or correlation. For PLUMBER we

use four common statistical measures on half-hourly data:

mean bias errorMBE, standard deviation SD, correlation

coefficient r, and normalized mean error NME. To

obtain a metric to compare the models for SD, we use the

absolute difference between 1.0 and the ratio of mea-

sured to observed standard deviations. The equations for

all of the statistics used here are given in Table 3. Each of

these contributes different evaluation information. The

value of MBE simply represents the difference in the

mean value of a variable between observations and a

model; SD gives an indication of the magnitude of vari-

ability; r gives information about temporal coincidence of

variability; and NME gives information about all three of

the previous metrics in one, but is less sensitive to being

dominated by outlier values than root-mean-square er-

ror, which is more commonly used.

While these standard statistical metrics give in-

formation about the mean and variability of a model

compared to observations, they are limited in terms of

identifying the skill of the model for predicting ex-

tremes. The extremes are defined as the edges or tails of

the distribution of a quantity and we want to ensure

LSMs capture these tails skillfully because they are in-

creasingly central to explaining important phenomenon,

including droughts and heat waves (Seneviratne et al.

2010; Hirschi et al. 2011). We therefore include two

statistical measures for an analysis of the extremes,

namely the 5th and 95th percentiles of the distributions.

These measures define values of the flux at these points

of the distribution and use the absolute distance between

the modeled and observed values as a metric (Table 3).

In addition to the extremes of a distribution, there are

other statistical measures that can be used to determine

TABLE 2. (Continued)

Model Model version Reference Notes

Noah3.3 3.3 www.ral.ucar.edu/

research/land/

technology/lsm.php

This is identical to Noah3.2, except for the activation

of time-varying roughness length and fixes to the

underground runoff. Initialized with 10-yr spinup

using 1-yr recursive forcing of the first year.

ORCHIDEE Trunk version

rev. 1401

Krinner et al. (2005) The hydrological scheme used for these simulations

is a two-layer bucket model (Choisnel). (http://

forge.ipsl.jussieu.fr/orchidee/browser/trunk)
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howwell amodel recreates the distribution of the observed

values. These provide information about various aspects on

the shape of the distribution. For PLUMBER we have

used three such metrics (Table 3): the kurtosis, which is a

measure of how ‘‘pointed’’ the distribution is; the skewness,

which is a measure of how symmetrical the distribution is;

and the overlap of the observed and modeled distributions

(Perkins et al. 2007). The statistics for each of these were

determined from probability density functions fitted to

each of the modeled and observed variables.

c. Physical benchmarks

Our first physically based benchmark is the M69

bucket model (Manabe 1969). As the name suggests, soil

moisture is represented by a simple bucket that is filled

by infiltration into the soil and emptied by evapotrans-

piration. The M69 model has a long history in climate

modeling (Manabe 1969). The first clear demonstration

of the limits of this model was by Chen et al. (1997), who

showed that the model tended to evaporate too rapidly

because of the lack of appropriate surface resistances.

However, similar to the PM benchmark, we use theM69

model expressly because the simplicity shouldmean that

physically based LSMs should be able to beat thismodel.

Indeed, PILPS demonstrated (Chen et al. 1997) that

most land models could and should beat M69 on a long-

term average, and we include it here to extend that

finding to metrics other than the mean.

The PM benchmark was configured as defined by the

United Nations (UN) Food andAgriculture Organization

TABLE 3. Statistical formulae used for the analyses of the LSMs, where M represents the model values and O represents the

observed values.

Common statistical measures

Mean bias error (MBE)
�
�
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(FAO) standard (Allen et al. 1998). The surface exchange

turbulence that drives the evapotranspiration calculations

in bothM69 and PMwas taken from the PM scheme for a

grass reference surface, and the albedo was set to a con-

stant value of 0.2 for all sites. PM assumes a standard

reference crop, which is irrigated such that it is never

water stressed and hence there is no requirement tomodel

soil moisture for this scheme. This is clearly a limitation

and we acknowledge this, but the key here is that physi-

cally based LSMs should be able to beat this minimum

benchmark. Both of these physical benchmarks represent

the first category of benchmark described in section 1.

d. Empirical benchmarks

We use three empirical benchmarks that attempt to

quantify the information available in the atmospheric

forcing variables for predicting, QE and QH. They are

in the third category of benchmarking described in

section 1. All three construct independent empirical

relationships between meteorological drivers QE and

QH, and all three benchmarks are used as benchmarks

out of sample.

The simplest empirical benchmark (EMP1lin) is a lin-

ear regression of each of QE and QH against incoming

solar radiation SWdown. The next is a multiple linear

regression against SWdown and near-surface air tem-

perature Ta (EMP2lin). The third and most complex

(EMP3KM27) is a nonlinear regression against SWdown,

Ta, and near-surface air relative humidity RH. It uses a

k-means clustering approach to create 27 distinct sub-

domains of the SWdown–Ta–RH domain and then

performs a multiple linear regression betweenQH or QE

and the three meteorological variables. This delivers a

nonlinear (piecewise linear) response to these three

forcing variables. The number of clusters was chosen to

give a simple conceptual representation. Imagine that

each SWdown was binned into high, medium, and low

values. Within each of these bins, imagine a similar dis-

cretization for Ta andRH, so that there are nine bins with

SWdown in the high range. Giving each variable three

discretizations, on average, allows 33 5 27 clusters.

Critically, for all three empirical benchmarks, the

parameters are determined by statistical regressions

using data that are out of sample, meaning that data

from the site at which we are testing are not used to

establish the regression parameters for that site, but are

taken from the remaining 19 sites. This is in some sense

analogous to not allowing the LSMs to calibrate their

parameters using local site data. Meteorology at the

testing site, together with these empirical parameters

trained using data from other sites, is then used to make

each benchmark prediction at the testing site. These three

benchmarks have been used previously (Abramowitz

2012) to help determine the level of performance that can

be achieved based purely on the information content in

the meteorological forcing data. These benchmarks are

automatically calculated within the PALS system.

It is important to note that all three empirical bench-

marks represent instantaneous responses to a subset of an

LSM’s meteorological forcing. They have no internal

state variables andno information about components that

may have memory of past conditions, such as soil mois-

ture, soil temperature, or any vegetation or soil proper-

ties. These empirical benchmarks are not constrained by

the surface energy balance or by sharing a common sur-

face temperature forQH orQE, which are constraints that

do apply to the physical models.

3. Results

At each site, for QE and QH separately, the statistics

for all of the LSMs and all physical and empirical

benchmarks are determined. Each LSM is ranked rela-

tive to all of the benchmarks, with the best performing

sample element given a score of 1 and the worst given a

score of 6. These rankings are then averaged over all

statistics and all sites to give an average ranking for both

QE and QH separately:

Ri5
1

nsnt
�
n
s

j51
�
n
t

k51

Ri
jk
,

where i represents the LSM, physical model benchmarks,

or empirical benchmark being evaluated; Ri is the aver-

age ranking for i; ns is the number of sites; nt is the

number of statistical measures; and Rijk is the ranking of

LSM or benchmark (i) at site j for statistical measure k.

As each LSM is compared only to the benchmarks and

not to other LSMs, it is possible to obtain different av-

erage rankings for the model and benchmarks when

each of the LSMs is considered. Furthermore, because

each statistic at each site is given a limited value between

1 and 6, it is not possible for one site or one statistic to

substantially influence the overall average rankings

through a particularly good or poor performance, as is

the case with some of the statistical measures them-

selves. Hence, the results are reasonably robust.

Figure 4 shows that all models display similar average

ranking compared to the benchmarks for the standard

statistical metrics. This means that while the structures

and the physical parameterizations of the models vary,

all models utilize the information available in their

forcing data to a similar degree. Figure 4 also shows that

all models perform better forQE than forQH. Note that

in the context of benchmarking, better performance

means that a model meets more of the metrics and not
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that the absolute errors in a chosen statistic are neces-

sarily smaller. This result is counterintuitive since the

conceptual representation of QH is considerably less

complex than QE (Pitman 2003). Simulating QH de-

pends only on temperature gradients and atmospheric

turbulence while QE depends not only on the turbu-

lence, but also requires a model to represent water

availability in order to determine the moisture gradi-

ents. This occurs through stomatal conductance, canopy

interception, and soil water availability for transpiration

and bare soil evaporation.

Note that the physically based benchmarks (M69 and

PM) also show better performance in QE than QH.

Performance in this sense does not mean that errors for

QE are smaller thanQH, but rather that the utilization of

information for predicting QE is better. Referring back

to our discussion on the third type of benchmark in the

introduction, we would expect a physical model to be

better at simulating the more complex QE compared to

the empirical benchmarks, as QE is influenced by addi-

tional information on soil moisture that is not used by

the regressions. This is essentially illustrated by the

empirical benchmarks that have the opposite behavior in

the average rankings compared to the LSMs and physi-

cally based benchmarks, showing better performance for

QH than QE.

Comparing LSMs to physical benchmarks shows that

all LSMs beat the PM and M69 for both QE and QH, as

might be expected. The considerable history of LSM

evolution has clearly delivered notable performance

improvements (Pitman 2003). This evolution is also

evident in the increased performance delivered by the

simplistic water limitation that M69 provides, as op-

posed to the unrestricted water availability in the ref-

erence crop PM. However, all LSMs are outperformed

by EMP3KM27 for bothQH andQE. Evenmore striking

is that all models are beaten by all empirical benchmarks

for QH, including an out-of-sample linear regression

against SWdown. For some LSMs, this is also true for

QE. We provide some comments on why this might be

the case in section 4.

A comparison of the LSM ranks against the bench-

marks for themetrics on the extremes of the distribution

is shown in Fig. 5, while Fig. 6 shows the average rank-

ings when derived from the statistical measures for the

shape of the distributions. The empirical benchmarks by

nature act as a smoother (since they are regression

based), so it would be expected that these benchmarks

would not be good at predicting the extremes of the

distribution. They are likely to be more peaked around

the mean values. This will especially impact the 5th and

95th percentile metrics in Fig. 5 and the kurtosis and

overlap metrics used in Fig. 6.

The results in Fig. 5 do indeed show that the LSMs

perform well compared to the empirical benchmarks,

with most LSMs beating all of them, particularly forQE.

There is still an indication that the LSMs are better at

simulating the extremes of QE than they are for QH, as

some of the LSMs are outperformed by the two and

three variable regressions forQH. The LSMs also have a

better ranking than the physically based benchmarks,

although M69 performs better than the single variable

regression for the extremes. This is understandable: the

M69 model tends to dry out too fast and since many

extremes are associated with dry landscapes, M69 cap-

tures this, though not necessarily for the right physical

reasons.

While the average rankings for the standard statistics

and the 5th and 95th percentile metrics are similar be-

tween the models (Figs. 4, 5), their performance for the

statistics based on the shape of the distribution of the

fluxes does not show a clear signal for all of the LSMs.

Some of the models perform better forQE compared to

the benchmarks, whereas others perform better for QH.

Despite the empirical regressions being more peaked

around the mean of the distribution, some of the LSMs

perform worse than all three regressions for QE while

one model is also worse for QH. In addition, several of

the models are worse than the physical benchmarks for

either QH or QE.

The results for the models compared to the bench-

marks for the extremes of the distribution shown in

Fig. 5 are an average over all of the sites. However, as

the empirical benchmarks are determined out of sample,

we might expect that the LSMs should have the best

rankings for the extremes at the sites with lowest and

highest SWdown and annual mean precipitation (Fig. 3),

that is, the climatic extremes from our sample of sites.

Figure 7 shows the rankings of the LSMs and the

benchmarks for the extremes of the distribution at each

of the sites listed in Table 1. There is a figure for bothQH

and QE for sites ordered in terms of their average

downward solar radiation and in terms of their annual

mean precipitation. Shown in each figure is a box plot for

all sites showing the range of rankings for the LSMs,

along with the median of the LSMs and each of the

benchmarks. The codes used for each site are given in

Table 1.

The rankings for QH from the LSMs are relatively

worse compared to the benchmarks at sites with the

largest downward shortwave radiation (Fig. 7a). This

suggests that the LSMs use the information content from

the atmospheric variables inappropriately at these sites.

There is no discernible change in the rankings for QE

across the sites ordered by the downward solar radiation

(Fig. 7b).
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When ordered by annual mean precipitation, there is

no discernible change to the LSMs’ rankings across the

sites for QH (Fig. 7c). The LSMs rankings for QE at the

driest sites compare favorably to the other sites

(Fig. 7d), but there is a suggestion that some of the sites

toward the dry end have worse rankings for the LSMs

compared to the benchmarks. These are the sites where

soil moisture might have its greatest impact on restrict-

ing transpiration, but not completely preventing it.

4. Discussion

One of the aims of this study was to introduce the

concept of benchmarking and to identify the benefits of

this approach compared to the more traditional evalu-

ation or comparison studies. Many previous model

studies have presented results on the evaluation of

models and have helped to reduce the errors for given

statistical metrics, while community projects have con-

centratedmainly onmodel comparison studies that have

in addition helped to identify aspects of LSMs’ perfor-

mance that can be improved. However, neither of these

approaches can tell us whether any of the LSMs are

actually good models: that is, whether they adequately

utilize the information aboutQE andQH available in the

meteorological forcing. While the comparison with M69

and PM shows that these LSMs are significantly better

than their predecessors, the performance against the

out-of-sample empirical models shows that there is

significant scope for improvement without the need for

more parameter or time-varying input data.

We also note that simply evaluating performance using

metrics such as RMSE alone without benchmarks can be

misleading. It might well be true, for example, that in

RMSE terms, one flux variable is inherently easier to

predict than another. In this case, reporting a lower

RMSE for that flux might mislead a researcher into

thinking that their model is better at predicting that flux.

By using benchmarks as we have done here, the empirical

models reflect how much information is available to an

LSMabout each flux—that is, how inherently difficult it is

to predict that flux. Thus, beating the same empirical

model in each flux represents the same level of perfor-

mance in each flux, regardless of the RMSE values.

An additional advantage of the benchmarking ap-

proach is that, as an international community, we can

identify a stable set of benchmarks that could be used to

assess progress within the community over a number of

decades. Experience shows that there is limited moti-

vation to rerun a model with old forcing datasets, or

indeed to rerun old versions of a specific model. How-

ever, simple established benchmarks, such as M69, PM,

or the empirical benchmarks, could easily bemaintained

to demonstrate and quantify future advances. For ex-

ample, if within several years all LSMs reach the ranking

of the three-variable nonlinear regression for both QH

and QE, then the community can demonstrate success

and quantify the scale of progress.

FIG. 7. Box-and-whisker plot showing the variations in ranking for the extremes of the distribution across the models for all sites. The

whiskers extend to the maximum and minimum values of the data, or 1.5 times the interquartile range if this is smaller. Outlying data

beyond this range are identified by circles. The codes for each site are given in Table 1. Also shown by the line are the median rankings for

the LSMs across all sites. (a) Sensible heat flux and (b) latent heat flux ordered by mean annual downward shortwave radiation across the

sites; (c) sensible heat flux and (d) latent heat flux ordered by mean annual precipitation across the sites.
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As this study was designed to identify the merits of

benchmarking, we have adopted a simplified approach

by only considering the turbulent fluxes of heat and

moisture from the surface. We believe this is a good

start, but these fluxes alone do not entirely characterize

the performance of LSMs. Clearly, the concept of

benchmarking should be extended to othermetrics, such

as additional variables with equivalent in situ measure-

ment networks (e.g., soil moisture), or specific phe-

nomenon (e.g., a drought) that will help to give a more

balanced picture of the suitability of these LSMs for a

range of applications.

We reiterate that this project does not attempt to

compare the LSMs—we are not attempting to identify

which is the ‘‘best’’ model. All of the models have a

similar level of skill compared to the benchmarks for the

standard statistics, but this is less true for the statistics

based on the distribution of the fluxes. This might sug-

gest that all of the models have been involved in similar

evaluation and comparison studies that have used these

standard statistical measures for their assessment and

identifying subsequent development priorities. How-

ever, it is unlikely that these standard statistics ade-

quately define the purpose of the model.

Using the basic physical models of M69 and PM, the

results show that all of the models pass the benchmark

for most of the statistical measures. This shows that

progress has beenmade throughout the community over

the last couple of decades in terms of the development of

LSMs. However, relative to the empirical benchmarks,

the models do not pass all of the metrics. This suggests

that there is more information content in the atmo-

spheric forcing data to determine theQH andQE than is

currently used by the LSMs. This is especially true for

QH, where none of the models pass the single variable

regression benchmark, suggesting that there is enough

information in SWdown alone to predict QH with a

higher degree of precision than LSMs currently do.

The result is reemphasized when the sites are ordered

by their mean annual SWdown. Here we find that

the performance of the models decreases compared to

the benchmarks for the sites with the highest annual

mean SWdown.

The variable QE is strongly influenced by moisture

availability information. This can be confirmed by the

fact that the three-variable nonlinear regression is the

only benchmark that is not passed by the models forQE.

This is the only empirical benchmark to contain any

moisture information, although this is through atmo-

spheric humidity rather than soil moisture that controls

QE in the LSMs. The suggestion is that in this case, there

is more information in the instantaneous atmospheric

humidity about the control of evaporation than there is

from the memory of soil moisture control in the LSMs

(or that inappropriate soil moisture valuesmay in fact be

hindering prediction). This suggests that our physical

understanding of how soil moisture influences evapo-

ration may not be correct. The performance of the

models relative to the benchmarks at sites ordered by

their total annual precipitation suggests that in the sit-

uations where we may expect the soil moisture to have a

dominant control on stomata and hence QE, the LSMs

tend to be slightly worse. Meanwhile, Koster and

Mahanama (2012) suggest still more can be gained from

improvement of the soil moisture–runoff relationship in

LSMs, which are not considered in this study in either

the benchmarks or the regression models.

The combination of these results provides us with an

opportunity to challenge our conceptual view of energy

partitioning at the surface. The traditional view is that

there is an available amount of energy set by radiative

processes, and the role of the surface energy balance in

the LSMs is to distribute this energy between QH and

QE. However, if there is sufficient information in

SWdown to determine QH, then perhaps the role of the

surface energy balance in reality is to distribute the re-

maining energy between QE and the energy flux ex-

change with the underlying soil. The implications of this

might be that our equation set used to solve for the

surface fluxes is not correct. For instance, the assump-

tion that both radiative, turbulent fluxes and soil fluxes

share the same physical surface temperature might need

to be reconsidered. We do not discuss soil heat flux here

or the influence that the bare soil fraction has on our

results. More information concerning the footprint of

the observations is required to determine the distribu-

tion of bare soil and vegetation and the resulting mea-

sured soil and turbulent fluxes. Furthermore, the

indifferent performance of the models at sites with re-

stricted soil moisture questions the current methods

used in the LSMs for representing the stomatal control

on transpiration.

Finally, we note that we have not tested the signifi-

cance of these results because of the small sample size.

However, we would expect that the statistics for the

higher-order moments to be progressively noisier

among the models just based on the nature of variance.

The intercomparison presented here was designed to

be a stand-alone study of LSMs, that is, there is no

feedback between the surface fluxes and the atmo-

spheric driving data. A fully coupled system contains

errors from all model components and sensitivity to

feedbacks, and as such is a complex system. Developing

benchmark metrics that can assess the whole coupled

system would be an ultimate objective, but remains a

challenge that is beyond the scope of this paper.
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5. Conclusions

We used 13 LSMs with 20 observational sites to ex-

amine the utility of benchmarks to inform us about the

ability of existing LSMs. Benchmarking is a fundamen-

tally different way of assessing the skill of a model

compared to evaluation or comparison, because an

expected level of performance for a particular metric is

set a priori. Benchmarking can help to identify future

development criteria not based on the largest errors

from a standard statistical metric, but by the demon-

strated capacity for improvement in ametric without the

need for additional driving or parameter data. Although

this study has been limited to offline surface schemes at

single point locations, future benchmarking will evolve

both horizontally (distributed) and vertically (coupled).

While our results for the LSMs vary according to the

statistical measures used, a key finding is that LSMs

perform better across all of the sites than the simple

physical models that were used as benchmarks. This

demonstrates the progress that has been made by the

community over the last couple of decades. However,

the LSMs are outperformed by the nonlinear three-

variable empirical regression for QE and all of the em-

pirical regressions for QH, including a linear regression

between downward shortwave radiation and QH. This

suggests that the LSMs do not appropriately use the

information available in the atmospheric forcing data

when estimatingQH andQE. A second key result is that

the LSMs perform worse compared to the benchmarks

for QH at sites with the largest downward shortwave

radiation. Clearly, the community should investigate the

relationship between shortwave radiation and surface

sensible heat flux more thoroughly. For QE, the models

are worse at some of the sites with low annual mean

precipitation, but not the driest sites. This suggests that

the community should also investigate the relationship

between soil moisture and transpiration to determine

the limitations of current LSMs.

Long-term energy balance issues at some of the ob-

servational sites mean that the results presented in this

study require further work to ensure that energy balance

closure is not significantly affecting our results. A com-

prehensive list of sites with a good range of climates and

biomes that conform to energy balance constraints are

unlikely to be available in the near future, so alternative

approaches may be required to address these issues.

Our results also demonstrate the ability of the PALS

web-based system as a benchmarking tool for the com-

munity. We suggest that this should be developed into

an international standard for land surface benchmark-

ing, with metrics agreed by the user community. Such a

tool would rapidly advance the science and deliver

measureable improvements in our understanding and

modeling capabilities.

In conclusion, our results challenge our traditional

conceptual view of the surface energy balance where

available energy is partitioned into the sensible and la-

tent heat fluxes. Our first attempt to use benchmarking

across the land modeling community has highlighted

some uncertainty in the fundamental conceptual un-

derstanding of LSMs. While evaluation of models will

remain a valuable tool for helping to quantify de-

velopment requirements, we suggest that a more sys-

tematic use of benchmarking across the community

should be encouraged. The benchmarking approach is

likely to identify more serious challenges to land

modeling and thereby accelerate improvements in our

science.
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