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ABSTRACT

Polarimetric radar data obtained at high spatial and temporal resolutions offer a distinct advantage in esti-

mating the spatial correlation function of drop size distribution (DSD) parameters and rain rate compared with

a fixed gauge–disdrometer network. On two days during the 2011 Midlatitude Continental Convective Clouds

Experiment (MC3E) campaign inOklahoma, NASA’s S-band polarimetric radar (NPOL) performed repeated

PPI scans every 40 s over six 2D video disdrometer (2DVD) sites, located 20–30 km from the radar. The two

cases were 1) a rapidly evolving multicell rain event (with large drops) and 2) a long-duration stratiform rain

event. From the time series at each polar pixel, the Pearson correlation coefficient is computed as a function of

distance along each radial in the PPI scan. Azimuthal dependence is found, especially for the highly convective

event. A pseudo-1D spatial correlation is computed that is fitted to a modified-exponential function with two

parameters (decorrelation distance R0 and shape F). The first event showed significantly higher spatial vari-

ability in rain rate (shorter decorrelation distance R0 5 3.4 km) compared with the second event with

R0 5 10.2 km. Further, for the second event, the spatial correlation of the DSD parameters and rain rate from

radar showed good agreement with 2DVD-based spatial correlations over distances ranging from 1.5 to 7 km.

TheNPOLalso performed repeatedRHI scans every 40 s along one azimuth centered over the 2DVDnetwork.

Vertical correlations of the DSD parameters as well as the rainwater content were determined below the

melting level, with the first event showing more variability compared with the second event.

1. Introduction

The structure of the rain-rate field has been studied

extensively by hydrologists at various spatial and tem-

poral scales, primarily relying on rain gauge networks of

various densities. While gauges generally give accurate

point measurements, except for a few dense networks

(e.g., Huff 1970; Moore et al. 2000; Ciach and Krajewski

2006, hereafter CK06), the areal density is generally not

sufficient to accurately characterize the rather extreme

spatial variability of rainfall, especially considering

convective rain cells with a horizontal extent less than

a few kilometers. Further, to capture the statistics of the

spatial variations, a large database is necessary, ranging

from many months to several years, because of inherent

low frequency of rain occurrence over fixed gauge net-

works. CK06 discuss a number of important aspects of

the small-scale spatial correlation function, including de-

pendence on time averaging and the large storm-to-storm

variability of the decorrelation distance (1/e-folding dis-

tance) and shape factor. They also point to the difficulties

in determining the anisotropy of the correlation function

using a gauge network.

More recently, disdrometer networks (Tapiador et al.

2010; Jaffrain and Berne 2012) have been used to study

the small-scale spatial variability of drop size distribu-

tion (DSD) parameters, and this transition from gauges

to more modern optical disdrometers (Schönhuber et al.
2008; Löffler-Mang and Joss 2000) can be considered

a major step since the rain rate is fundamentally close to

the 3.67th moment of the DSD, which itself may be

Corresponding author address: Prof. V. N. Bringi, Department of

Electrical and Computer Engineering, Colorado State University,

Campus Mail 1373, Fort Collins, CO 80523-1373.

E-mail: bringi@engr.colostate.edu

JUNE 2015 BR ING I ET AL . 1207

DOI: 10.1175/JHM-D-14-0204.1

� 2015 American Meteorological Society

mailto:bringi@engr.colostate.edu


considered as a double random variable, that is, the

product of the Poisson-distributed number concentra-

tion and the (typically) gamma-distributed drop di-

ameter. The most dense optical disdrometer network

appears to be that described in Jaffrain and Berne

(2012), with 16 units in a 13 1 km2 area. They compared

their spatial correlation data of rainfall at 1- and 15-min

temporal resolutions (up to separation of 700m) with

past work by Tokay and Bashor (2010), CK06, and

Villarini et al. (2008), but the comparisons (even using

a large database in each case) were less than satisfactory,

which the authors attribute to the use of different in-

struments and accuracies, network configuration, size of

dataset, and different rain climatologies.

There are only a few past studies on the use of dis-

drometers to estimate the spatial variability of the DSD

(Lee et al. 2009; Tokay andBashor 2010), but these were

limited in the number and type of disdrometers used

(3–4) and their spatial configuration. The spatial vari-

ability of DSD parameters such as total number con-

centration (or the normalized intercept parameter NW;

Illingworth and Blackman 2002) and the mass-weighted

mean diameterDm (or, equivalently, themedian volume

diameter D0) become relevant for remote sensors such

as dual-polarimetric or dual-wavelength radars (either

ground-based or satelliteborne systems; Chandrasekar

et al. 2008; Hou et al. 2014) that explicitly retrieve these

quantities over pixels from 23 2 to 53 5 km2. Thus, the

small-scale or subpixel variability at temporal scales of

approximately a few minutes becomes important in

several applications, for example, quantitative assess-

ment of the retrieval accuracy (e.g., error–variance

separation) in estimating non-uniform beam filling

(NUBF) correction factors or in simulation of DSD

fields (e.g., Habib and Krajewski 2002; Kozu and Iguchi

1999; Schleiss and Berne 2012). The vertical correlation

of DSD parameters has been less well studied but is po-

tentially important for satellite-based dual-wavelength

radar retrievals. Given the intrinsic frequencies and

viewing angles of satellite-based radars combined

with interactions of the beam with the intervening col-

umn of hydrometeors and the earth’s surface, satellite

radar retrieval algorithms are naturally sensitive to the

behavior of the column DSD. Vertical correlation prop-

ertiesmay potentially serve as a possible added constraint

for the retrievals, and when combined with similar in-

formation on the horizontal DSDvariability, theymay be

useful for the correction-relatedNUBFcorrection factors

in tilted rain cells (e.g., for understanding frequency-

dependent impacts of three-dimensional NUBF correc-

tion factors on path-integrated attenuation correction

algorithms and attendant DSD and rain-rate estimation;

Short and Iguchi 2011; Meneghini et al. 2013) in deep

convection or in quantifying the contribution of vertical

variability and the hydrometeor profile characteristics to

radar estimation of rain rate at the surface (Habib and

Krajewski 2002).

The use of dual-polarimetric radar to study the

spatial variability of rainfall was pioneered by Moreau

et al. (2009), who used an X-band radar in close

proximity (from 5 to 25 km) to a dense network of

gauges. The radar was continuously operated in sector

plan position indicator (PPI) mode over the gauge

network at fixed elevation angle with revisit time of

30 s. While their focus was on the rain-rate field (pixels

of 1 3 1 km2 and 6-min integration) and not on the

DSD parameters, they were able to show excellent

comparison between the spatial correlation derived

from radar and those from the gauge network over

separation distances from 1 to 10 km. They also com-

ment that, within the framework of their experiment,

estimating the spatial correlation from the gauge net-

work required about 1 year of data, whereas from ra-

dar only a few rain events were required by virtue of

a much larger coverage area with a high density of

pixels.

More recently, Thurai et al. (2012) used the dual-

polarimetric C-band Advanced Radar for Meteorologi-

cal and Operational Research (ARMOR) over a very

narrow sector (58) with revisit time of ;10 s, essentially

dwelling the beam over two collocated 2D video dis-

drometers (2DVDs) at a short range of 15km.Using such

data from a single, long-duration (4h) rain event, they

were able to derive the spatial correlation function of the

two DSD parameters (NW andD0) and rain rate R along

the beam (relative to the 2DVD location, distance from

0 to 4km with 250-m resolution). While rather ‘‘stable’’

and ‘‘reasonable’’ correlation versus distance functions

were obtained, they could not be independently validated

but were shown to be in very good agreement (decorre-

lation distance and shape parameter) for R with Moreau

et al. (2009).

In this paper, NASA’s S-band polarimetric radar

(NPOL) is used with a 150-m range resolution and with

a revisit time of 40 s over an 808 sector within which

a network of six 2DVD units was located at short ranges

of 20–30 km from the radar. The main goal is to build on

the prior work of Thurai et al. (2012) to derive the

spatial correlation function of DSD parameters (NW and

D0) and R as retrieved from polarimetric measurements

(radar reflectivity for horizontal polarization Zh, dif-

ferential reflectivity Zdr, and specific differential prop-

agation phase Kdp) as a function of azimuth from sector

PPI data (horizontal correlations) and vertical correla-

tions usingRHI scans (with revisit time of 40 s) along the

radial to the center of the 2DVD network.

1208 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



2. Instrumentation and data collection

The data used in this study were acquired during the

Midlatitude Continental Convective Clouds Experi-

ment (MC3E; see Petersen and Jensen 2012), which was

conducted in central Oklahoma in April and May 2011.

On several limited occasions during this campaign,

NASA’s S-band polarimetric radar performed repeated

PPI and RHI scans over six 2DVD sites, located 20–30km

from the radar. The scans were repeated approximately

every 40 s (revisit time). Such scans were limited during

the campaign as NPOL was used to support aircraft

flights aswell as to capture the entire vertical extent of the

deep convective storms with revisit times of 5–10min.

NPOL is a research-grade dual-polarized S-band

system. The nominal radar system parameters are shown

in Table 1. The gate spacing is 0.15 km, with typically

1000 gates per beam.

We consider here two cases, one a rapidly evolving

multicell rain event (with large drops) that occurred on 24

April and the second a more uniform and widespread rain

event that occurred on 11 May 2011. We utilize the re-

peated PPI and RHI scans to determine the horizontal H

and vertical V spatial correlation functions, respectively,

for themainDSDparameters, namely, themedian volume

diameter and the normalized ‘‘intercept’’ parameter, as

well as rain rate for the horizontal spatial correlation and

liquid (rain) water content (LWC) for vertical correlation.

Figure 1a shows the map of the campaign location

within the U.S. Department of Energy’s Southern Great

Plains (SGP) facility in central Oklahoma. The white

triangle depicts the area within which six 2DVDs (low-

profile third-generation design; Schönhuber et al. 2008)
were sited and the area where the PPI scans were per-

formed, that is, over the azimuth range of 2458–3258, at
an elevation angle 0.988. The RHI scans were performed

at an azimuth of 283.58, over one of the 2DVD sites, with

elevation angles ranging from 08 to 188. Figures 1b and 1c

show magnified views of the six 2DVD locations (black

crosses) overlaid onto PPI scans from the 24 April and

the 11 May 2011 events. The 24 April event (event 1)

was an intense multicell complex that mostly evolved

within the scan area with very little advection, whereas

the 11May event (event 2) was muchmore uniformwith

a long period of trailing stratiform rain over the scan

area after initial passage of squall-line-type leading

convective cells.

The spacing of the six instruments enables us to de-

termine the ‘‘point’’ spatial correlation functions of the

DSD parameters and R calculated from the 2DVD

measurements, which in turn can be compared with

radar-based estimation of the pixel-based correlation

function (this could only be done reliably for the long-

duration event 2; event 1 was not long enough for reli-

able estimation). From meteorological context of the

two events and from Figs. 1b and 1c, we expect that the

spatial variability will be much higher for event 1 com-

pared to event 2. Figures 2b and 2d show vertical profiles

of reflectivity Z from an S-band profiler located at the

main SGP facility next to one of the 2DVD units

(Figs. 2a,c show the 1-min rain rates from this 2DVD

unit at ground level). The time–height profiles for the

two events are marked to illustrate the periods during

which NPOL PPI and RHI scans with revisit time of 40 s

were available. Clearly, event 1 is highly convective with

substantial variability in the vertical, whereas event 2 is

more uniform (with some evidence of weak embedded

convection)with a bright band at 3kmAGL. The rain-rate

time series (Figs. 2a,c) from the 2DVD unit next to the

S-band profiler shows more variable values for event 1

reaching 40mmh21 (the other units recorded higher rain

rates up to 100mmh21), whereas for event 2 the rain rates

are more uniform with maximum values ,10mmh21.

3. Radar data processing

a. Initial steps

The radar data processing consists of several steps,

most of which have been described previously [see Bringi

et al. (2013a) for NPOL data processing during MC3E

and determination of calibration offsets for Zh and Zdr].

The separation of meteorological echoes from non-

meteorological echoes was based on calculation of the

standard deviation of differential propagation phase Fdp

over a 10-gate moving window, with a threshold of 108
(Bringi et al. 2006). Even though the attenuation is gen-

erally negligible at S band, the reflectivity was corrected

using the linear Fdp method described by Ryzhkov et al.

(2005):

DZh5 0:02DFdp . (1)

TABLE 1. NPOL specifications.

Frequency 2.7–2.9GHz

Polarization H, V: simultaneous transmit and receive

Receiver RVP900

Variables Z, Zdr, Fdp, Kdp [also linear

depolarization ratio (LDR)*]

Pulse width 0.8–2 ms

PRF 250–2000Hz

Duty cycle 0.0012 s

Antenna 8.5m, prime parabolic, no radome

Gain .44.5 dB

Pointing accuracy 0.18
Beamwidth 0.98
Rotation rate 188 s21 max

* In special LDR mode.
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FIG. 1. (a)Map ofMC3E study domain, (b) anNPOLPPI scan taken on 24Apr, and (c) anNPOLPPI scan taken

on 11May 2011. The white triangle in (a) shows the area scanned by radar and within which the six 2DVDs are sited

[marked as black diamonds in (b) and (c)].
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The coefficient of 0.02 is in units of decibels per degree

and is applicable for summertime convection in Okla-

homa. Note that the correction isZh(corr)5Zh(meas)1
DZh, with DFdp being the path-integrated differential

propagation phase from the radar to the range gate of

interest.

Similarly, differential reflectivity is corrected for dif-

ferential attenuation as follows:

DZdr 5 0:0042DFdp , (2)

where the coefficient 0.0042 is in units of decibels per degree

(Ryzhkov et al. 2005). Again, Zdr(corr) 5 Zdr(meas) 1
DZdr. TheKdp parameter was obtained using an iteratively

filtered Fdp methodology as described in Hubbert and

Bringi (1995) and using an ad hoc ‘‘telescoping’’ method

where a variable number of gates is used, depending on

the Zh value (Bringi et al. 2011), which approximately

corresponds to the ‘‘light’’ (9 gates) and ‘‘heavy’’ (25 gates)

filtering for computingKdp by Ryzhkov et al. (2005). Prior

to calculation of rain rate, D0, and log10(NW), the hail

regions of the precipitation were filtered out, using hail

detection ratio (HDR; Aydin et al. 1986) with the

threshold set at 5 dB (e.g., Brandes et al. 1993; Depue at

al 2007).

The 1-min drop size distributions (total of 836) mea-

sured by the 2DVD data from six units on 24 April were

used (see Bringi et al. 2003) to derive the retrieval algo-

rithms for D0, NW, R, and LWC. The drop shapes from

the 80-m fall bridge experiment from Thurai et al. (2007)

and the canting angle distribution from Huang et al.

(2008) were used as input to the scattering calculations.

The simulations resulted in the following equations.

1) The median volume diameter (mm) is calculated

using the calibrated Zdr data using

FIG. 2. (a) Rain-rate time series measured by one 2DVD unit at the SGP facility and (b) the

reflectivity height profile time series from the S-band profiler (also at the SGP facility) for the

24 Apr event. (c),(d) As in (a),(b), but for the 11 May event. The gray dashed lines in (a),(c)

represent the time periods over which the NPOL repeated scans were made.
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D05 0:0536Z3
dr2 0:1971Z2

dr

1 0:6261Zdr 1 1:0815; Zdr$ 1 dB (3a)

and

D05 0:0424Z4
dr 2 0:4571Z3

dr1 0:6215Z2
dr1 0:457Zdr

1 0:8808; 20:5,Zdr , 1 dB.

(3b)

2) The intercept parameter of the normalized gamma

drop size distribution NW (mm21m23) is estimated

from

NW 5 19:76
Zh

linear

D7:46
0

, (4)

whereZhlinear isZh in linear units. Note that log10(NW)

is retrieved and used henceforth, but for ease of

notation, we still refer to it as NW unless explicitly

stated.

3) The LWC (gm23) is calculated using

LWC5 3:45663 1024
Zh

linear

D3:46
0

. (5)

4) The rain rate is calculated using the composite

algorithm (see Ryzhkov et al. 2005) using as input

(Zh, Zdr, and Kdp):

R(Zh)5 0:0229(Z0:6425
h
linear

) , (6)

R(Kdp)5 34:3(K0:757
dp ) , (7)

and

R(Zh,Zdr)5 0:0142
(Z0:77

h
linear

)

(Z1:67
dr

linear
)
. (8)

The above mean fits reduce the retrieval algorithm (or

parameterization) error due to DSD variability, which is

an important component of the total error forD0 but less

so for NW and R, where radar measurement errors also

play an important role (Thurai et al. 2012; Bringi et al.

2009). Typical fractional standard errors (including both

parameterization and radar measurement errors) are

estimated to be around 10%, 6%, and 17% for D0,

log10(NW), and R, respectively. The block diagram il-

lustrating the composite algorithm and thresholds for

step 4 is given in Fig. 6 ofBringi et al. (2013a). The retrieval

algorithms in Eqs. (3)–(8) are based on 2DVD-measured

DSDs, which are less accurate at the small drop end (D,
0.7mm or so) because of sensitivity and mismatch

problems and at the large drop end (D . 6mm or so)

because of inadequate sampling. Thus, the retrieval of D0

in Eq. (3) can show systematic error for smallD0 (such as

in drizzle) or very largeD0 (such as due to drop sorting in

convection). In the events analyzed herein, the

disdrometer-derivedD0 values were nearly always in the

range 0.5,D0, 2.5mm. The accurate retrieval ofNW in

light rain is further complicated by the large exponent of

D0 occurring in the denominator of Eq. (4) (i.e., propa-

gation of errors when the measured Zdr is close to 0dB).

As mentioned earlier, the PPI scans for both events

covered the six 2DVD sites (Figs. 1b,c). Bringi et al.

(2013a) compared Zh, Zdr, andR determined fromNPOL

datawith simultaneousmeasurements fromall six 2DVDs.

Very good agreement was found for all three quantities,

and, furthermore, rain accumulations also showed good

agreement. Further information can be found in Bringi

et al. (2013a) and Thurai et al. (2012). Furthermore, in

Bringi et al. (2013b), D0 comparisons between NPOL

data–based estimation usingEq. (3) above and the 2DVD-

based estimation have been made. For the latter, 1-min

DSDs were used for fitting to the normalized gamma

distribution as in Bringi et al. (2003). Excellent agree-

ment was found between the two time series compari-

sons for all six 2DVD locations and for both events. For

the 24 April 2011 event, which was a much more rapidly

evolving storm, D0 values were seen to vary rapidly, for

example, from 3mm to less than 1mm within 30min for

one of the 2DVD locations, but even so, the agreement

between the NPOL-derived D0 and the 2DVD-

measuredD0 was found to be very good, except perhaps

at the beginning of the storm, where drop sorting may

have played a role. The relative frequency histograms of

radar-derived and disdrometer-calculated D0 were

constructed for both events (not shown here) and were

found to be in excellent agreement in terms of mean,

standard deviation, and skewness.

b. Horizontal correlations from PPI scans

To calculate the correlation coefficients (Pearson

product moment correlation estimator) for each variable

[D0, log10(NW), andR] defining the vector v from the PPI

scans, a three-dimensional volume V is defined with di-

mensions G 3 B 3 T (see Fig. 3a), where G is the total

number of gates in the radial direction, B is the total

number of beams in a single PPI scan, and T is the to-

tal number of scans in the time interval of interest (0929–

1042 UTC 24 April and 1909–2333 UTC 11 May). Note

that the beam spacing is approximately 0.58 (azimuth

angle span from 2458 to 3258 and thus B 5 160). The

Pearson correlation coefficient computed from radar data

is necessarily pixel or areal based as opposed to point

correlations from gauges. Whereas Moreau et al. (2009)
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transform their radar-based areal (13 1km2) correlations

to point correlations, the polar pixels defined here are

much smaller (typically, 200 3 150m2 at 25-km range),

and hence, we do not distinguish between areal and

point correlations. Considering the argument that the

logarithmic transformation of R should be used to avoid

bias in the correlation coefficient (because of strong

positive skewness of the PDF of R), the bias is small

(,0.07 or so; Habib and Krajewski 2002) for short time

scales (;5min), and thus we follow CK06, who did not

use the logarithmic transformation of R in their exten-

sive study of spatial correlations from a large database of

Oklahoma storms. The PDF of D0 is generally quite

symmetric without significant skewness (e.g., Bringi

et al. 2003, 2012; Thurai and Bringi 2008), so no loga-

rithmic transformation is necessary. In the case ofNW, in

FIG. 3. (a) The 3D volume, created for each radar variable in the vector v, shown relative to

the location of NPOL. The initial start range is 20 km for 24 Apr and 25 km for 11May. (b) The

3D volume (dotted line) after interpolation from cylindrical (radar) coordinates into Cartesian

coordinates and limiting lower altitude to 0.6 km and upper altitude to 3 km, created for each

radar variable in the vector v.
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addition to its large range of values spanning several

orders of magnitude (Illingworth and Blackman 2002;

Bringi et al. 2003), the distribution can be significantly

positively skewed (Bringi et al. 2003), so the logarithmic

transformation is used as such.

The resulting matrix of Pearson’s correlation coefficient

C has dimensionsG3B, and each element of thismatrix is

calculated using the MATLAB function corr(), which

compares two 1D arrays of data, each one being the time

sequence [meaning it includes interpolated data at the

specific position (g, b) of all PPI scans 1, . . . , T of the time

interval of interest]:

Cgb 5 corr(y1b1, ...,T , ygb1, ...,T) , (9)

where g (1, . . . , G) is the number of the gate from the

starting point, and b (1, . . . , B) is the number of the

beam. Here the ‘‘base’’ time sequence for each beam is

the closest to the radar in the range of interest and is

sequentially compared to those farther from the radar,

thereby creating a column of correlation coefficient

values in matrixC. Only those gates that are not ‘‘NaN,’’

or not a number, indicating no data or nometeorological

echo, in both base and next-in-range time sequences are

used in the correlation calculations.

To reduce high-frequency data fluctuations along the

time axis (recall PPI scans were repeated every 40 s), the

time sequences are smoothed using a weighted moving

average filter with window size 9, which corresponds to

effective averaging time scale of approximately 2.5min.

The effect of temporal averaging on the spatial correla-

tion function from gauge data has been well described

by CK06.

c. Vertical correlations from RHI scans

Vertical correlation coefficients are calculated from

the RHI scans in a similar manner. The three variables,

D0, log10(NW), and LWC, defining the vector v, are in-

terpolated from radar coordinates (elevation, range) to

a (x, z) Cartesian grid. We use LWC as opposed to R for

vertical correlations since the radar-based retrieval is for

still air rain rates and not applicable in the presence of

vertical air motion. The beam spacing is around 0.28, and
at a range of 30 km, the vertical separation is close to

100m. The dimensions of each cell of the grid were

chosen to be 1503 100m2, so that the horizontal spacing

(along x coordinate) corresponds to that of the original

radar range gate spacing. The RHI scans were repeated

every 40 s at fixed azimuth angle (see Fig. 3b, which

shows the time axis and the volume). The selected data

begin at a height (z coordinate) of 0.6 km from the

ground (to avoid problems due to ground clutter) and

end around 0.5 km below the brightband height (at

;3 km, see Fig. 2). Further, data from the 15–38km

range interval are selected for 24 April and 20–36km for

11 May; these range limits provide for continuous time

series of ‘‘good’’ data at each pixel necessary for the cor-

relation estimation. Then, for each variable in the vector v,

the 3D volume is defined. Each volume has dimensions

P 3 H 3 T, where P is the total number of cells in the

radial (after gridding referred to as the horizontal) di-

rection, H is the total number of cells of the interpolation

grid in vertical direction, and T is the total number of RHI

scans made by radar in the time interval of interest (0929–

1042 UTC 24 April and 1909–2333 UTC 11 May).

The resulting matrix of Pearson’s correlation co-

efficients C has dimensions P 3 H, and each element of

this matrix is calculated using MATLAB function

corr(), which compares two 1D arrays of data, each one

being a time sequence [meaning it includes data at

specific position (g, h) of all RHI scans 1, . . . , T of the

time interval of interest]:

Cgh5 corr(yg11, ...,T , ygh1, ...,T) , (10)

where g is a cell number in the horizontal direction,

starting from the beginning mark (15km for 24 April

and 20km for 11 May), and h is a cell number in vertical

direction, starting from the lowest height mark (0.6 km

base or reference height, where by definition the cor-

relation coefficient is 1). At each horizontal position, the

lowest (base) time sequence yg11,...,T is sequentially

compared to each time sequence ygh1,...,T above it, to get

a column of correlation coefficients in the matrix C.

Again, to reduce high-frequency data fluctuations

along the time axis (recall RHI scans were repeated every

40 s), the time sequences are smoothed using a weighted

moving average filter with window size 9, which corre-

sponds to effective averaging time scale of approximately

2.5min.

4. Results

a. Spatial correlation: Convective and stratiform rain
examples

The results presented here are a generalization of

Thurai et al. (2012), who used radar data in a 1D per-

spective (i.e., radar beam essentially dwelling over two

2DVDs located at a range of 15 km) transformed to a 2D

perspective where the radar beam scans over a 808 azi-
muth sector (within which six 2DVD units are located)

with a revisit time of 40 s.

The horizontal correlation coefficients computed for

D0 using the aforementioned procedures (see section 3b)

are represented as a 2Dmap of correlation coefficients in

Figs. 4a and 4b for the 24 April and the 11 May 2011
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events, respectively. The initial (henceforth reference)

range and azimuth sector for 24 April are selected as

20 km and (2658–3058), respectively, whereas for 11May

the corresponding values are 25km and (2658–3458).
These selections are based on visual inspection of the

spatiotemporal evolution of the two precipitation events

to ensure that time sequences of good data (i.e., mete-

orological echo) are available for all polar pixels. By

definition then, nonraining pixels as determined by the

radar sensitivity and detection of nonmeteorological

echo are excluded. For the highly convective 24 April

event, strong azimuthal dependence and faster falloff

with distance can be noted relative to the more uniform

11 May event. Note that the correlation coefficient is

1 by definition at the reference range. Moving this ref-

erence range radially did not change the azimuthal

variability or the falloff with distance. While the azi-

muthal dependence and correlation falloff appear rea-

sonable considering the differences (convective versus

stratiform) between the two events, there are, to the best

of our knowledge, no other radar-based calculations in

the literature with which we can compare. However,

gauge networks have been used to determine 2D maps

of correlation coefficients of 1-min R for various rainfall

types, one early example being Huff (1970).

To construct pseudo-1D correlation coefficient versus

distance functions that can be compared with other ra-

dar or gauge-based data, we proceed as follows. From

the set of correlation coefficients at a fixed range

through the angular sector, we construct the cumulative

distribution function (CDF) of the spatial correlation

and compute the 10th, 50th (median), and 90th per-

centile values. This is repeated at range increments of

150m (radar gate spacing). Such an approach gives

a pseudo-1D spatial correlation versus distance while at

the same time giving an estimate of its cross-beam (az-

imuthal) variability. Figures 5a–c show the pseudo-1D

spatial correlation for the three variables,D0, log10(NW),

andR, respectively, for the 24April event, and Figs. 5d–f

show the corresponding figures for the 11 May event. In

all cases, the curves corresponding to the 10th, 50th, and

90th percentiles are shown. Some general points can be

made from examination of Fig. 5. First, the median

correlation falls off faster with increasing distance for

the 24 April event compared with the 11 May event.

Second, the azimuthal variability as measured by the

spread between the 10th and 90th percentile values is

much larger for 24 April versus 11 May. However, in

absolute terms, the spread for the 24 April event is quite

large, especially for distances.1.5 km. For R the spread

seems consistent with the 62s uncertainty bounds

provided by Habib and Krajewski (2002; their Fig. 7)

and Gebremichael and Krajewski (2004; their Fig. 2).

Krajewski et al. (2003) have used a three-parameter

modified-exponential function of the form

r(d)5 r0 exp[2(d/R0)
F ] . (11)

Here d is the distance, R0 is the decorrelation distance

(1/e-folding distance), F is a shape parameter, and r0 is

the correlation when d 5 0 (i.e., the ‘‘nugget’’ parame-

ter). Tables 2 and 3 compare the R0 and F parameters

fitted to the pseudo-1D median correlation versus dis-

tance data shown in Fig. 5 (the ‘‘nugget’’ parameter is 1

FIG. 4. PPI maps of correlation coefficient for D0 for (a) 24 Apr

(convective) and (b) 11 May (stratiform). Note reference range

where correlation is 1 is 20 km in (a) and 25 km in (b).
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for the radar-based calculations). The decorrelation

distance is consistently smaller for all variables for 24

April as compared with 11 May. On the other hand, the

shape factor is consistently .1.4 for 24 April (convex

down as one approaches d5 0), whereas for 11 May it is

close to 1 (exponential falloff). Such variability in F is

consistent with the spread of values reported by CK06

for 3-min R correlation fits for a large database of

Oklahoma storms. For storms they classified as low and

high variability, they found the fit parameters for 3-min

R as (9.8 km, 1.47) and (4.4 km, 1.24), respectively, but

they also found large storm-to-storm variations (their

Fig. 9). In comparison, Tables 2 and 3 show (10.2 km,

1.0) and (3.4 km, 1.52), that is, good agreement com-

paring gauge- versus radar-derived fit parameters.

Thurai et al. (2012) obtained (R0, F) values for D0,

log10(NW), and R as (8.24 km, 1.36), (7.22 km, 1), and

(4.74 km, 1.28), respectively, for a widespread stratiform

rain event with embedded convection. Their 1D radar-

based correlation fits (similar pixels and time resolutions)

are in reasonable agreement with fits to the median cor-

relation data for the 11 May event. Moreau et al. (2009)

obtained (4.54 km, 1.3) as their fit to radar-based cor-

relation of R at 6-min resolution and 1 3 1km2 pixels

using a 1-yr database, which compares reasonably well

with our 24 April event (3.4 km, 1.52).

For the long-duration 11 May event, the 2DVD net-

work is used to compute the spatial correlation of

[D0, log10(NW), andR], the distances ranging from 1.5 to

7 km (open circles in Figs. 5d–f). The 1-min time series of

DSDs were fitted to a normalized gamma distribution as

in Bringi et al. (2003). Further, the time series were

smoothed with the sameweightedmoving average filter as

used for the radar time series. As seen in Figs. 5e and 5f,

the 2DVD-based spatial correlations fall remarkably

well within the 10th and 90th percentile radar-based

values both for log10(NW) and R; however, for D0 they

fall closer to the 10th percentile and offset downward

from the radar-based median curve by around 0.15. The

reason for this behavior is not readily apparent. One

possibility is that the radar-based retrieval of D0 could

be biased (i.e., systematic errors) as the retrieval algo-

rithm in Eq. (3) is based on disdrometer (point) mea-

surements and then applied to a much larger radar

sample volume. However, as discussed in the last para-

graph of section 2a, the relative frequency histograms of

radar-derived and disdrometer-calculated D0 for the

two events showed excellent agreement with respect to

mean, standard deviation, and skewness. Thus, it is

FIG. 5. Psuedo-1D spatial correlation coefficient of (a) D0, (b) log10(NW), and (c) R for the 24 Apr convective event. Solid line is the

median curve and lower (upper) bounds are the 10th (90th) percentile. Distance is from reference range of 20 km. (d)–(f) As in (a)–(c), but

for the stratiform 11 May event. Distance is relative to reference range of 25 km. Open circles are spatial correlation values from the

2DVD network.

TABLE 2. Fitting coefficients (R0, F) for variablesD0, log10(NW),

andR for the median horizontal correlation for the convective case

(24 Apr).

24 Apr 2011 R0 (km) F

D0 4.5 1.57

R 3.4 1.52

Log10(NW) 3.25 1.4
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unlikely that the radar-derived D0 spatial variability is

being artificially reduced by retrieval bias errors. If this

were true, it should also apply to log10(NW) and R, which

is clearly not the case. Moreover, the general agreement

depicted in Fig. 5 gives confidence in the radar-derived

spatial correlations for the 11 May event and, by in-

ference, for the 24April event as well. Note that the latter

was of much shorter duration (70min versus 4h for 11

May) and highly convective, which precluded stable es-

timates of the spatial correlation from the 2DVD net-

work configuration. To test if the hypothesis of better

agreement between the radar- and 2DVD-derived spatial

correlations forD0 could be achieved by using a shorter-

sized window filter for the radar time series, Fig. 6 shows

the result for window length of 3 corresponding to an

averaging time scale of approximately 60 s (recall that in

Fig. 5 the window length is 9 corresponding to an aver-

aging time scale of approximately 2.5min). The results

of Fig. 6, which in essence decrease the radar-based

spatial correlation values (i.e., more variability) with

decreasing time resolution, thereby nicely encompassing

the 2DVD-based values within the 10th and 90th per-

centiles, agree with the well-known effect demonstrated

by many studies using gauge networks that spatial cor-

relation, in general, decreases with decrease in the time

averaging (e.g., CK06). See Table 3, where the fitted

values of R0 and F are given for the shorter-sized win-

dow length of 3.

b. Spatial correlations along vertical: Convective and
stratiform examples

To determine vertical correlations, we use the re-

peatedRHI scans, which weremade along an azimuth of

283.58 as part of the scan sequence (see section 2c). For

each variable we compute and plot a map of correlation

coefficients, which demonstrates the decrease of corre-

lation coefficient as a function of height for each range.

In all cases, the reference height was set to be 0.6 km in

order to avoid problems due to ground clutter. Further-

more, as mentioned earlier, the brightband height for

the 11May event was around 3km (see Fig. 2d), whereas

for the highly convective 24 April case the melting level

varied somewhat because of updrafts/downdrafts; still,

Fig. 2d shows a bright band at 1100:00 UTC at a height

of 2.7 km. To be consistent, the correlation coefficients

for both events were calculated for heights up to 2.4km

above the reference height of 0.6 km (where the corre-

lation coefficient, by definition, is 1).

Figures 7a and 7b show D0 for the two events. The

decrease in the correlation coefficients with height is

evident in both cases, but for the 24 April case, the de-

crease is considerably faster (more vertical variability)

compared with the stratiform rain event on 11May. The

rapid falloff above 2 km, especially for the 24 April case,

indicates decorrelation due to the melting layer. It is not

possible to quantitatively assess decorrelation due to the

melting layer or the bright band versus that due to rain

DSD variability near the 2–2.5-km height in these two

events. In Fig. 7a, there are isolated pixels where the

spatial correlation is obviously incorrect. This is due to

the time series of data from these pixels being identified

as nonmeteorological echoes by our classification algo-

rithm (subset of the entire time series at the given pixel

classified as nonmeteorological, which when correlated

with fully meteorological time series from the reference

pixel, leads to isolated errors in the spatial correlation

calculation).

Analogous to the derivation of horizontal correlations

from the PPI scans, the set of correlation coefficients at

a fixed height (starting reference height at 0.6 km) and

along the radial direction are used to construct the ap-

propriate CDF of the spatial correlations fromwhich the

10th, 50th (median), and 90th percentile values are ob-

tained. This is repeated at height increments of 100m.

This yields the pseudo-1D height correlation at the same

time, giving an estimate of along-range variability.

Figures 8a and 8b show the pseudo-1D height corre-

lation ofD0 for the two events, once again as 10th, 50th,

and 90th percentile curves. Note that the correlation falls

TABLE 3. Fitting coefficients (R0, F) for variablesD0, log10(NW),

and R for the median horizontal correlation for the stratiform case

(11 May).

11 May 2011 R0 (km) F R0* F*

D0 12.8 0.91 8.9 0.64

R 10.2 1.0 7.5 0.6

Log10(NW) 6.35 0.93 2.74 0.50

* These fitted coefficients are for time window averaging of

length 5 3.

FIG. 6. As in Fig. 5d, but for radar time series filtered using

a weighted moving average window of length 3.
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off significantly faster for the 24 April convective rain

compared to the stratiform 11 May event, perhaps not

unexpectedly. The corresponding curves for log10(NW)

are shown in Figs. 8c and 8d. The spread between the 10th

and 90th percentile curves is much larger for 24 April as

compared to 11 May, similarly to the horizontal correla-

tions but not as pronounced. Such vertical correlation

data for DSD parameters are expected to be useful, for

example, for both ground radar as well as satellite-

based radars, where retrievals are made aloft (;1.5 km

AGL) but need to be extrapolated down to the surface.

Finally, Tables 4 and 5 give the fit parameters (R0, F)

using the median vertical correlation data [Eq. (11)] for

the two events. While the values appear reasonable,

there are no equivalent data to compare with as yet in

the literature, but profilers (dual wavelength) that re-

trieve the DSD parameters could easily be used to

validate the results shown herein (Williams and Gage

2009), at least for the stratiform rain case. Some caution

should be exercised in using the fit parameters in Tables 4

and 5 for the convective event since the stationarity

assumption may not be valid, for example, because of

vertical air motion.

5. Summary and conclusions

Two events during the MC3E campaign are analyzed

using NPOL data and a network of six closely spaced

2DVD instruments. One event (24 April 2011) was

strongly convective and was of much shorter duration

FIG. 7. RHI maps of the D0 correlation coefficients for (a) 24 Apr (convective case) and

(b) 11 May (stratiform case). The y axis is height relative to 0.6 km. For 24 Apr the radial

reference distance is 15 km (and extends to 31 km) whereas for 11 May the radial reference

distance is 20 km (and extends to 38 km).
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(,75min) over the 2DVD network, and the second

event (11 May 2011) was of longer duration (around 4h)

and much more widespread, with large areas of strati-

form rain.

Retrieval algorithms for D0, NW, and R were derived

using the 2DVD data and applied to NPOL measure-

ments. From the repeated PPI scans, with 40-s revisit

time, we derive the spatial (horizontal) correlations for

the two events at an averaging time scale of approxi-

mately 2.5min and radar pixels of size around 150 3
250m2. The azimuthal dependence of the spatial corre-

lation of D0 showed considerable variation for the con-

vective event as compared with the stratiform event. A

pseudo-1D spatial correlation versus distance was

derived for D0, log10(NW), and R for the two events and

fitted to amodified-exponential function with parameters

being the decorrelation distance (1/e-folding distance)

(R0) and the shape factor (F). The convective event

showed considerable spatial variability, with lower

values of R0 relative to the stratiform event. The fit pa-

rameters for R were found to be generally consistent

with other studies mainly based on gauges/disdrometers

at similar spatial and temporal scales. For the long-

duration stratiform event, the 2DVD network was used

to calculate the spatial correlation ofD0, log10(NW), and

R and compared with the pseudo-1D radar-derived

correlations. The log10(NW) and R correlations from

radar agreed very well with the 2DVD-based correlations,

FIG. 8. Comparing D0 percentiles for (a) 24 Apr (convective case) and (b) 11 May (stratiform case). (c),(d) As in

(a),(b), but for log10(NW).

TABLE 4. Fitting coefficients (R0, F) for variablesD0, log10(NW),

and LWC for the median vertical correlation for the convective

case (24 April).

24 Apr 2011 R0 (km) F

D0 2.65 1.68

Log10(NW) 1.55 1.46

LWC 2.60 1.25

TABLE 5. Fitting coefficients (R0, F) for variablesD0, log10(NW),

and LWC for themedian vertical correlation for the stratiform case

(11 May).

11 May 2011 R0 (km) F

D0 3.77 1.80

Log10(NW) 6.44 0.86

LWC 3.03 2.0
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but rather surprisingly, the D0 correlations from 2DVD

fell off faster than from radar. Adjusting the time aver-

aging of the radar D0 estimates brought the radar and

2DVD-based correlations into better agreement, which

is expected given the well-known property that spatial

correlations decrease (more variability) with decreasing

time averaging.

Vertical correlations are also calculated from repeated

RHI scans with 40-s revisit times. The radar retrievals

were interpolated to a Cartesian grid with spacing 1503
200m2. Similar to the horizontal correlations, the con-

vective event showed significantly more variability along

the vertical as compared with the stratiform event. A

pseudo-1D spatial correlation versus height was gener-

ated and fitted to the modified-exponential function,

which clearly showed the convective versus stratiform

differences based on the decorrelation distance. Some

caution should be exercised in interpreting the fit pa-

rameters for the convective case because of non-

stationarity, for example, due to vertical air motions.

The vertical correlations, while believed to exhibit rea-

sonable behavior, could not be validated but could be

done so in the future using D0 and NW estimated from

profilers.

With the caveat that only two events are analyzed, this

study nevertheless shows that dual-polarimetric radar

can be used to derive spatial correlations of DSD pa-

rameters and rain rate if the scan cycle (revisit) time is

kept short (,1min), and relative to gauge networks,

a much smaller database is needed by virtue of the dense

availability of radar pixels. The radar-derived spatial

correlations and fits can thus be used in a variety of

applications, for example, error variance separation in

radar–gauge intercomparisons, downscaling methodol-

ogies, non-uniform beam filling corrections for satel-

liteborne radar retrievals which involve larger pixels

(5 3 5km2 for GPM Dual-Frequency Precipitation Ra-

dar), and range-dependent error characterizations. It even

applies to coarse-scale radar estimates, for example, at

long ranges where the radar beam becomes broad, or even

grid-averaged products. Inmany of the above applications,

the assumptions of isotropy (to some extent quantified

herein) of the spatial correlation function as well as sta-

tionarity of the underlying process need to be invoked,

which have yet to be addressed.
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