
Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness
Temperatures over the Upper Mississippi Basin

H. LIEVENS,* A. AL BITAR,1 N. E. C. VERHOEST,* F. CABOT,1 G. J. M. DE LANNOY,# M. DRUSCH,@

G. DUMEDAH,& H.-J. HENDRICKS FRANSSEN,** Y. KERR,1 S. K. TOMER,1 B. MARTENS,*
O. MERLIN,1 M. PAN,11 M. J. VAN DEN BERG,* H. VEREECKEN,** J. P. WALKER,&

E. F. WOOD,11
AND V. R. N. PAUWELS

&

* Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
1Centre d’Etudes Spatiales de la Biosphère, Toulouse, France

# Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
@European Space Agency, Noordwijk, Netherlands

&Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

** Forschungszentrum J€ulich, J€ulich, Germany
11Land Surface Hydrology Group, Princeton University, Princeton, New Jersey

(Manuscript received 11 March 2014, in final form 23 January 2015)

ABSTRACT

The Soil Moisture Ocean Salinity (SMOS) satellite mission routinely provides global multiangular ob-

servations of brightness temperature TB at both horizontal and vertical polarization with a 3-day repeat

period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational

flood forecasts through an improved estimation of soil moisture SM. To accommodate for the direct assim-

ilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as

a forward operator for the simulation of multiangular and multipolarization top of the atmosphere TBs. This

study investigates the use of the Variable Infiltration Capacity model coupled with the Community Micro-

wave Emission Modelling Platform for simulating SMOS TB observations over the upper Mississippi basin,

United States. For a period of 2 years (2010–11), a comparison between SMOS TBs and simulations with

literature-based RTM parameters reveals a basin-averaged bias of 30K. Therefore, time series of SMOS TB

observations are used to investigate ways for mitigating these large biases. Specifically, the study demon-

strates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After cumulative

distribution functionmatching the SM climatology of the LSM to SMOS retrievals, the average bias decreases

from 30K to less than 5K. Further improvements can be made through calibration of RTM parameters

related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM

rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory

step for data assimilation.

1. Introduction

The updating of land surface models (LSMs) through

remote sensing data assimilation is well known for its

potential to improve hydrologic model predictions (e.g.,

Pauwels et al. 2001, 2002; Crow andWood 2003; Reichle

et al. 2007; Pan et al. 2009). The significance of soil

moisture SM observations for hydrologic predictions

has fostered the development of remote sensing plat-

forms, such as the Soil Moisture Ocean Salinity (SMOS;

Kerr et al. 2001) and the Soil Moisture Active Passive

(SMAP; Entekhabi et al. 2010) missions, dedicated to

observing the dynamics of surface SM across time and

space. These radiometer systems provide indirect esti-

mates of SM, through the close relationship between the

observed brightness temperature TB emitted by the

earth’s surface and the SM content (Njoku 1977; Njoku

and Entekhabi 1996). While it is possible to assimilate

the derived SM products, there has been a strong in-

terest in the direct assimilation of satellite-observed TBs

(Reichle et al. 2001; Balsamo et al. 2006; Han et al.
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2013), which circumvents the need for processing soil

moisture retrievals. Moreover, this bypasses the need

for ancillary parameters (e.g., surface temperature) and

allows for the use of consistent parameters (e.g., soil and

vegetation) between the LSM and radiative transfer

model (RTM). The assimilation of TB observations di-

rectly requires the use of an RTM as a forward operator,

to simulate the top of the atmosphere (TOA) TB.

An important prerequisite for the assimilation of TB

observations into an LSM is that the observations need

to be unbiased with respect to the model simulations

(Reichle et al. 2004). This can be achieved through

a priori processing of the TB observations, for example,

through cumulative distribution function (CDF) match-

ing. However, in the specific case of SMOS, which pro-

vides multiangular and multipolarization observations,

CDFswould need to bematched for each incidence angle

and polarization, while the correlations between these

CDFs need to be accounted for. The latter poses major

difficulties to the processing of the TB observations.

Furthermore, for most climate regions (i.e., temperate

and continental), TB displays a strong seasonal cycle

dominated by temperature. As CDF matching only cor-

rects for long-termdifferences, it will not lead to desirable

results when scaling the TB. Alternatively, systematic

differences can be mitigated within the coupled LSM–

RTM framework. This allows for maintaining the SM–

TB sensitivity of the observations, which would otherwise

be affected by the CDF matching, and furthermore al-

lows for simulating the observation error.

Unfortunately, the forward simulation of unbiased

TBs through an LSM–RTM is far from straightforward

because of several reasons. The first aspect is the com-

plexity of the radiative transfer processes involved (De

Lannoy et al. 2013). Major challenges in this context are

the accurate characterization of vegetation and surface

roughness contributions (Sabater et al. 2011; Vereecken

et al. 2012; Rahmoune et al. 2013; Parrens et al. 2014;

Martens et al. 2015). The second obstacle in TB simu-

lation relates to the representation of the required RTM

input states, such as soil temperature and soil moisture,

which are generally obtained from an LSM. For in-

stance, many studies have found large systematic dif-

ferences between SM fields modeled through LSMs and

those observed by satellite missions (e.g., Reichle et al.

2004; Gao et al. 2006; Sahoo et al. 2013). These can be

attributed to several factors (Verhoest et al. 2015), such

as approximations and shortcomings in both the re-

trieval and land surface models (De Lannoy et al. 2007);

errors in model inputs, for example, soil texture (Han

et al. 2014); and a mismatch in the horizontal and ver-

tical representation (Wilker et al. 2006). While radi-

ometer observations provide SM at scales of 10–40 km

and are generally sensitive to only the top few centi-

meters (Escorihuela et al. 2010), LSMs typically operate

at resolutions of 1–10km and have their own definition

of the top surface layer, often much thicker compared to

remote sensing depths (Sahoo et al. 2013). In addition,

LSMs may be optimized toward the simulation of

streamflow or land–atmosphere fluxes, rather than SM

representation (Koster et al. 2009). For these reasons,

LSMs and satellite retrievals generally have different

SM climatologies. Unfortunately, an established con-

sensus on the climatology of SM over large domains,

considering both LSMs and satellite retrievals, is cur-

rently lacking (Draper et al. 2013). Nevertheless, when

LSM soil moisture is used as input to an RTM, its cli-

matology has a substantial impact on the magnitude of

biases in TB. This becomes evident when considering

the sensitivity of TB to SM, that is, generally on the

order of 2–3K increase per 0.01m3m23 decrease in SM

for low vegetation at around 408 incidence angle

(Jackson 1993). Finally, a third difficulty concerns the

estimation of RTM parameters. The latter are typically

estimated from local field experiments using ground-

based and airborne radiometers (e.g., Sabater et al.

2011; Peischl et al. 2012), which may not always be

appropriate for the simulation of spaceborne observa-

tions, for example, by SMOS, because of scaling effects.

Unfortunately, large-scale studies on parameter opti-

mization of RTMs are hardly available (Drusch et al.

2009; de Rosnay et al. 2009), and only a few studies

have used actual SMOS TB data (De Lannoy et al.

2013; Montzka et al. 2013).

This study proposes a method for optimizing a cou-

pled land surface and radiative transfer model frame-

work to decrease the amount of biases in the simulation

of multiangular and multipolarization SMOS TB obser-

vations. Therefore, the CommunityMicrowave Emission

Modelling platform (CMEM; Holmes et al. 2008; Drusch

et al. 2009; de Rosnay et al. 2009) is coupled to the Var-

iable Infiltration Capacity model (VIC; Liang et al. 1994,

1996, 1999). More specific, the study addresses ways for

mitigating the mismatch in horizontal and vertical rep-

resentation between model simulations and SMOS ob-

servations. Subsequently, the TB simulations from this

model configuration are further matched to SMOS ob-

servations by calibrating the RTM parameters accord-

ingly. Previous studies have addressed the global

calibration of RTM parameters based on multiangular

SMOS observations (De Lannoy et al. 2013) and local-

scale calibration of temporally dynamicRTMparameters

through data assimilation (Montzka et al. 2013). The

novelty of this present study lies in its focus on the in-

fluence of the LSM soil moisture climatology on the

TB simulations, the selection of the RTM calibration
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parameters, and the dependence of the calibration on

the sensor configuration (i.e., distinguishing between

ascending A and descendingD satellite overpasses and

horizontal H and vertical V polarizations). The study is

applied on a regional scale, covering the upper Mis-

sissippi River basin in the central United States. The

final aim of this study is to optimize an LSM–RTM

framework that accommodates for the direct assimila-

tion of multiangular and multipolarization TB obser-

vations from SMOS, in order to benefit surface water

management.

2. Data and methods

a. Study site

The upper Mississippi River basin is located in the

central United States. The basin covers an area of about

440 000 km2 and comprises portions of Minnesota,

Wisconsin, Iowa, and Illinois. As can be seen in Fig. 1,

the land use is primarily agricultural (corn, soybean,

wheat, etc.). The northeastern part of the basin is mainly

covered by forests. The basin is characterized by a lack

of significant topography, which facilitates the retrieval

FIG. 1. Land cover map of the upper Mississippi River basin, following the UMD classification

(Hansen et al. 2000).
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of SM from satellite observations. The annual pre-

cipitation ranges from approximately 475mm in the

northern part to over 1300mm in the southern part of

the basin. The southern portion is prone to flooding

because of strong summer precipitation, often enhanced

by wet antecedent soil moisture conditions. Further-

more, the basin is equipped with an extensive meteo-

rological network and is a part of the North American

Land Data Assimilation System (NLDAS) domain

(Mitchell et al. 2004). Finally, the catchment is charac-

terized by a low contamination of radio frequency in-

terference (RFI) in the SMOS L-band observations.

b. SMOS observations

SMOS provides regular (63-day repeat period) ob-

servations of the TOA TB at the global scale, which are

operationally used for SM retrieval through the Euro-

pean Space Agency (ESA) level 2 processor (Kerr et al.

2012). The TB and SM data in this study stem from the

level 3 Centre Aval de Traitement des Données SMOS
(CATDS) product (Jacquette et al. 2010), version 244.

In essence, the level 3 algorithm is an extension of the

level 2 prototype, employing multiorbit retrievals of

vegetation parameters for the enhancement of SM re-

trievals over individual orbits.

The level 3 CATDSTBdata are a global daily product

in full polarization, available in 625-km cylindrical

projection over the Equal-Area Scalable Earth (EASE)

grid. Note that the actual resolution of SMOS is643km.

The TB data are transformed from antenna polarization

reference (X and Y) to ground reference (H and V)

frame and are angle binned into fixed angle classes,

stretching from 17.58 to 52.58, with 58 bins. Both as-

cending and descending data have been extracted over

the upper Mississippi basin from the beginning of Jan-

uary 2010 to the end of December 2011, with a separate

processing of the A and D orbits.

Corresponding level 3 CATDS ascending and

descending SM data are also extracted over the study

area from 2010 to 2011 from the 1-day global product.

Next to SM, the product also contains quality indices for

soil moisture and RFI, as well as science flags indicating

the presence of snow, frozen soils, etc. The SMOS data

have been extensively filtered, preserving data when soil

and air temperatures (according to the LSM forcings

and simulations) are larger than 2.58C, and product flags

for snow and frozen soils [provided within the SMOS

product through the European Centre for Medium-

Range Weather Forecasts (ECMWF)] are zero, that is,

indicating the absence of snow and frozen soils. As

a consequence of this filtering, it is not expected that snow

or frozen soil conditions will have a significant impact on

further analysis. Finally, filters have been implemented to

exclude data with a probability of RFI larger than 0.2 and

urban or water cover fractions larger than 0.1 (fraction

per SMOS cell).

c. The VIC

The Variable Infiltration Capacity model (Liang et al.

1994, 1996, 1999) is a distributed LSM, accounting for

both water and energy balances. During the last de-

cades, the VIC has been widely used in a number of

applications (e.g., Maurer et al. 2001; Nijssen et al. 2001;

Sheffield et al. 2003; Sheffield and Wood 2008). The

gridcell size of the VIC can vary from 1km to hundreds

of kilometers, where each cell can be further subdivided

into fractions representing specific vegetation types. In

this study, the grid spacing was set to 0.1258 3 0.1258,
which approximately corresponds to 10km 3 10km.

The simulations make use of the real-time forcing

dataset (Cosgrove et al. 2003) prepared for the first and

second phases of the NLDAS project (NLDAS-1 and

NLDAS-2, respectively; Mitchell et al. 2004). Seven

meteorological forcing fields were processed at an

hourly time step and 0.1258 spatial resolution: precip-
itation, 2-m air temperature, air pressure, vapor pres-

sure, wind speed, and incoming short- and longwave

radiation. Also, soil and vegetation parameters employed

in the VICwere sourced from the NLDAS-1 project. The

soil texture was derived from the State Soil Geographic

(STATSGO) database (Miller andWhite 1998), whereas

the elevation is described by the Global 30 Arc-Second

Elevation (GTOPO30) database (Verdin and Jenson

1996). The soil texture and elevation data were averaged

up to the 0.1258 grid of the VIC. The land cover was ex-

tracted from the global 1-km University of Maryland

(UMD) dataset (Hansen et al. 2000), based on which

subgrid vegetation fractions were calculated for the

coarser 0.1258 model grid. Finally, the climatological

vegetation leaf area index (LAI) was derived based on

NDVI observations from the Advanced Very High

Resolution Radiometer (AVHRR) satellite sensor

(Gutman and Ignatov 1998). The LAI product (Myneni

et al. 1997) was originally provided at 16-km resolution

and subsequently resampled down to 0.058 through bi-

linear interpolation and reaggregated to 0.1258. Monthly

averaged LAI values have been processed per subgrid

vegetation tile.

The model simulations over the upper Mississippi are

performed in full water and energy balance mode, where

soil moisture and soil temperature in various layers are

simulated on an hourly basis. The spinup time for the

simulations was set to 1 year. The number of vertical soil

layers has been set to 3, where the first layer represents the

top 10cmof the soil and the second- and third-layer depths

vary between 10 and 250cm. Note that this first-layer
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depthmay differ from the layer depth observed by SMOS,

which is limited to the top few centimeters (Escorihuela

et al. 2010). Compared to the SMOS retrievals, the VIC

SM simulations may consequently show a different long-

term mean and dynamic range, as well as slower SM

dynamics, because of the larger memory associated with

thicker layer depths. Nevertheless, it was decided not to

modify the first-layer depth of the VIC, as the model

employs a one-source energy balance, and consequently

depends on an equivalent surface and vegetation tem-

perature. It should also be highlighted that, for this study,

the VIC parameters were considered to be fixed, having

been previously optimized for the purpose of streamflow

simulations (Maurer et al. 2002) over the upper Mis-

sissippi basin. In this context, it is worth mentioning that

a mismatch in vertical representation may also be found

in operational applications, where it may not be possible

to fine-tune LSMs for assimilation purposes because of

computational restrictions and lack of data, particularly

for large scales and remote catchments (Balsamo et al.

2009).

d. The CMEM

The RTM coupled to the VIC is the CMEM (Holmes

et al. 2008; Drusch et al. 2009; de Rosnay et al. 2009),

version 4.1. The CMEM is used as a forward operator to

convert the simulated soil moisture and surface tem-

peratures by the VIC into simulations of multiangular

and multipolarization TOA L-band brightness temper-

atures TBTOA,p at polarization p5 [H, V]:

TBTOA,p5TBau,p 1 exp(2tatm,p)TBTOV,p , (1)

where TBau,p (K) is the upward atmospheric contribu-

tion, tatm,p (unitless) is the atmospheric opacity, and

TBTOV,p (K) is the TB at the top of the vegetation

(TOV). The latter is calculated through a first-order

tau–omega (t–v) model (Jackson et al. 1982):

TBTOV,p5Teff(12 rp)Gp1Tc(12vp)(12Gp)(11 rpGp)

1TBad,prpG
2
p ,

(2)

where Teff (K) is the effective temperature of the soil

medium, rp (unitless) is the rough surface reflectivity,

Gp (unitless) is the vegetation transmissivity, Tc (K)

is the vegetation temperature, vp (unitless) is the

scattering albedo, and TBad,p (K) is the downward

atmospheric contribution. As in most retrieval stud-

ies, the vegetation temperature Tc is assumed to be

equal to the effective soil temperature (Wigneron et al.

2007). The transmissivity of the vegetation can be ex-

pressed by

Gp5 exp

�
2
tveg,p

cosu

�
, (3)

where tveg,p (unitless) is the optical depth of the standing

vegetation and u (8) is the incidence angle.

CMEMhas amodular structure, allowing for different

parameterization options for the respective contribu-

tions from atmosphere, soil, and vegetation. In general,

the options selected for this study revert to the L-band

Microwave Emission of the Biosphere (L-MEB) model

formulation byWigneron et al. (2007). The atmospheric

contributions (TBau,p, TBad,p, and tatm,p) are described

according to Pellarin et al. (2003). For the soil compo-

nent, the effective temperature is approximated based

on the surface temperature Tsurf (K) and the deep-soil

temperature Tdeep (K) as

Teff 5Tdeep1 (Tsurf 2Tdeep)C , (4)

where theweighting factorC depends on the SM content

(Wigneron et al. 2001) by

C5 (SM/w0)
b
w0 , (5)

with w0 and bw0
as semiempirical parameters depending

on soil characteristics (mainly soil texture). As the RTM

is coupled with the VIC, the VIC skin temperature and

third-layer (variable thickness) soil temperature are

used to approximate the Tsurf and Tdeep, whereas SM is

approximated by the first-layer SM from the VIC.

The rough surface reflectivity parameterization is

based on the Q/h formulation by Choudhury et al.

(1979):

rp 5 [QRq 1 (12Q)Rp] exp[2h cosNr
p(u)] , (6)

where Q is the polarization mixing factor often set to

zero for L band (Wigneron et al. 2001), q is the opposite

polarization of p, h is the surface roughness, Nrp is the

angular dependence of the surface roughness, and Rp is

the smooth surface reflectivity. The smooth surface re-

flectivity is given by the Fresnel equations and is

a function of the dielectric constant. The relationship

between dielectric constant and soil moisture is de-

scribed by Mironov et al. (2004). Finally, the vegetation

optical depth is based on the model by Wigneron et al.

(2007), which expresses tveg,p as a function of the optical

depth at nadir tNAD (unitless):

tveg,p 5 tNAD[ cos
2(u)ttp sin

2(u)] , (7)

where ttp is a parameter accounting for the influence of

the incidence angle. The optical depth at nadir is given by
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tNAD 5 b1LAI1 b2 , (8)

with b1 and b2 being structural vegetation parameters.

Despite that the vegetation optical depth is more closely

related to the vegetation water content (VWC); it is

usually derived based on LAI, as global LAI input data

are more easily accessible (Wigneron et al. 2007). Al-

though the LAI may be less suitable during the sen-

escent phase of crops, the correlation between tNAD and

LAI was found to be satisfactory for various crop types

(Wigneron et al. 2007).

A set of baseline parameter values has been identified

that corresponds to the parameter values that are used in

the ESA level 2 processor, version 5.5.1 (Kerr et al.

2012). The list of parameters is given in Table 1 for each

UMD land cover class. Note that for high vegetation

types (classes 2–7 in Table 1), the annual maximum LAI

is used in Eq. (8), whereas for low vegetation types

(classes 8–13 in Table 1), monthly average values (the

same as in the VIC) are employed.

3. Optimization of the LSM–RTM framework

The assimilation of SMOS TB observations requires

the coupling of an LSMwith a forward radiative transfer

scheme to provide unbiased simulations of multiangular

and multipolarization TBs. To avoid difficulties en-

countered with a priori bias correction through CDF

matching of the TB observations, this study aims to

optimize the coupled LSM–RTM framework such that

the processing of the observations can be bypassed.

Therefore, a number of optimization experiments are

investigated, which are further detailed in the following

sections. A first experiment aims to investigate the im-

pact of the LSM SM climatology on the bias in the TB

simulations. Thereby, the SM simulations of VIC are

rescaled to the climatology of SMOS through CDF

matching, prior to propagation in CMEM. The clima-

tology of the SMOS SM retrievals is chosen as the ref-

erence to assess the quality of the RTM parameters that

are currently used operationally for SMOS retrievals, in

the absence of persistent SM biases. A second experi-

ment is dedicated to the calibration of RTM parameters

based on multiangular and multipolarization SMOS

observations.

a. Sample dataset

A sample dataset containing TB simulations by the

coupled LSM–RTM and observations by SMOS was

generated to investigate the optimization of the LSM–

RTM framework. Data from 2010 were used for cali-

bration and data from 2011 were used for validation. A

schematic explaining the generation of the TB simula-

tions through the coupled LSM–RTM is shown in Fig. 2.

An important aspect of the proposed method is that it

accounts for the mismatch in spatial resolution between

the finescale LSM and coarse-scale SMOS observations,

while conserving the subgrid vegetation description of

the LSM.

For each SMOS TB swath (within the period of 2010–

11), 25 random SMOS grid cells (EASE) within the

upper Mississippi basin are selected. The random sam-

pling is redone at each time step and is performed to

limit the size of the dataset, while including data from

various locations within the basin. Each of the selected

SMOS grid cells covers a number (4–9) of finescale VIC

grid cells, which in turn embed several vegetation tiles

(forest, cropland, etc.). CMEM is then run for each in-

dividual VIC vegetation tile to simulate TB at both H

and V polarization and eight angles, that is, from 17.58
through 52.58 (each 58). Thus, all required input fields for
CMEMare propagated from theVIC. These include soil

moisture (first layer), soil temperatures (skin and third

layer), sand and clay fractions, bulk density, land cover

TABLE 1. The baseline RTM parameters for the UMD land cover types.

ID UMD land cover Cover (%) b1 b2 NrH NrV ttH ttV h vH vV

1 Water 1.81 0 0 0 0 0 0 0 0 0

2 Evergreen needleleaf 1.64 0.36 0 2 0 1 1 0.3 0.08 0.08

3 Evergreen broadleaf 0 0.29 0 2 0 1 1 0.3 0.08 0.08

4 Deciduous needleleaf 0 0.36 0 2 0 1 1 0.3 0.08 0.08

5 Deciduous broadleaf 12.93 0.29 0 2 0 1 1 0.3 0.08 0.08

6 Mixed forest 6.61 0.325 0 2 0 1 1 0.3 0.08 0.08

7 Woodland 14.17 0.29 0.03 2 0 1 1 0.3 0.08 0.08

8 Wooded grassland 18.67 0.06 0 2 0 1 1 0.1 0 0

9 Closed shrubland 0 0.06 0 2 0 1 1 0.1 0 0

10 Open shrubland 0 0.06 0 2 0 1 1 0.1 0 0

11 Grassland 0.44 0.06 0 2 0 1 1 0.1 0 0

12 Cropland 42.32 0.06 0 2 0 1 1 0.1 0 0

13 Bare ground 0 0.06 0 2 0 1 1 0.1 0 0

14 Urban and built 1.41 0 0 1 1 0 0 0 0 0
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type, and LAI. The simulated TBs at each tile are then

aggregated per VIC cell according to the vegetation

fractions within each cell. Finally, the antenna pattern

weighting function for each SMOS cell is used to ag-

gregate the simulated TBs of the underlying VIC cells to

the scale of the SMOS grid. Note that the antenna

weighting function differs for each SMOS cell, as it relies

on the incidence angle, the azimuth angle, and the

footprint axis. A complete description of the weighting

function can be found in Kerr et al. (2011).

Independent calibration and validation datasets have

been generated for ascending and descending orbits to

investigate the impact of the overpass on the calibration

performance. The A and D calibration and validation

datasets each contain a total of 8100 data pairs (at the

SMOS grid) per polarization. These comprise TB sim-

ulations and observations at all eight angle bins with

a frequency of occurrence according to the spatial cov-

erage of the angle bin over each of the randomly chosen

cell locations. This implies that inner angles (e.g., 42.58)
are slightly more present than the outer angles (e.g.,

17.58 and 52.58).

b. SM bias correction

It is known that LSMs and satellite retrievals often

provide SM with a different climatology, expressed by

the long-term mean and dynamic range. As argued

previously, reasons can therefore be found in differ-

ences in representation (spatial resolution and layer

depth) or shortcomings in both the land surface and

retrieval models. Figure 3 (top) shows a comparison

between the SM densities from SMOS and the VIC,

revealing a bias of 0.17 cm3 cm23 and correlation of

0.42. Notably, the VIC SM displays a decreased dy-

namic range compared to the SMOS retrievals. The

wetter conditions and decreased dynamic range of

VIC have previously been attributed to its lack of

built-in undercanopy soil evaporation and its

FIG. 2. Schematic of the forward simulation of SMOS TB from subgrid vegetation tiles in VIC–CMEM.
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exponential decay of gravity drainage and plant

transpiration with decreasing soil moisture (Pan et al.

2014). Additionally, they may be caused by the larger

first-layer depth (10 cm) in the VIC as compared to the

sensing depth interval of SMOS.

When simulations from an LSM are used for the sim-

ulation of TB, the SM climatology will have a profound

impact on the long-term mean and dynamic range of the

TB simulations. Consequently, if SMOS SMretrievals for

a given RTM parameter set are biased in comparison

with the VIC SM simulations, this bias will inevitably

propagate to bias in TB simulations, assuming that the

VIC is coupled to anRTMwith similar parameterization.

Additionally, if the parameters of the coupledRTMwould

be calibrated without accounting for the possible bias in

SM, the obtained parameter values could be unrealistic, in

the sense that they are compensating for the divergent SM

representation. Hence, there is a strong motivation to re-

solve part of the biases in TB simulations at the soil

moisture level by rescaling the SMclimatology of theVIC.

The bias correction of SM was performed through

CDF matching, as is the suggested method by many

studies (e.g., Reichle and Koster 2004). The CDF

matching was applied to convert the VIC SM output to

the climatology of the SMOS level 3 SM retrievals. The

selection of the SMOS level 3 product as the reference

allows us to assess and improve the operationally used

RTM parameters for SMOS, eliminating the influence

of the SM climatology. Note that remaining TB biases

after SM CDF matching may still occur because of

contributions of soil and vegetation inputs or parame-

ters, model shortcomings or assumptions, forcing

errors, biased temperature simulations, etc. The CDFs

were computed using the nonparametric kernel-based

method by Li et al. (2010). Thereby, SM values from

2010 were used to calculate the CDFs for each of

the VIC and SMOS grid cells. Only time steps that

were both covered in the VIC and SMOS datasets were

used (0600 and 1800 local time for A and D orbits, re-

spectively, on dates of SMOS overpasses). The

matching coefficients for the CDFs were calculated on

a pixel basis and stored in lookup tables (LUTs). Sub-

sequently, the 2010 LUTs were used to rescale the VIC

SM for 2011. As the model simulations are performed

at a finer spatial scale compared to the SMOS obser-

vations, the same CDF for a coarse-scale SMOS grid

cell was used to match the different finescale CDFs of

the underlying VIC cells. It should be mentioned,

however, that the rescaling may be suboptimal given

the restricted time span (i.e., 1 year) for the construc-

tion of the CDF. The robustness of the rescaling func-

tion could be improved by considering larger datasets,

which were, however, not available for this study.

Nevertheless, Fig. 3 (bottom) shows that, although

based on only 1 year of data, the CDFmatching reduces

the bias to 0.00 cm3 cm23 and increases the Pearson

correlation coefficient to 0.64 for the 2011 validation

dataset. Finally, it is worth mentioning that the CDF

matching of SM partly resolves the problems associated

with a different SM representation between the LSM

and the SMOS retrievals. More specifically, it modifies

the long-term mean and dynamic range but preserves

the ranking and the temporal variability, that is, SM

memory.

c. RTM calibration

After modification of the input SM climatology, the

parameters of the RTM are further optimized to de-

crease remaining biases in the SMOS TB simulations.

TheRTMparameters that are considered for calibration

are h, Nrp, b1, b2, and vp, which were selected based on

De Lannoy et al. (2013) and a sensitivity analysis. The b1
and b2 coefficients relate the optical thickness of the

FIG. 3. Density scatterplots between 2011 VIC and SMOS SM

(cm3 cm23) (top) before and (bottom) after CDF matching.
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vegetation to LAI, the h and Nrp parameters describe

the surface roughness and its angular dependence, and

vp controls the vegetation scattering of microwaves.

It should be emphasized that the calibration of the

RTM in this study is performed per land cover class (see

Table 1) instead of on a pixel basis. Pixel-based cali-

bration is difficult to achieve if the goal is to preserve the

subgrid pixel heterogeneity in terms of vegetation types.

Preserving subgrid variability in a pixel-based calibra-

tion would require a high number of parameter sets for

each pixel, which would render the model coupling un-

feasible. Finally, note that the calibration is not carried

out for land cover classes with cover fractions below 1%

(such as grasslands), as these may be subject to less ac-

curate parameterization because of underrepresentation

in the calibration dataset. Also, water and urban are not

included, because the SMOS observations over cells

dominated by the latter classes have been filtered.

The calibration of RTM parameters is performed

using the particle swarm optimization (PSO; Kennedy

and Eberhart 1995) algorithm. Example applications

and details on PSO can be found in Scheerlinck et al.

(2009) and Pauwels and De Lannoy (2011). Only

a brief explanation and summary of the selected PSO

parameter values are given here. The PSO algorithm

iteratively explores the parameter space and mini-

mizes an a priori defined objective function. The PSO

algorithm modifies a number of parameter sets (or

particles) by changing their velocity (speed and di-

rection) based on the most favorable conditions en-

countered by an individual particle and the swarm of

particles. Thus, the modification of individual parti-

cles expresses the cognitive aspect of the optimization

algorithm, whereas the modification of the particle

swarm accounts for the social aspect. In this study, the

particle swarm size is set to 25 and the maximum

number of iterations to 30. The inertia weight and

cognitive and social parameters are set to 0.7, 0.7, and

1.3, respectively. The selected PSO parameter values

are based on De Lannoy et al. (2013) and enforce

a stronger social than cognitive effect on the

optimization.

The objective function J to be minimized integrates

the Kling–Gupta efficiency KGE, introduced by Gupta

et al. (2009), together with a parameter penalty term as

J5WKGE

1

Nu,p,o

�
u
�
H,V

p
�
A,D

o
(12KGEu,p,o)

1Wa

1

Na

�
N

a

i

(a0,i 2ai)
2

s2
a
0,i

, (9)

with

KGEu,p,o 5 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1(12Ru,p,o)

21W2(12MRu,p,o)
21W3(12 SRu,p,o)

2
q

, (10)

where Nu,p,o is the number of combinations of in-

cidence angle bins u, polarizations p, and orbits o,

while Na refers to the number of calibrated RTM

parameters. The variables WKGE and Wa are weight

factors for the different penalty terms, set to 100 and

1, respectively. These values have been selected to put

fewer constraints on the parameter penalty compared

to the KGE. Further, KGEu,p,o is the KGE for a spe-

cific u, p, and o. The variable R is the correlation co-

efficient between the simulations and observations,

MR is the ratio between the mean of the simulations

and the mean of the observations, and SR is the ratio

between the standard deviation of the simulations and

the standard deviation of the observations. Note that

the latter three criteria should ideally be equal to 1,

through which the KGE becomes 1. The values from

W1 to W3 are weights that can be assigned to specify

the relative importance of the different criteria for the

problem at hand. Although different weights have

been tested, the aim of this study is not to perform

a thorough optimization of the weights. Such optimi-

zation is a complex task and truly depends on the specific

objectives of the calibration. Therefore, these weights

are adopted as an indication of what could be possible.

In this specific study, the weights have been set to

W1 5 0:05, W2 5 1:95, and W3 5 0. The weights W1 and

W2 were chosen such that emphasis is given to the op-

timization of the MR, in order to mitigate biases. The

weight W3 is set to zero, as the improvement in SR

comes at the expense of an increase in bias.Moreover, as

the SR simultaneously embeds the variability of TB in

a temporal and spatial context (different grid cells and

time steps are contained in the calibration set), com-

pensating effects, for example, increasing spatial vari-

ability at the expense of temporal variability, needed to

be avoided. Hence, SR is arguably less paramount to the

optimization compared to R and MR. Finally, note that

the cost function does not follow Bayesian parameter

estimation approaches. While other studies have in-

cluded the model and the observation errors to estimate
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RTM parameters and their uncertainties (De Lannoy

et al. 2014), the primary goal of this paper is to find ef-

ficient parameter values, without a need to estimate the

parameter uncertainty. This approach may result in

suboptimal parameters because of overfitting, but no

clear evidence thereof was found in this paper.

Besides the KGE, the objective function also mini-

mizes parameter ai deviations from initial values a0,i to

account for equifinality, that is, to select a single optimal

parameter set from multiple parameter sets that yield

a similar KGE. The deviation term is limited by the

variance of a uniform distribution with boundaries

[amin, amax], given by

s2
a
0,i
5

(amax,i2amin,i)
2

12
. (11)

The initial parameter values have been taken from the

baseline parameter set given in Table 1. The boundaries

of the different parameters are given in Table 2 and

indicate both the limits of the search area and the ex-

pected uncertainty in the prior parameter estimates. It

should be noted that Nrp was not constrained to an ini-

tial guess, that is, the boundaries on Nrp are only an

indication of the search space limits. The reason is the

large variability of Nrp observed from experimental data

(Wigneron et al. 2001).

The restriction to a realistic range of parameter values

and the prior penalty term together preserve a realistic

model sensitivity of TB to SM. This sensitivity is gen-

erally known to be an approximate 2–3K increase in TB

for a 0.01m3m23 decrease in soil moisture around a 408
incidence angle for low vegetation (Jackson 1993). As

denoted in De Lannoy et al. (2013), the sensitivity can

largely decrease if, for instance, unrealistically high

values for roughness and optical depth are used. In this

case, the emission from the soil is very low, and thus the

sensitivity of TB to SM is very low. Such unrealistic

parameter values could be obtained when no parameter

restrictions would be applied during the calibration.

d. Overview of the optimization experiments

A number of case studies, which are listed in Table 3,

were performed in order to investigate several aspects in

the RTM optimization. A first experiment aims at in-

vestigating the impact of the LSM SM climatology on

the TB simulations with baseline RTM parameters

(Table 1). Note that this experiment refrains from pro-

viding any recommendations on the optimal SM clima-

tology (e.g., LSM versus SMOS), but aims to identify its

impact on the occurrence of biases in the TB simula-

tions. The experiment where CDF-matched soil mois-

ture is used as input to CMEM, without RTMparameter

calibration, is referred to as case 1 in Table 3.

In Table 3, cases 2–6 investigate the improvements in

TB simulation after calibrating specific RTM parame-

ters. Given the large impact of roughness on the cli-

matological mean TB (De Lannoy et al. 2013), the h

parameter is included in all cases. Case 2 explores the

calibration of h only, whereas cases 3–5 simultaneously

retrieve Nr, v, or b1 and b2, respectively. Further, case 6

demonstrates the added value of a joint calibration of

h, Nr, and v. Calibration cases 2–6 are performed on

a dataset that includes both ascending and descending

overpasses, as well as both H and V polarizations. Thus,

no orbit or polarization-dependent parameters are

considered in these cases.

Furthermore, cases 7–10 are designed to investigate

the effect of the radiometer configuration on the cali-

bration. In this context, it is investigated that a differ-

entiation of the calibration between either polarizations

or orbits, or both polarizations and orbits, may enhance

the performance of the simulations. Finally, case 10

considers the calibration of a polarization-independent

h, and polarization-dependent Nrp and vp parameters,

while accounting for ascending and descending orbits

separately.

4. Results

a. Baseline run

A baseline run, using the original VIC SM output and

the RTM parameters of Table 1, was performed to

TABLE 2. RTM calibration parameters and selected boundaries.

Parameter Min Max

h 0 2

Nrp 21 2

vp 0 0.2

b1 0 0.7

b2 0 0.7

TABLE 3. RTM calibration cases.

Case Orbits Polarizations SM CDF h Nr v b1 and b2

Baseline A and D H and V No — — — —

1 A and D H and V Yes — — — —

2 A and D H and V Yes X — — —

3 A and D H and V Yes X X — —

4 A and D H and V Yes X — X —

5 A and D H and V Yes X — — X

6 A and D H and V Yes X X X —

7 A and D H or V Yes X X X —

8 A or D H and V Yes X X X —

9 A or D H or V Yes X X X —

10 A or D H and/or V Yes X X X —
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simulate the SMOS TB observations over the upper

Mississippi for 2011. Figure 4 shows the basin-averaged

angular TB signatures for the ascending (Fig. 4a) and

descending (Fig. 4c) orbits, comparing the SMOS ob-

servations with the VIC–CMEM simulations. As re-

vealed by this figure, a large bias on the order of 30K

for H polarization and between 27 (at 17.58) and 10K

(at 52.58) for V polarization is found for ascending or-

bits. Descending orbits are exposed to slightly lower

biases of approximately 20 and 5–15K for H and V

polarization, respectively, which are likely attributed

to a lower probability of RFI in descending orbits.

Figure 4 moreover displays the RMSE and KGE

(with W1 5 0:05, W2 5 1:95, and W3 5 0) for each an-

gle and polarization for ascending and descending or-

bits (Figs. 4b,d). In the case of H polarization, the RMSE

increases with incidence angle, whereas the opposite

trend is observed for V polarization, irrespective of the

orbit. The KGE generally follows a similar behavior,

with an increase in performance for lower (higher) in-

cidence angles in case of H (V) polarization. Finally,

the V-polarized simulations outperform the simula-

tions at H polarization, mostly because of lower biases.

To support the further analysis of the optimization

experiments, the SM output from the VIC is compared

with the retrievals from SMOS. Figures 5a–d show the

2011 annual mean SMOS retrievals and simulations of

SM over the upper Mississippi basin, their bias (SMOS

minus VIC), and Spearman rank correlation, respec-

tively. The comparison reveals a poor spatial agreement

in SM patterns and a large wet model bias (as a function

of volume) that ranges between 25% in the south to

230% in the northwest. Conversely, the correlation co-

efficient reaches up to 0.8 for most parts of the basin,

demonstrating the agreement in temporal variations be-

tween SM simulations and retrievals, particularly in the

southern and southwestern areas that are dominated by

low vegetation types (see Fig. 1). The correlation results

are consistent with comparison studies of SMOS SM

products using local measurements (Al Bitar et al. 2012;

Leroux et al. 2014). The forest area in the northeast is

mainly characterized by a low temporal correlation be-

tween 0 and 0.5. This low correlation in forest areas may

be explained by a less pronounced seasonal soil moisture

cycle, in combination with the higher uncertainty of

SMOS SM retrievals (Rahmoune et al. 2013). The latter

FIG. 4. The basin-averaged angular TB (K) signatures of the SMOS observations and baseline simulations by VIC–

CMEM for 2011, along with the RMSE (K) and KGE (unitless) for (a),(b) ascending and (c),(d) descending orbits.
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is due to a decreased sensitivity of the SMOS L-band TB

observations to SM under dense vegetation cover.

Figures 6a–d show the 2011 annual mean skin tem-

perature of ECMWF fields and the VIC simulations,

their bias (ECMWF minus VIC), and Spearman rank

correlation. The ECMWF fields are used as auxiliary

information for soil moisture retrieval by the opera-

tional SMOS processor (Kerr et al. 2012). Therefore,

a comparison between the ECMWF and VIC skin

temperature simulations allows for assessing the possi-

ble impact of differences in temperature on the simu-

lations of brightness temperature for SMOS. The

comparison shows consistent spatial patterns between

the ECMWF andVIC simulations, both displaying a small

increasing gradient from north to south. The bias is ho-

mogeneous across the basin and ranges between 18 and
38C. The temporal Spearman rank correlation is close to

1 for the entire basin. These results indicate that, apart

FIG. 5. The 2011 annual mean ascending SM as a function of volume (%) (a) from SMOS and (b) simulated by

VIC–CMEM, along with the corresponding (c) bias (%; SMOS minus model) and (d) Spearman rank correlation.
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froma small bias that is homogeneous across the study site,

the VIC simulations are consistent with those used in the

SMOSprocessor.Hence, the impact of temperature on the

simulations of TB is expected to be minor.

Figures 7 and 8 display the 2011 annual mean as-

cending SMOSTBobservations at 42.58 incidence angle,
the corresponding VIC–CMEM simulations, their bias,

and Spearman rank correlation for H and V polariza-

tion, respectively. Compared to SM, the spatial

correspondence between the observations and simula-

tions becomes slightly more prominent, mainly driven

by the influences of land cover. The bias is found to be

particularly large (up to 50K) over low vegetated areas

at H polarization, whereas biases over forest areas are

generally limited within 10K. These results are consis-

tent with De Lannoy et al. (2013), who found that the

use of literature RTM parameters can result in TB

biases of 10–50K against SMOSobservations. As for SM,

FIG. 6. The 2011 annualmean surface temperature (8C) (a) fromECMWFand (b) simulated byVIC–CMEM, along

with the corresponding (c) bias (8C; ECMWF minus model) and (d) Spearman rank correlation.

JUNE 2015 L I EVENS ET AL . 1121



the temporal correlation is especially high in portions

dominated with low vegetation; compared to the SMOS

retrievals, the correlations in TB over northern forest

areas have increased.

b. Optimization experiments

A set of optimization experiments was performed

according to Table 3. Table 4 provides an overview of

the performance of the different experiments in com-

parison to the baseline run for the year 2011. It is im-

portant to note that the evaluation criteria in this table

are calculated based on the sample dataset (section 3a),

which combines observations–simulations of different

instants in time, spatial locations, and incidence angles.

Consequently, regional or seasonal artifacts at specific

angle bins are not evaluated by this approach and will be

discussed in section 4c. In the following, the results of

FIG. 7. The 2011 annual mean ascending TBH (K) at 42.58 (a) observed by SMOS and (b) simulated by

VIC–CMEM, along with the corresponding (c) bias (K; SMOSminus model) and (d) Spearman rank correlation.
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Table 4 are discussed, with emphasis on the impact of

the LSMSM climatology, the choice of RTM calibration

parameters, and the impact of partitioning the calibra-

tion between polarizations and orbits.

The importance of the SM climatology is evident

when comparing the baseline run with case 1, where

CDF matching of SM is performed prior to use in

CMEM. Averaged over orbits and polarizations, the

baseline yields a correlation of 0.67 and RMSE of

29.72K, with the bias having an absolute value of

20.27K [the unbiased RMSE (ubRMSE) is thus 21.73K,

given that ubRMSE2 5RMSE2 2 bias2]. The corre-

sponding KGE of the baseline equals 0.86. After CDF

matching the VIC SM states, the RMSE decreases to

18.85K, while the bias is reduced to 4.69K. The un-

biased RMSE is also slightly reduced to 18.26K. This

demonstrates that most of the bias, and a small part of

the mismatch in variability, in the TB simulations is

FIG. 8. The 2011 annual mean ascending TBV (K) at 42.58 (a) observed by SMOS and (b) simulated by

VIC–CMEM, along with the corresponding (c) bias (K; SMOSminus model) and (d) Spearman rank correlation.
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attributed to gross differences in the climatology of the

SM simulations of the LSM against SMOS, with the

baseline RTM parameters (Table 1) providing a rea-

sonable simulation of TB once the SM climatology dif-

ference has been accounted for. The impact of SM

climatology and the lack of any established consensus

may as well partly explain the large variability in RTM

parameters that can be found from modeling studies in

literature [e.g., reviewed in De Lannoy et al. (2013)]. In

addition to a decrease in bias and increase in accuracy,

the CDF matching improves the Spearman rank corre-

lation to 0.75 as a consequence of the nonlinear re-

lationship between TB and SM. Finally, the KGE is

increased from 0.86 to 0.94.

Cases 2–5 investigate the calibration of h alone and

h in combination with Nr, v, and b1 and b2, respectively.

The results show that none of these calibration experi-

ments are able to improve the simulations of case 1. This

again justifies the use of baseline RTM parameters as

given in Table 1, provided the model SM climatology is

corrected. Only for case 6, which investigates the joint

calibration of h, Nr, and v, is a slight improvement ob-

tained. More specifically, the RMSE decreases with

1.5K, with a minor decrease in bias of 0.2K. These re-

sults are in line with De Lannoy et al. (2013), who ob-

served calibration improvements after increasing the

number of calibration parameters (including h and v).

Given the minor improvements after the joint cali-

bration of h, Nr, and v, this scenario is further in-

vestigated in cases 7–10, where independent calibrations

for specific polarizations and/or orbits are carried out. It

shows that separation of polarizations causes a slightly

larger improvement compared to the separation of orbits,

whereas treating both polarizations and orbits separately

yields the largest improvement. In the latter case, a de-

crease of 0.6K in RMSE and approximately 1K in bias

was found in comparison with case 6. Finally, case 10

indicates that there is no clear need to account for po-

larization differences in the calibration of h. Hence, the

calibration case 10 may be proposed as the most optimal.

The improvement after separating ascending (0600

local time) and descending (1800 local time) orbits may

be reasoned by the fact that, for ascending orbits, ion-

ospheric effects are expected to be minimal, whereas

surface conditions are close to thermal equilibrium.

During descending orbits, the temperature gradients can

be high (Jackson 1980). Also, the SMOS mission is

known to be impacted by RFI (Oliva et al. 2012), and

this impact is different for ascending and descending

orbits as the instrument is tilted by 32.58 from nadir. The

presence of low-level RFI in the ascending SMOS ob-

servations over North America due to the active pres-

ence of a military radar system in 2010–11 was

highlighted in Collow et al. (2012) and De Lannoy et al.

(2013). Several studies (Bircher et al. 2012; Leroux et al.

2014; Verhoest et al. 2015) have also shown that as-

cending and descending SMOS data reveal different sta-

tistics, supporting the need for different parameterizations.

However, a caveat to the differentiation between orbits is

the fact that this purposely introduces model bias tomatch

the observation bias. If the objective would be to provide

consistent time-independent simulations of TB, a dif-

ferentiation between orbits may not be advisable. Finally,

the use of polarization-dependent surface roughness and

(particularly) vegetation parameters may be justified by

differences in radiative transfer between polarizations as

implemented in the L-MEBmodel (Wigneron et al. 2001)

and validated using local radiometer and SMOS data

(Wigneron et al. 2012).

c. Validation of calibration case 10

The calibrated parameters associated with case 10 are

further used in a coupled VIC–CMEM simulation over

the upper Mississippi for 2011. Table 5 shows the pa-

rameters obtained for ascending and descending orbits

for each land cover class with a cover fraction larger than

1%, except for water and urban. The roughness of low

vegetation types (e.g., wooded grassland and cropland)

slightly increased, mainly for ascending orbits. The scat-

tering albedo remained close to the baseline for ascending

orbits, whereas a slight increase is observed for descend-

ing orbits. Furthermore, values for low vegetation are

found to be larger than zero for all polarizations and or-

bits. Finally, large differences are occurring in Nrp even

TABLE 5. The calibrated RTM parameters of case 10 for the UMD land cover types.

Ascending Descending

ID UMD land cover h NrH NrV vH vV h NrH NrV vH vV

2 Evergreen needleleaf 0.32 0.85 0.65 0.04 0.12 0.29 0.35 0 0.16 0.11

5 Deciduous broadleaf 0.13 0.48 20.88 0.07 0.05 0.47 1.67 1.08 0.12 0.13

6 Mixed forest 0.47 0.64 1.19 0.04 0.07 0.33 1.49 0.8 0.15 0.15

7 Woodland 0.09 0.53 0.63 0.09 0.09 0.41 0.62 20.8 0.11 0.14

8 Wooded grassland 0.29 0.35 1.35 0.01 0.07 0.22 20.5 0.95 0.05 0.11

12 Cropland 0.26 20.34 2 0.04 0.03 0.15 1.22 2 0 0.03
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within classes of low and high vegetation types as this

parameter was not constrained toward the initial pa-

rameter values. Nevertheless, the H polarization results

may indicate a suboptimal performance of the initial

value (equal to 2 for all vegetation types), as calibrated

values aremostly in the range of 0–1. ForVpolarization, it

is less clear to which values the calibration is converging.

To demonstrate the improvements made with respect

to the baseline, Fig. 9 shows the angular signature for the

2011 validation dataset. In comparison with Fig. 4, it

clearly shows a reduction in bias (,10K) over all angle

bins. Furthermore, the RMSE decreases significantly to

less than 20K in all cases, whereas the KGE increases to

above 0.9. Finally, after the RTM optimization, the TB

simulations show a comparable accuracy (RMSE, KGE)

over all angles, which was not the case for the baseline

simulations (see Fig. 4).

Figures 10 and 11 show a comparison between the

simulations and observations of the mean 2011 ascending

TB at 42.58 incidence angle, after SM CDFmatching and

RTM calibration, for H and V polarization, respectively.

Although the basin-averaged TB bias remains well below

5K, considerable regional biases are still encountered.

Particularly for H polarization, the simulated TBs in the

northwest show a warm model bias compared to the

SMOS observations, whereas the opposite is true in

the southwest. Since large parts of these two regions

share the same dominant land cover type (i.e., crop-

land), while the soil moisture bias has been almost

completely removed through CDF matching, the re-

maining cause for the observed systematic differences

can be found in measurement errors, forcing errors,

biased temperature simulations, or the characteriza-

tion of the vegetation. Specifically for vegetation, the

level 3 SMOS retrievals employ static land use maps

from ECOCLIMAP and related LAI. Based on this

information, the optical thickness of the vegetation is

dynamically retrieved in conjunction with soil moisture

(Kerr et al. 2012). In the case of the VIC, the land cover is

sourced from the UMD, with climatological monthly LAI

parameters based on AVHRR satellite data. Conse-

quently, regional differences in vegetation characteriza-

tionmay cause biases in TB, notwithstanding the unbiased

soil moisture fields. Further removal of the regional bias

would require pixel-based RTM calibration, or post-

processing, for example, through CDFmatching of the TB

FIG. 9. The basin-averaged angular TB (K) signatures of the SMOS observations and calibrated (case 10) VIC–

CMEM simulations for 2011, along with the RMSE (K) and KGE (unitless) for (a),(b) ascending and (c),(d)

descending orbits.
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simulations or observations. However, it should be re-

called that the present study does not apply pixel-based

calibration in order to preserve the subgrid vegetation

variability of the VIC and simplify the coupling with the

RTM. Finally, the Spearman rank correlation between the

observations and simulations of TB is found to be partic-

ularly high over low vegetation, with correlations up to 0.9.

Moreover, the correlation has increased after applying the

SM CDF matching, as seasonal TB discrepancies have

been reduced through adjusting SM that nonlinearly re-

lates to TB.

Figure 12 displays maps of R, MR, SR, and KGE,

averaged over all angle bins, polarizations and orbits. In

this case, the KGE has been calculated with weights

(from W1 to W3) equal to one. The choice of equal

weights is motivated by the fact that SR is considered

a valuable criterion for pixel-based evaluation; no

compensating effects can occur, for example, because of

FIG. 10. The 2011 annual mean ascending TBH (K) at 42.58 (a) observed by SMOS and (b) simulated by the

calibrated (case 10) VIC–CMEM, alongwith the corresponding (c) bias (K; SMOSminusmodel) and (d) Spearman

rank correlation.
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the embedding of spatial variability as in the calibration

objective function. Again, the correlation coefficients are

high over areas dominated by low vegetation, whereas

slightly lower correlations are found in forest areas

mainly in the north. The bias is low over most parts;

however, a warm model bias (ratio of simulations over

observations) is found in the northwestern cropland area,

whereas a cold bias is observed in the south, dominated

by cropland and wooded grassland. The ratio of the

standard deviation shows a large contrast between low

and high vegetation. While SR is close to one for low

vegetation, a large underestimation of the TB variability

is observed over forests. This may arguably be related to

shortcomings of the model in the characterization of the

surface emission and penetration depth over forest areas.

As can be seen in Fig. 12d, the KGE is mainly influenced

by R and SR, showing lower efficiencies in the forested

northeast. Nevertheless, the KGE demonstrates the

FIG. 11. The 2011 annual mean ascending TBV (K) at 42.58 (a) observed by SMOS and (b) simulated by the

calibrated (case 10) VIC–CMEM, alongwith the corresponding (c) bias (K; SMOSminusmodel) and (d) Spearman

rank correlation.
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ability for accurately simulating TBs over low vegetation,

with efficiencies between 0.6 and 0.8.

Finally, time series for 2011 of simulated and observed

TB are shown in Fig. 13, for ascending orbits at 42.58, at
H andVpolarization. The time series have been obtained

for an SMOS pixel (latitude 5 42.82608, longitude 5
291.10608) covered for 82% by forest types and another

pixel (latitude 5 40.21808, longitude 5 288.50308)
covered for 95% by cropland. As was also revealed by

Fig. 12, the forest simulations lack the temporal vari-

ability observed by SMOS, although seasonal patterns

are captured well. Also, some of the SMOS observa-

tions might still be affected by errors such as those

caused by RFI (e.g., the high TBH observation at day of

year 150). A slight overestimation by VIC–CMEM is

still observed in winter months for H polarization,

whereas summer TBs are slightly underestimated at

V polarization. Nevertheless, it should be noted that

FIG. 12. The 2011 annual mean (a) correlation, (b) mean ratio, (c) std dev ratio, and (d) KGE between SMOS TB

and simulated TB (case 10) across all incidence angles, polarizations, and orbits.
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FIG. 13. The 2011 time series of ascending TB (K) at 42.58 as observed by SMOS and sim-

ulated by VIC–CMEM (case 10), over (a),(b) forest and (c),(d) cropland grid cells at (a),(c) H

polarization and (b),(d) V polarization.

1130 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



this figure provides an example for only one forest

pixel. Hence, findings for this specific location are not

necessarily true for other pixels dominated by forest

cover. Over cropland, the simulations at both H and V

polarization generally show a good correspondence

with the SMOS observations. In this case, observa-

tions and simulations are characterized by high cor-

relation and low bias, while exposing similar levels of

variability.

5. Conclusions

To facilitate the direct assimilation of multiangular

and multipolarization SMOS TB observations, the

Community Microwave Emission Modelling Platform

(CMEM) was coupled to the VIC. Such direct assimi-

lation of TB observations can be of high value in time-

constrained forecasting applications, for example, of

hydrologic events, as it circumvents the need for SM

retrieval data that are generally provided with longer

time lag. However, the coupling of an LSM with RTM

poses significant challenges when the objective is to

simulate accurate and unbiased TBs in comparison with

SMOS observations. This study shows that propagation

of the VIC soil moisture and surface temperature fields

through CMEM, using literature-based RTM parame-

ters, may cause biases in TB that locally reach up to 50K,

with an average of about 30K.A number of experiments

were conducted in order to mitigate biases and improve

the accuracy of the simulations.

The VIC SM is found to show mean annual discrep-

ancies with the corresponding SMOS retrievals in the

range of 10%–30% as a function of volume. Hence,

optimization of the RTM using the direct SM output

from the VIC may lead to unrealistic parameter com-

binations that decrease the sensitivity of TB to SM,

thus motivating the rescaling of the VIC SM. After

rescaling the VIC SM to the climatology of SMOS

through CDFmatching, the average TB bias reduced to

less than 5K, even with literature-based RTM param-

eterization. In addition to mitigating biases, the CDF

matching of SM also increased the temporal correla-

tion between the TB observations and simulations, as

a result of the nonlinear relation of TB to SM. This

demonstrates that the literature parameters, which are

also employed in the operational SMOS retrieval al-

gorithm, provide a realistic characterization of the

surface and vegetation. Furthermore, it shows that in

the case of L-band brightness temperature assimila-

tion, some bias correction to the LSM SM state may be

needed.

Through a series of RTM calibration experiments,

optimal calibration parameters and associated RTM

parameter values were selected for each land cover

class present in the upper Mississippi basin. The cali-

bration of surface roughness h alone, or in combination

with the angular dependence Nr, the scattering albedo

v, or the vegetation optical depth (b1 and b2) param-

eters, did not further improve the performance of the

simulations. Only a combination of three calibration

parameters, that is, h, Nr, and v, slightly decreased the

RMSE (17.36K) and bias (4.48K) of the TB simula-

tions. Further improvements in RMSE (16.68K) and

bias (3.79K) were achieved by separating the calibra-

tion for H and V polarization and ascending and de-

scending orbits.

Notwithstanding the improvements in the TB simu-

lation, a spatiotemporal analysis revealed that consid-

erable regional biases were still unresolved after the

rescaling of the input SM and the optimization of RTM

parameters. The largest regional biases (up to 20K)

occurred in the northwestern cropland area and wooded

grassland area in the south, whereas other areas were

generally characterized by biases below 5K. It is ex-

pected that part of these remaining biases relate to

biases in soil temperature, erroneous soil or vegetation

characterization, or more fundamental model short-

comings, for example, in the model structure or physics.

Part of the bias could possibly also be attributed to the

SMOS TB data. A consummate bias removal can thus

not be achieved by the present framework and may re-

quire further improvements in the model formulation.

Finally, the spatiotemporal analysis also revealed a lack

of variability in the TB simulations over forest, partic-

ularly over short time scales. In combination with lower

temporal correlations, forest areas were therefore

characterized by lower values of the KGE, which is

a combined measure for correlation, bias, and variabil-

ity. However, for most cropland and low vegetation

areas, the coupled model was found to provide accurate

TB simulations, characterized byKGE values of 0.6–0.8,

which is a prerequisite for the assimilation of SMOS TB

observations to benefit hydrologic applications.
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