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ABSTRACT

A prototype online extreme precipitation monitoring system is developed from the TRMM TMPA near-

real-time precipitation product. The system utilizes estimated equivalent average recurrence interval (ARI)

for up-to-date precipitation accumulations from the past 1, 2, 3, 5, 7, and 10 days to locate locally severe

events. Themapping of precipitation accumulations intoARI is based on local statistics fitted into generalized

extreme value (GEV) distribution functions. Initial evaluation shows that the system captures historic ex-

treme precipitation events quite well. The system provides additional rarity information for ongoing pre-

cipitation events based on local climatology that could be used by the general public and decision makers for

various hazard management applications. Limitations of the TRMMARI due to short record length and data

accuracy are assessed through comparison with long-term high-resolution gauge-based rainfall datasets from

the NOAA Climate Prediction Center and the Asian Precipitation–Highly-Resolved Observational Data

Integration Toward Evaluation of Water Resources (APHRODITE) project. TMPA-based extreme clima-

tology captures extreme distribution patterns from gauge data, but a strong tendency to overestimate from

TMPA over regimes of complex orography exists.

1. Introduction

A number of recent studies have shown increased

frequency and intensity of extreme precipitation events

in recent decades (Easterling et al. 2000; Trenberth et al.

2003; Groisman et al. 2005; Lau andWu 2007; Allan and

Soden 2008; Min et al. 2011; IPCC 2012). Record-

breaking rainfall events have been reported around

the world. For example, heavy rain over northern

Pakistan in late July 2010 caused the worst flooding in

the history of the country. In the spring of 2011, record

heavy precipitation events contributed to some of the

worst flooding in the lower Mississippi River in the past

century. During the same year, North Korea recorded

the wettest summer on record since 1908, while heavy

monsoon rain caused the worst flooding over Thailand

since 1942. In 2012, Great Britain and Ireland experi-

enced the wettest spring in a hundred years and exten-

sive flooding across the islands. In June 2013, heavy

monsoon rain over northern India led to multiple

mudslides and 6500 deaths. In September, record-

breaking heavy rain in Colorado and subsequent flood-

ing killed eight people and caused $2 billion in damage.

In October, east coast cities of Zhejiang Province in

China were submerged in one of the worst flooding on

record brought by Typhoon Fitow, with total damage

amounting to $6.7 billion.

Floods are the most widespread and frequent natural

disasters caused by extreme rainfall and are responsible

for significant loss of lives and property (Smith and

Ward 1998; Ashley and Ashley 2008; Gruntfest 2009;

Adhikari et al. 2010). Floods occur when prolonged rain

falls over several days, or intense rain falls over a short

period, that exceeds the capacity of the underlying

ground or drainage systems, leading to flash floods,

overflow of streams, and breach of levees. Heavy

rain also has the potential to trigger landslides in
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mountainous areas with the right combination of topo-

graphic slope, soil type, and vegetation. Severe mud-

slides can be very devastating when they occur in a

populated area. For example, a massive rock slide–

debris avalanche occurred on 17 February 2006 in the

Philippine province of Southern Leyte following a 10-day

period of heavy rains. The deadly landslide caused

widespread damage with a death toll estimated to be

1126. In August 2009, extreme rain from Typhoon

Morakot triggered enormous mudslides and severe

flooding throughout southern Taiwan. One mudslide

buried the entire town of Xiaolin, killing an estimated

500 people in the village alone.

Tracking and monitoring extreme precipitation glob-

ally are very important for climate research as well as

hazard management. Recent improvements in satellite-

based precipitation retrieval algorithms have made

global precipitation measurement and real-time flood

and landslide monitoring systems possible. The Tropical

Rainfall Measuring Mission (TRMM) Multisatellite

Precipitation Analysis (TMPA; Huffman et al. 2007) is

one of the more popular satellite-based precipitation

estimates utilizing almost all spaceborne precipitation

sensors with calibration from TRMM instruments. It

combines passive microwave (PMW) precipitation es-

timates from a variety of low-Earth-orbit satellites, in-

cluding the TRMM Microwave Imager on TRMM,

Special Sensor Microwave Imager (SSM/I) and Special

Sensor Microwave Imager/Sounder (SSM/IS) on De-

fense Meteorological Satellite Program satellites, Ad-

vanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E) on Aqua, the Advanced

Microwave Sounding Unit on the National Oceanic

and Atmospheric Administration (NOAA) satellite se-

ries, and the Microwave Humidity Sounders on later

NOAA-series satellites and the European Operational

Meteorological (MetOp) satellite. The microwave pre-

cipitation estimates have good physical connections with

the hydrometeors above the surface but with a poor

space–time coverage. To fill the data gap in the PMW

measurements, TMPA merges with PMW-calibrated

infrared (IR) products from the international constel-

lation of five geostationary satellites, providing multi-

satellite precipitation estimates in 3-hourly, 0.258 3 0.258
resolution and quasi-global (508S–508N) coverage. The

TMPA estimates are available in the form of two

products, a real-time version (3B42-RT) and a gauge-

adjusted post-real-time research version (3B42). The

research product, which is available 2 months after

the end of the month, is recommended for postanalysis.

The real-time product, because of its fine resolution and

near-real-time availability (available almost 8 h after

observation time), has been used in global flood and

landslide monitoring and regional hydrological pre-

dictions in many parts of the world (Hossain and

Lettenmaier 2006; Hong et al. 2007, 2010; Li et al. 2009;

Liao et al. 2010; Yilmaz et al. 2010; Wang et al. 2011; Su

et al. 2008, 2011; Wu et al. 2012).

To increase public awareness of extreme pre-

cipitation events, it is important that the severity of

precipitation events be translated into meaningful

terms that can be understood easily by the public and

decision makers. ‘‘Return period’’ or ‘‘average re-

currence interval’’ (ARI) has been used in the hydro-

logical community to depict the rarity of flood events for

decades. An event with ARI of 20 yr means the proba-

bility of occurrence in any given year is 1 in 20 or 0.05.

This should not be interpreted as only one such event

occurring in 20 yr; a 20-yr ARI event in one year does

not preclude the same kind of event the next year. The

NationalWeather ServiceHydrometeorological Design

Studies Center (HDSC) has updated its series of rainfall

frequency atlases in terms of ARI (e.g., 100-yr 24-h

rainfall depth) in recent years for regions of United

States (Bonnin et al. 2011), except for the states in the

Northeast andNorthwest and Texas. This updated atlas,

known as NOAA Atlas 14, not only provided updated

information but also established clearer terminology.

Near-real-time and prediction maps in ARI are being

produced for the contiguous United States (CONUS)

from radar and gauge precipitation estimates together

with historical ARI statistics from Atlas 14 (http://

metstat.com; Parzybok et al. 2011). However, since

the NOAA atlas is station based, uses point pre-

cipitation frequency estimates, and only covers the

United States and selected Pacific Islands, near-real-

time global precipitation ARI maps are still lacking. A

product such as the TRMM near-real-time 3B42RT

data is a good candidate to fill the gap in this regard.

Obviously, the utility of 3B42RT for climate purposes is

still limited because of the short data record. However,

theARImaps combined with available local land-based

data can provide much-desired coverage for warning of

unusual heavy rain events in many rural areas and

developing nations that lack dense surface gauge and

radar observations. Additionally, TRMM rainfall ARI

maps over the ocean will provide useful scientific

information regarding the response of rainfall to cli-

matic fluctuations such as El Niño–Southern Oscilla-

tion. As the global rainfall satellite record grows in

length from the merging of TRMM and GPM data in

the near future, the usefulness of such rainfall ARI

maps will become increasingly important for climate

change studies.

In this work, we describe extreme-rainfall statistics in

the development of an ARI extreme-rainfall warning
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system based on 14 yr of TRMM retrospective, version

7, 3B42RT data and conversion of near-real-time

TMPA into ARI maps for the region of 508S–508N. It

is an important value-added TRMM product for re-

search and disaster monitoring purposes, especially for

oceanic, remote, or developing regions where surface-

based measurement is scarce. In the following sections,

we will describe the procedures, results, and limitations

of TRMM-based ARI products.

2. Producing ARI maps from TMPA

ARI is computed from frequency analysis of histor-

ical precipitation data by fitting the data to predefined

distribution functions. There are two basic approaches

for extreme value analysis. The first method relies on

deriving block maxima (minima) series, frequently

chosen as ‘‘annual maximum series’’ in meteorology

and hydrology applications. The generalized extreme

value distribution (GEV) is often selected to fit the

data (Hosking and Wallis 1997; Katz et al. 2002; Wilks

2011). The second method, referred to as the ‘‘peak

over threshold’’ (POT), relies on extracting the peak

values exceeding a certain threshold from a continuous

data record for a given period (Leadbetter et al. 1983;

Katz et al. 2002). The number of events and size of

exceedances could be fit with the Poisson distribution

and the generalized Pareto distribution, respectively.

Because extreme precipitation often fits these distri-

bution functions, hydrologists could use them to esti-

mate precipitation with hundreds of return years—

many times the length of data record for engineering

design (U.S. Department of the Interior Bureau of

Reclamation 1987; Koutsoyiannis and Baloutsos

2000). Some studies suggest that the POTmethod may

be better suited for a short data record as it could use

more data samples (Coles 2001; Hosking and Wallis

1997; Katz et al. 2002). However, the study of Endreny

and Imbeah (2009) showed that GEV distributions

could be derived reasonably with only 9 years of

TRMM 3B42 data with the assistance of some ground

station data for durations larger than 1 day. The

HDSC studies found that the best theoretical dis-

tribution function for most regions (southern and

midwestern states, California, etc.) to represent pre-

cipitation extremes was the 3-parameter GEV distri-

bution function (Bonnin et al. 2011; Perica et al. 2013).

As a starting point, we will also use the GEV distri-

bution for fitting the AMS from TRMM 3B42RT

data and subsequently estimate ARI based on these

distributions.

The cumulative distribution function (CDF) of GEV

is governed by the following expression:
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�
2

�
11 z

�
(x2m)

s

��21/z�
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The N-yr return value for the GEV distribution (the

value that is on average exceeded once in N years) is

given by
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and for the Gumbel distribution it is
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By fitting the GEV function to observed rainfall data

or model outputs, changes in the extremes can be

assessed by noting how these shape parameters vary in

time or under different climate forcing conditions (e.g.,

Hosking and Wallis 1997; Huntingford et al. 2003;

Schubert et al. 2008). For a given precipitation amount,

the GEV facilitates the direct estimation of the ARI by

utilizing the precalculated lookup table of precipitation

thresholds for different ARIs.

In this study, we first compute the annual maximum

(AM) precipitation accumulations from running totals

of 1-, 2-, 3-, 5-, 7-, and 10-day time series for all years

when 3B42RT data were available (2000–13) for each

grid box. Choosing the AM series limits the sample size

but is a required procedure for computing the ARI. The

three-parameter GEV distributions are derived by fitting

the AM series using open source MatLab GEV software

(http://www.mathworks.com/help/toolbox/stats/gevfit.

html), which uses maximum likelihood method to fit

the parameters (Kotz and Nadarajah 2000). The best-fit

GEV curves and thresholds for 2–100-yr ARI are com-

puted with the derived statistical parameters. As an

example, Fig. 1 shows a sample plot of the PDF curves

and return thresholds for different accumulation days

from a randomly picked single grid point located in the

Cascade Range near the border of the states of Wash-

ington and Oregon. The PDFs of multiday precipitation

accumulation not only shift toward larger values as

compared with that of 1-day accumulation as expected,

but also show much wider spread with longer tails at

high accumulations (Fig. 1a). The tables of the return
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thresholds can be directly used to interpolate the ARI

for a given precipitation amount as shown in Fig. 1b. For

example, Fig. 1b shows that a daily rainfall of 70mm or a

10-day accumulation of 170mm would be qualified as a

10-yr event in this particular location. The near-real-

time precipitation accumulations from the past 1, 2, 3, 5,

7, and 10 days are converted into ARI by interpolation.

Figure 1b is in fact another form of intensity–duration–

frequency (IDF) curve commonly used in the hydro-

logical community where duration and rain depth are

plotted for given return year. The IDF curves are used as

references for infrastructure design and flood risk as-

sessment. However, because of the short data record

and large uncertainty with the TRMMdata (discussed in

section 3b), we do not recommend using these lookup

tables for engineering reference at the present stage.

The schematic of the TRMM ARI extreme rain alert

system is shown in Fig. 2. The initial plan is to update the

ARI maps daily as soon as the latest 3B42RT daily data

become available. The statistics and the threshold tables

will be updated on a yearly basis when all data from the

previous year become available. For the web applica-

tion, global maps will show the locations of extreme

events withARI larger than 5 years represented with the

largest ARI in the area. Clicking the symbols on the

global map can access enhanced regional maps. Figure 3

shows an example of daily precipitation and an ARI

map on 27 April 2011. The precipitation map shows

areas of heavy precipitation but provides no information

on the rarity of these events. The ARI map highlights

the areas with locally rare precipitation accumulations

that could lead to potential hazards, especially over the

lands. For example, a big red dot in the southeastern

United States captures the heaviest rain episode with

ARI . 50 yr during the April–May period in 2011. A

series of heavy rain events during this period led to

massive lower Mississippi River floods—one of the

largest and most damaging flooding events recorded

along this U.S. waterway in the past century. This

product provides additional information of the relative

severity of ongoing precipitation events on short and

medium time scales that is significant for disaster

FIG. 1. (top) GEV distributions and (bottom) ARI threshold values derived from TRMM

3B42RT for 1-, 2-, 3-, 5-, 7-, and 10-day precipitation accumulations for a grid box centered on

46.1258N, 238.1258W.
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management. Since ARI is location specific and dura-

tion dependent, such properties make ARI particularly

relevant for public awareness.

3. Results

a. ARI depiction of extreme events

To illustrate the capability and the kind of in-

formation obtained from an ARI map, we show two

recent events that causedmuch devastation in Southeast

Asia. Figure 4 shows an extreme event caused by Ty-

phoon Fitow in October 2013 in the east coast of the

Zhejiang Province in China. The map of 3-day pre-

cipitation accumulation clearly shows the heavy rain

amount along the track of Typhoon Fitow as it made

landfall. The related ARI map shows a much smaller

region where Fitow dumped over 200mm of rainfall in

three days corresponding to anARI over 40 yr. The area

with highARI corresponds well with the flooding area in

this newly developed wealthy province of China. One

measure of the destruction is that an estimate of 75 000

cars in the city of Ningbo alone was submerged. The

total loss was estimated to be 5.6 billion U.S. dollars.

One of the major hazards of extreme precipitation is

the potential to trigger landslides. A multiday monsoon

cloudburst centered over the northern Indian state of

Uttarakhand in mid-June 2013 caused devastating

floods and landslides in the country’s worst natural di-

saster since the 2004 tsunami. Destruction of bridges and

roads left about 100 000 pilgrims and tourists trapped in

the valleys leading to three of the four Hindu Chota

Char Dham pilgrimage sites, requiring evacuation by

Indian military troops. According to figures provided by

the Uttarakhand government, more than 5700 people

were ‘‘presumed dead.’’ Figure 5 shows a large area of

heavy 3-day total precipitation accumulation across the

Himalaya mountain range near Siwalik from 15 to

17 June with pockets of more than 300-mm total rainfall.

The heavy rain caused the melting of Chorabari Glacier

at the height of 3800m and overflow of the Mandakini

River, which led to widespread floods downstream. The

ARI map highlights regions with elevated ARI with

some areas exceeding a 40-yr ARI. Additional ARI

maps produced by this approach for major landslide

events in recent years can be found in Kirschbaum et al.

(2015).

The above examples show that the ARI maps are

capable of highlighting regions with particular severity

when a large system of extreme precipitation occurs.

Severe floods and landslides often occur in areas of el-

evated ARI or downstream of these areas. Table 1

provides additional examples of some of the most no-

table and catastrophic flood or landslide events trig-

gered by extreme precipitation since 3B42RT data

became available. In each case, the elevated ARI index

would provide warning for the ongoing event. We point

out that the ARI values depend not only on the actual

rain amount but also on the local climatology. For

example, a 5-day precipitation accumulation of 100mm

FIG. 2. Schematic of TRMM extreme precipitation monitoring system.
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fromEthiopia counts as a 10-yr event inARI, yet a 5-day

amount of 500mm in Leyte, Philippines, is only equiv-

alent to a 4-yr event. It is well known that the severity of

flood or landslide events is not necessarily proportional

to the magnitude of ARI, as floods and landslides de-

pend on a number of other factors, such as the preceding

events, topography, stream distribution, and soil mois-

ture. The actual damage also depends highly on the local

FIG. 4. (left) Three-day precipitation accumulation (mm) and (right) correspondingARI (yr) fromTyphoon Fitow during 6–8Oct 2013 on

the east coast of China.

FIG. 3. Sample web display of 1-day precipitation accumulation and the accompanying clickable ARI map on 27 Apr 2011.
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population and development. Nevertheless, ARI maps

could provide a near-real-time assessment of the heavy

precipitation events that would potentially lead to cat-

astrophic results. The ARI information could be in-

corporated or serve as supplemental information to

locally more sophisticated flood or landslide monitoring

system. It could also provide awareness of the going

extreme precipitation events around the world for the

general public.

b. Limitations of the TRMM ARI

1) GEV STATISTICAL CONFIDENCE

In this section, we will discuss some limitations of the

TRMM ARI product due to the accuracy of the real-

time 3B42RT data and its short data record. The ARI

derived fromGEV analysis is expected to be reliable for

twice the data length with fitted distribution function

(Parzybok et al. 2011); therefore, TRMMdata should be

able to identify a 28-yr event with reasonable accuracy.

However, even though the GEV fitting function allows

estimation of events that are outside the range of the

current data record, any ARI computed longer than

14 yr (record length) is just extrapolation and subject to

high uncertainty. Figure 6 shows examples of fittedGEV

functions along with empirical distribution plotted from

AM series. The return year (‘‘position’’) for the raw data

is calculated using a formula based on Gringorten

plotting position (Huntingford et al. 2003). This

provides a visual inspection of the goodness of fit. The

data are generally lining along the fitted black curve.

However, the plot for the 3-day accumulation at grid

point 208N, 1608E shows a situation where a single

largest value has probably distorted the entire distribu-

tion. We also computed the 95% confidence bounds for

all the GEV thresholds and found the uncertainty to be

quite large as shown in Fig. 6. The upper bounds depart

from the estimated threshold more rapidly with in-

creasing ARI than the lower bounds, which means that

the estimated ARI for extreme precipitation could be at

the high end of possible range. A normalized 95%

confidence range (NCR, defined as the difference of

upper bound and lower bound divided by the threshold

itself) is computed for all years and all grid points. If the

NCR is smaller than 1, the ARI estimates should be

within 100% of its magnitude with 95% confidence.

Figure 7a shows that for ARI 5 5 yr, most of the heavy

rain areas—that is, the ITCZ, Asian monsoon, and

Amazon regions—have reasonable estimates of ARI as

indicated by NCR, 1. Low confidences (NCR . 2) are

observed in dry regions such as North Africa, the Ara-

bian deserts, and the southeast Pacific. The confidence

deteriorates dramatically when ARI reaches 20 yr, as

shown in Fig. 7b, with NCR . 1 covering most of the

globe except the ITCZ region. The poor confidence is

mainly due to short record length, and partly owing to

the statistical methods used to derive the ARI not op-

timized for the current data record (Katz et al. 2002;

Hosking andWallis 1997). As the data record of merged

TRMM–GPM rain data grows in length, the confidence

of high ARI will increase.

It should be pointed out that a climatological GEV

distribution assumes the stationarity of the data; that is,

there is no systematic change in the data record and no

such changes will occur. Several studies have reported

nonstationarity of precipitation records in some regions

during the last half-century (Towler et al. 2010; Cheng

et al. 2014). Because of the short record of the TRMM

data, nonstationarity is not considered at the present;

however, this does not imply that the TRMM data do

not present any measurable trend in the extreme pre-

cipitation. Nonstationarity should be considered in

FIG. 5. As in Fig. 4, but during 15–17 Jun 2013 in northern India.
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future studies when the TRMM–GPM data record be-

comes longer (Katz 2010; Gilleland and Katz 2014,

manuscript submitted to J. Stat. Software).

2) COMPARISON OF TRMM EXTREME

CLIMATOLOGY WITH GAUGE-BASED

OBSERVATIONS

Another aspect of the uncertainty comes from the

data quality. The real-time 3B42RT data still have many

issues regarding data accuracy, especially when extreme

events are considered (AghaKouchak et al. 2011;

Sorooshian et al. 2011). Even though the TMPA real-

time and research product systems are designed to be as

similar as possible to ensure consistency between the

resulting datasets, it is generally expected that the re-

search version of TMPA has better quality than the real-

time version over the land because of its monthly gauge

adjustment and calibration by TRMM Combined In-

strument estimates (Huffman et al. 2010). The 3B42 and

3B42RT data have been evaluated extensively in recent

years with surface radar and gauge-basedmeasurements

in multiple spatiotemporal scales over CONUS and

many other parts of the world (e.g., Tian et al. 2007,

2009; Ebert et al. 2007; Habib et al. 2009; Villarini and

Krajewski 2007; Shen et al. 2010; Villarini 2010;

AghaKouchak et al. 2011; Stampoulis and Anagnostou

2012). In general, satellite retrievals can capture heavy

rain events over warm seasons and heavy rainfall re-

sulted from tropical convective system, but the quanti-

tative estimates tend to deteriorate as the heavy rain

thresholds increase (Mehran and AghaKouchak 2014).

For example, Habib et al. (2009) compared 3B42 and

3B42RT data with ground gauge and radar observations

during six tropical-related heavy rainfall events over

Louisiana, and found the bias of 3B42 and 3B42RT data

within 6 25% and 650% at their native temporal and

spatial scales, respectively. Chen et al. (2013) compared

several satellite rainfall algorithms with surface rain

gaugemeasurements during super TyphoonMorakot on

Taiwan Island in August 2009. The 3B42RT was found

to underestimate rainfall by 19% compared to gauge

measurements even though it had the lowest bias among

the four satellite algorithms compared. It is understood

that extreme precipitation remains one of the main un-

certainties in satellite precipitation retrieval and more

detailed evaluations are needed to assess the quality and

error characteristics of these datasets in a variety of

different geographical regions and for different pre-

cipitation systems (Sorooshian et al. 2011).

Here, we evaluate the TRMM ARI product in two

steps. The first step is to compare the GEV statistics

from 3B42RT with those from independent high-quality

long-term observations with similar spatial and
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temporal resolutions, and the second step is to evaluate

the derived ARI for the actual events. Long-term high-

resolution precipitation datasets have only become

available in recent years even for gauge-based obser-

vations. We used two such datasets that meet these cri-

teria: one is the NOAA’s Climate Prediction Center

(CPC) daily U.S. unified precipitation datasets (Higgins

et al. 2000). The CPC daily unified precipitation dataset

(1948–2012) is a gauge-based, gridded, and quality-

controlled product derived from daily and hourly pre-

cipitation measurements from over 13 000 (8000 before

1992) stations over CONUS with the same 0.258 spatial
resolution as the 3B42 and 3B42RT data. The other

dataset comes from the Asian Precipitation–Highly-

Resolved Observational Data Integration Toward

Evaluation of Water Resources (APHRODITE) pro-

ject (Yatagai et al. 2012). APHRODITE has produced

high-resolution quality-controlled daily gridded pre-

cipitation datasets based on data collected at 5000–

12 000 stations covering the Asian monsoon region over

the Himalayas, Southeast Asia, and mountainous

regions of theMiddle East for the years 1957–2007. This

study used their 0.258 products for the Asian monsoon

and Middle East regions.

The GEV statistics of extreme precipitation from

different datasets can be compared using return

thresholds regardless of record length. Figure 8 shows

the 5-yr thresholds for 3-day precipitation accumula-

tions from 3B42RT and those from CPC over CONUS,

and APHRODITE over Asian monsoon and Middle

East regions. Over CONUS, the 3B42RT displays sim-

ilar patterns of geographical distributions of the re-

quired rainfall thresholds, which resemble the

geographical distributions of the annual mean pre-

cipitation. It shows larger thresholds in the eastern half

of CONUS east of 1028W, the Pacific Northwest, and

Sierra Nevada range, and lower thresholds in the desert

Southwest, Great Basin, valleys of northeast Arizona,

eastern Utah, central Wyoming, and the Willamette

Valley. The 3B42RT misses heavy rain along the Pacific

Northwest and Sierra Nevada because of its poor per-

formance in complex orographic regions (Huffman et al.

FIG. 6. ARI thresholds and the 95% confidence bounds (mm) for (left) 1- and (right) 3-day precipitation accu-

mulations at grid points centered at (top) 20.1258N, 160.1258E and (bottom) 208N, 300.1258E. The triangles mark the

observed annual maximum precipitation from the period 2000–13.
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2010). The 3B42RT shows similarly low precipitation

thresholds for most of the desert Middle East with

slightly higher values surrounding the Black Sea. Over

the Asian monsoon region, there is general over-

estimation of extreme precipitation, especially over the

highlands in middle India, Tibet, and Southeast Asia,

which has been reported in previous studies (Shen et al.

2010). The overestimation of extreme precipitation over

tropical Pacific islands is noteworthy. On the other hand,

it is also likely that APHRODITE underestimates pre-

cipitation because of limited gauge number and grid

average. Low estimates, especially for extreme pre-

cipitation, are likely to occur when the grids have fewer

than two gauge stations (P. Xie 2014, personal commu-

nication). These results emphasize the utility of con-

verting different datasets in ARI.

To understand how the length of data record and the

data quality affect the results, we further compared ARI

thresholds computed from 3B42RT with the following

datasets: version 7 of the 3B42 data (1998–2012) and a

subset (1998–2012) and full length (1948–2012) of the

CPC unified dataset (Fig. 9). The CPC data with full

record length (1948–2012), which are considered to

provide the best statistics, show a much smoother dis-

tribution than the same data with a short record length

(1998–2012). The impact of record length is more

FIG. 7. Normalized 95%confidence range (see definition in the text) for 3-day precipitation accumulations forARI of (top) 5 and (bottom)

20 yr. The scale is nondimensional.
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pronounced with higher ARI values, as the thresholds

for the 25-yr ARI aremore sporadic than that for the 2-yr

ARI in the CPC short-length data. This indicates that

inadequate record length in the short data may produce

some unreasonably large values in some areas. The

sporadic large values in the lower Mississippi River

could be caused by a few large events in the short CPC

data record. When compared with the CPC data, the

3B42 and 3B42RT data show a much larger area of

heavy rain from the Gulf Coast extending farther north

to the north-central United States. The overestimation

of precipitation by the TMPA in the north-central

United States is probably due to its microwave re-

trieval algorithm based solely on scattering signals of

solid hydrometeors. While the 3B42RT misses heavy

rain along the Pacific Northwest and Sierra Nevada as

mentioned earlier, the adjustment to the monthly gauge

measurements in the 3B42 has likely led to its over-

estimation of individual rain events along the East Coast

and Pacific Northwest.

Since some of the biases in 3B42RT are systematic

because of the intrinsic limitations of the retrieval al-

gorithm, these biases are built into the background sta-

tistics and the ARI thresholds using the retrospective

3B42RT data. Figure 10 shows an example of computed

ARI maps using the full-length CPC data (1948–2012)

and 3B42RT data, respectively, for the extreme rain

event in the central United States during 23–27 April

2011. The storm was the heaviest among several heavy

rain episodes during the April–May period that led to

massive lower Mississippi River floods in 2011. The

3B42RT data capture remarkably well the magnitude

FIG. 8. ARI threshold maps of 20 yr for 3-day precipitation accumulations (mm) from (top) 3B42RT and (bottom left) CPC data, (bottom

middle) APHRODITE Middle East, and (bottom right) APHRODITE Asian monsoon datasets.
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FIG. 9. ARI threshold maps (mm) of (left) 2 and (right) 25 yr for CPC unified daily data for the periods 1948–2012 and 1998–2012, 3B42

(1998–2012), and 3B42RT (2000–13) for 1-day precipitation accumulation for the CONUS area.
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and extension of the extreme events with ARI . 20–

40 yr in the central United States, even though the ARI

thresholds do not quite match the CPC threshold

(Fig. 9). This is because the actual and climatological

rains are subject to the same bias; the ARI value is less

affected by the bias. We also note that the 3B42RT data

produce few false alarms over the other regions

of CONUS.

Complex orography still poses a significant challenge

for satellite rainfall retrievals Huffman et al. (2014), so

ARI computed from real-time measurements remains

questionable in these areas. For example, the 3B42RT

significantly underestimates the 7-day precipitation ac-

cumulations along the Colorado Front Range from

Colorado Springs north to Fort Collins during 6–

13 September 2013 that caused catastrophic flooding in

the area (Gochis et al. 2015) (Fig. 11). The ARI map

based on TMPA shows only a small area of elevated

ARI, whereas the CPC data show a much larger area

with ARI more than 50 years (also see Table 1). The

heavy precipitation in this event is a result of a slow-

moving cold front clashing with warm humid monsoonal

air from the south, but the 3B42RT failed to capture the

low-level warm precipitation as the 3B42RT rainfall

algorithm heavily relies on ice scattering signal over the

land. As stated earlier, even the gauge-based CPC data

may have large uncertainty because of sampling issues in

mountainous areas. The user should be cautious when

using satellite data for regions with complex orography.

It is suggested that measurements other than pre-

cipitation, such as streamflow, be included in assessing

hazard risks in these areas.

4. Conclusions

ARI maps can provide quantitative measures of the

rarity of extreme precipitation events based on magni-

tude of observed rain rate and the rainfall climatology.

They can be easily understood by the general public and

decision makers. Near-real-time ARI maps can be

FIG. 10. (left) Precipitation accumulation (mm) and (right) corresponding ARI (yr) during 23–27 Apr 2011 from (top) 3B42RT data and

(bottom) CPC daily unified precipitation data.
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useful tools in assisting local planners in determining

responses and allocating resources to ongoing rain

events, either as short downpours or prolonged rain

episodes. Previous detailed ARI maps could only be

computed in regions with historical high-density rain

gauge networks, such as in the United States, western

Europe, China, and India. TRMM data make such maps

possible over remote land regions and oceanic regions

where rain gauge data are sparse or absent. We have

generated ARI thresholds based on retrospective near-

real-time TMPA data for 1–10-day rain accumulations

using GEV distributions. Combining the near-real-time

3B42RT data and the ARI threshold tables, TRMM

near-real-time precipitation data are mapped into re-

turn intervals for 1–10-day accumulations. This in-

formation provides a direct and quantitative measure of

the severity of the rain events, which is useful in various

weather and disaster monitoring applications.

There are a number of issues with the TRMM ARI

product because of its short data record and the accuracy

of the real-time 3B42RT data. Large uncertainties exist

in rainfall retrieval and computed ARI for regions with

complex orography as shown by the Colorado case. The

ARI estimates are generally quite uncertain for return

years larger than 20. Therefore, unlike the NOAAAtlas

14, this product should not as yet be used as a reference

for hydrometeorological and engineering design. Nev-

ertheless, it can serve as an extreme precipitation

warning system to provide useful warning information

for potentially catastrophic events, even with the re-

strictions posed by a short data record and limited

accuracy.

The system will undergo continuous improvement as

the data record lengthens. As a continuing effort, we will

test other approaches to enhance the statistical sound-

ness of ARI computations. Specifically, we will test

other distribution functions such as the generalized

Pareto distribution for the peak-over-threshold method

so more sample data can be incorporated into the

computation (Leadbetter et al. 1983; Katz et al. 2002).

FIG. 11. (left) Precipitation accumulation (mm) and (right) corresponding ARI (yr) during 7–13 Sep 2013 from CPC daily unified

precipitation data and 3B42RT data.
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The maximum likelihood method used in current GEV

fitting may not be the best approach, as a number

of studies show that the probability weighted moment

(L-moment) technique may produce better results for a

short data record (Hosking 1990; Hosking and Wallis

1997; Katz et al. 2002; Gilleland and Katz 2006). In ad-

dition, regional statistics, rather than single grid statis-

tics, will be incorporated to alleviate sporadic behavior

in the short data record (Burn 1990; Hosking andWallis

1997; Endreny and Imbeah 2009). The characteristics

and uncertainty of satellite estimates of extreme pre-

cipitation, and the way these uncertainties propagate

into ARI, will be further investigated.

With the launch of the Global Precipitation Mea-

surement (GPM) mission (Hou et al. 2014), a new In-

tegrated Multisatellite Retrievals for GPM (IMERG)

will become available at an even higher resolution and

accuracy (0.18 and 1h; Huffman et al. 2014). The new

GPM IMERG data will replace 3B42RT in the future

with their increased capability for monitoring extreme

precipitation events. As the TRMM–GPM data record

length grows, these ARI products will be more robust

and become increasingly important for research and

hazard management.
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