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Abstract. A 9 year record of Advanced Microwave Scan-

ning Radiometer – Earth Observing System (AMSR-E) soil

moisture retrievals are assimilated into the Catchment land

surface model at four locations in the US. The assimilation

is evaluated using the unbiased mean square error (ubMSE)

relative to watershed-scale in situ observations, with the

ubMSE separated into contributions from the subseasonal

(SMshort), mean seasonal (SMseas), and inter-annual (SMlong)

soil moisture dynamics. For near-surface soil moisture, the

average ubMSE for Catchment without assimilation was

(1.8× 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 %

in SMseas, and 55 % in SMshort. The AMSR-E assimilation

significantly reduced the total ubMSE at every site, with an

average reduction of 33 %. Of this ubMSE reduction, 37 %

occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For

root-zone soil moisture, in situ observations were available at

one site only, and the near-surface and root-zone results were

very similar at this site. These results suggest that, in addition

to the well-reported improvements in SMshort, assimilating a

sufficiently long soil moisture data record can also improve

the model representation of important long-term events, such

as droughts. The improved agreement between the modeled

and in situ SMseas is harder to interpret, given that mean sea-

sonal cycle errors are systematic, and systematic errors are

not typically targeted by (bias-blind) data assimilation. Fi-

nally, the use of 1-year subsets of the AMSR-E and Catch-

ment soil moisture for estimating the observation-bias cor-

rection (rescaling) parameters is investigated. It is concluded

that when only 1 year of data are available, the associated

uncertainty in the rescaling parameters should not greatly re-

duce the average benefit gained from data assimilation, al-

though locally and in extreme years there is a risk of in-

creased errors.

1 Introduction

Many studies have demonstrated that assimilation of re-

motely sensed near-surface soil moisture observations can

improve modeled soil moisture, with improvement typically

measured by temporal agreement with in situ observations

(Reichle et al., 2007; Scipal et al., 2008; Bolten et al., 2010;

Draper et al., 2012). Typically, the remotely sensed soil mois-

ture observations are assimilated using a bias-blind assimila-

tion of observations that have been rescaled to have the same

mean and variance as the model forecast soil moisture (Re-

ichle and Koster, 2004; Scipal et al., 2008). This approach is

designed to avoid forcing the model into a regime that is in-

compatible with its assumed (likely erroneous) structure and

parameters, while also avoiding the inadvertent introduction

of any observation biases into the model (Reichle and Koster,

2004). The assimilation can then correct for random errors in

the model forecasts, where random errors are defined as er-

rors that persist for less than the timescale used to – subjec-

tively – define the bias in the mean. Traditionally, observation

rescaling is based on the maximum available coincident ob-

served and forecast data record (Reichle et al., 2007; Scipal

et al., 2008; Draper et al., 2012), effectively defining the bias

over the same period. The rescaled observations will then re-

tain the signal of all observation–forecast differences occur-
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ring at timescales shorter than the data record, which for a

multi-year data record would include differences spanning

the subseasonal, seasonal, and inter-annual timescales. As-

similating these rescaled observations then has the potential

to improve the model soil moisture at each of the aforemen-

tioned timescales, and yet bias-blind soil moisture assimila-

tion is often implicitly assumed to target only the random er-

rors occurring at the relatively short subseasonal timescales.

At subseasonal, seasonal, and inter-annual timescales, dif-

ferent physical processes control the true soil moisture and

errors in soil moisture estimates. Most notably, in many lo-

cations seasonal scale variability is dominated by the mean

seasonal cycle (the annually repeating variability), and any

errors in the mean seasonal cycle will be systematic, with

causes such as incorrect separation of the soil and vegetation

moisture signals retrieved from remotely sensed brightness

temperatures, or errors in the land surface model vegetation

dynamics. In contrast, variability at subseasonal and inter-

annual timescales is rarely dominated by repeating cycles,

and is more typically associated with transient atmospheric

forcing events. Specifically, rapid timescale (daily) soil mois-

ture dynamics are driven by factors such as individual pre-

cipitation events and changes in cloud cover, while longer

timescale (seasonal-plus) dynamics are driven by changes

in the atmospheric supply and demand for moisture (Entin

et al., 2000). Soil moisture errors at subseasonal scales could

then be caused by factors such as atmospheric noise in re-

motely sensed data, or errors in the daily meteorology of

the model atmospheric forcing, while inter-annual-scale er-

rors could be caused by factors such as drift in the remote

sensor calibration, or incorrect representation of atmospheric

drought conditions in the atmospheric forcing.

The differing nature of soil moisture errors across

timescales has unexplored consequences for data assimila-

tion. Most notably, the systematic nature of errors in the

mean seasonal cycle is problematic. Theoretically, bias-blind

data assimilation is not designed, nor optimized, to correct

for systematic errors. More practically, if the systematic dif-

ferences are not due to model errors (i.e., are caused by

observation errors, including representativity errors), then

assimilating such information can seriously degrade model

performance. Additionally, the timescale dependence of soil

moisture errors may also be problematic for observation

rescaling using bulk parameters, intended to correct system-

atic differences across all timescales. Even within relatively

short timescales (up to about 1 month), Su and Ryu (2015)

showed that the multiplicative (differences in standard de-

viation) and additive (differences in mean) components of

the systematic differences between modeled and remotely

sensed soil moisture differ across timescales. They highlight

that this lack of stationarity cannot be adequately addressed

by using bulk statistics to estimate observation rescaling pa-

rameters.

Consequently, in this study we have decomposed modeled,

remotely sensed, and in situ soil moisture into separate time

series representing soil moisture dynamics at subseasonal,

mean seasonal, and inter-annual timescales. We have then

used this decomposition to examine the differences between

remotely sensed and modeled soil moisture at each timescale,

and how assimilating bulk-rescaled soil moisture observa-

tions impacts the model soil moisture at each timescale.

The decomposition is achieved by fitting each soil mois-

ture (SM) time series with harmonic functions specified to

target the mean seasonal cycle (SMseas), and the subseasonal

(SMshort) and inter-annual (SMlong) dynamics. By fitting the

appropriate harmonic functions to each time series, we can

separate the total mean square error of each soil moisture

time series into contributions from each timescale. This is

a much more targeted evaluation of soil moisture dynam-

ics at physically relevant timescales than is usually under-

taken. Standard evaluation methods focus on bias-blind met-

rics, such as the correlation or unbiased root mean square

error (ubRMSE; which is calculated after removing the long-

term mean difference (Entekhabi et al., 2010b)). Both R and

ubRMSE are sensitive to soil moisture time series variabil-

ity at all timescales. While anomaly correlations (Ranom), are

also used to exclude the seasonal cycle, this is not done con-

sistently, and does not allow for the total error to be broken

into contributing timescales. Depending on how the anoma-

lies are calculated, Ranom measures subseasonal scale errors

(anomalies defined relative to a simple moving average, as

in Dorigo et al., 2015), or a combination of inter-annual and

subseasonal scale errors (anomalies defined relative to the

mean seasonal cycle over multiple years, as in Draper et al.,

2012.

In the second part of this study, we also explore the im-

pact on the assimilation of using short time periods for ob-

servation bias correction. When first introducing cumula-

tive distribution functions (CDF) matching to rescale re-

motely sensed soil moisture prior to assimilation, Reichle

and Koster (2004) showed that for Scanning Multi-channel

Microwave Radiometer (SMMR) soil moisture observations

(1979–1987), reasonable rescaling parameters could be esti-

mated using a single year of data. We repeat their investiga-

tion using the more modern Advanced Microwave Scanning

Radiometer – Earth Observing System (AMSR-E) data set,

and also extend their investigation by providing a more statis-

tically robust analysis of the impact of using single-year scal-

ing parameters in the assimilation. This part of the study is

motivated by the recent launch of the NASA’s Soil Moisture

Active Passive (SMAP) mission (Entekhabi et al., 2010a),

and it will address the consequences of using short records to

rescale the observations during the early phases of the SMAP

mission.

2 Data and methods

A 9 years record of surface soil moisture retrievals from

AMSR-E X-band data (Owe et al., 2008) have been assimi-
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Table 1. Location, time period, and number of in situ network sites at each watershed.

Name (abbreviation) Approx. area and center location No. sites Time period

Reynolds Creek, surface (RC-sfc) 150 km4 (116.7◦W, 43.2◦ N) 10 Oct 2002–Sep 2010,

excluding 1 Dec–10 Mar

Walnut Gulch, surface (WG-sfc) 600 km4, (110.0◦W, 31.7◦ N) 14 Oct 2002–Sep 2011

Little Washita, surface (LW-sfc) 350 km4 (98.0◦W, 34.8◦ N) 15 Oct 2002–Sep 2011

Little River, surface (LR-sfc) 250 km4 (83.5◦W, 31.5◦ N) 8 Oct 2002–Sep 2011

Little River, root-zone (LR-rz) as above 4 Oct 2004–Sep 2011

lated into the Catchment land surface model (Koster et al.,

2000), at four locations in the US. The impact of the as-

similation on the model skill is measured by comparison to

watershed scale in situ soil moisture observations collected

by the Agricultural Research Service (ARS) of the United

States Department of Agriculture (Jackson et al., 2010). Each

of these data sets is first described below (Sect. 2.1), fol-

lowed by a discussion of the assimilation approach (Sect. 2.2)

and the method used to decompose soil moisture time se-

ries into subseasonal, seasonal, and inter-annual timescales

(Sect. 2.3).

2.1 The soil moisture data sets

For over a decade the ARS has been collecting near-surface

(5 cm) soil moisture observations, at least hourly, using dense

networks of in situ sensors at four watershed scale sites in

the US: Reynolds Creek (RC), Walnut Gulch (WG), Little

Washita (LW), and Little River (LR). See Table 1 for the lo-

cations and network details for each watershed. At each wa-

tershed, observations collected from between 8 and 15 sites

are averaged using the Thiessen polygon method to produce a

coarse-scale near-surface soil moisture observation with spa-

tial support similar to the AMSR-E observations. Intensive

field experiments have shown these coarse-scale estimates to

be very accurate, with errors on the order of 0.01 m3 m−3

(Bosch et al., 2006; Cosh et al., 2006, 2008).

The soil moisture has also been observed below the near-

surface layer at Little Washita since 2007, and at Little River

since 2004, with observations potentially made at every 5 cm

from 5 to 60 cm. Here, the root-zone soil moisture at Little

River is estimated using the average of the 5–60 cm obser-

vations (due to the relatively short time period the root-zone

Little Washita data were not used). At Little River, the root-

zone soil moisture estimate is calculated from fewer sensors

than the near-surface estimate, due to the greater number of

sub-surface sensor drop outs. However, the lesser number of

root-zone sensors is not expected to be overly problematic,

since soil moisture is less variable (temporally and spatially)

in the root zone than in the near-surface layer.

Given that we will focus on evaluating variance, we have

not supplemented the ARS in situ observations with observa-

tions from single sensor networks, such as SCAN (Schaefer

et al., 2007). Unlike the locally dense in situ measurements

from the ARS networks, the variance (and mean) of obser-

vations from single sensors cannot be assumed representa-

tive of the coarse-scale soil moisture from Catchment and

AMSR-E.

Level 3 Land Parameter Retrieval Model (LPRM) X-band

AMSR-E near-surface soil moisture retrievals at 0.25◦ reso-

lution were obtained for the grid cells encompassing the cen-

ter of each watershed site in Table 1. At X-band the obser-

vations relate to a surface layer depth slightly less than 1 cm.

Only the descending (01:30 LT) overpass has been used to

avoid possible differences in the climatological statistics of

day- and nighttime observations. The sites were explicitly se-

lected by ARS to avoid possible radio frequency interference

and proximity to permanent open water, and the AMSR-E

soil moisture retrievals were screened to remove observations

with X-band vegetation optical depth above 0.8.

NASA’s Catchment land surface model was run over the

9 km EASE grid cells encompassing the center of each water-

shed site, using atmospheric forcing fields from Modern Era

Retrospective-Analysis for Research (MERRA; Rienecker

et al., 2011) and recently improved soil parameters (De Lan-

noy et al., 2014). The model initial conditions were first

spun-up from January 1993 to January 2002 using a single

member without perturbations. The ensemble (including per-

turbations) was then spun-up from January to October 2002

(see Sect. 2.2 for details of the ensemble). For both the model

open loop and data assimilation model output, the ensemble

average near-surface (0–5 cm) and root-zone (0–100 cm) soil

moisture is then reported.

Daily ARS and Catchment time series were generated

by sampling each at the approximate time of the descend-

ing AMSR-E overpass (01:30 LT). Initially each time series

spanned the AMSR-E data record, rounded down to nine

full years from October 2002 to September 2011; however

the Little River root-zone soil moisture observations are not

available before January 2004, and were truncated to the 7

years from October 2004 to September 2011. Also, there

were just 21 ARS observations at Reynolds Creek in the last

year of this period, and therefore the Reynolds Creek time

series were truncated to the 8 years from October 2002 to

September 2010. The ARS and AMSR-E sensors can only

measure liquid soil moisture, and all data have been screened
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out when the Catchment model indicates frozen near-surface

conditions. Since the Reynolds Creek site is frozen for an

extended period each winter, liquid soil moisture is not well

defined there during winter, and the Reynolds Creek time se-

ries have then been truncated to remove winter, defined as

from 1 December to 10 March (the period during which the

Catchment surface is continuously frozen for at least 3 of the

8 years of the Reynolds Creek record).

2.2 The assimilation experiments

The assimilation experiments were performed using a one-

dimensional bias-blind ensemble Kalman filter, with the

same set-up and ensemble generation as in Liu et al.

(2011). Prior to assimilation, the AMSR-E observations were

rescaled using CDF matching (Reichle and Koster, 2004).

For each experiment a single set of bulk CDF-matching pa-

rameters were used (i.e., the rescaling is applied only to orig-

inal AMSR-E time series, and not to the decomposed time

series). In the baseline assimilation experiments, the CDF-

matching parameters were calculated using the maximum

available 9-year AMSR-E data record, following standard

practice.

This 9-year AMSR-E record is the longest remotely sensed

soil moisture record available from a single satellite sensor,

and soil moisture assimilation experiments using newer satel-

lites, or a modeling system with limited archives, are limited

to shorter time periods for observation rescaling. To estab-

lish the potential consequences of using a shorter data record,

a second set of experiments was conducted, in which the

rescaling parameters were estimated using the 12 month peri-

ods starting in consecutive Octobers (but assimilating the full

8- or 9-year near-surface soil moisture data record listed in

Table 1). Reichle and Koster (2004) also tested the use of 1-

year periods for rescaling soil moisture from SMMR. In con-

trast to their approach, we do not use ergodic substitution (of

spatial sampling for temporal sampling) when estimating the

rescaling parameters with a single year of observations, since

with more modern remote sensors, this is no longer necessary

to obtain a sufficient sample size. Additionally, for the assim-

ilation of Soil Moisture Ocean Salinity retrievals, De Lannoy

and Reichle (2015) found ergodic substitution degraded the

estimated CDFs, by introducing conflicting information from

neighboring grid cells, possibly due to the higher spatial res-

olution, compared to SMMR.

The benefits of each assimilation experiment is compared

to that of the Catchment model open-loop ensemble mean,

in which the same ensemble generation parameters were

used, and no observations were assimilated. The improve-

ment from the open loop is measured using the unbiased

mean square error (ubMSE) of the resulting model soil mois-

ture, with respect to the ARS in situ observations. For data

setX compared to in situ data I , both of length n, the ubMSE

is calculated as

ubMSE=
1

n
6i=1,n(Xi − Ii −〈X− I 〉)

2, (1)

where 〈.〉 indicates the temporal mean. The ubMSE is also

referred to as the variance of the errors in X; however

we use the ubMSE terminology for consistency with com-

monly used ubRMSE in the soil moisture literature (En-

tekhabi et al., 2010b). We do not apply the square root here

to take advantage of the additive property of the variance of

independent time series. However, to aid interpretation the

ubMSE equivalent to the common ubRMSE target accuracy

of 0.04 m3 m−3 is indicated in the relevant plots.

2.3 Decomposition of soil moisture time series

We wish to decompose each SM time series into sepa-

rate components representing soil moisture dynamics at the

SMshort, SMseas, and SMlong timescales. Variability in a time

series at specific timescales can be isolated by fitting a func-

tion made up of the sum of sinusoidal functions. Formally,

for some observed time series, y, the ak and bk coefficients

in the decomposed form ŷ are fit for some selection of inte-

gers ki:

ŷ(t)= a0+6k=k1,k2,...ak sin

(
2πkt

n

)
+bk cos

(
2πkt

n

)
, (2)

where t is the time step and n is the length of the time se-

ries. 2πk
n

is the (angular) frequency for a sinusoid complet-

ing k cycles over n time steps (i.e., that has frequency k/n per

time unit), and ŷ for k= ki is referred to as the kith harmonic.

a0 is the mean of y. If the time series is sampled at regular

intervals and has no missing data, the sinusoids for individ-

ual harmonics are orthogonal and independent of each other.

This is the basis for the discrete Fourier transform, which

exactly fits Eq. (2) to y using the first n/2 harmonics (i.e.,

ki= 1, 2, 3, . . . n/2). In this study, we use multiple linear

least-squares regression to fit Eq. (2) to the soil moisture time

series for a sum of harmonic frequencies selected to isolate

the variability at each target timescale, as described below.

We define SMseas by fitting Eq. (2) to the soil moisture

time series for some combination of the annual harmonic

frequencies (i.e., for k/n an integer multiple of 1 yr−1). The

frequencies higher than 1 yr−1 moderate the shape of ŷ to

account for differences in the shape of the seasonal cycle

from the single sinusoid described by the first harmonic. Typ-

ically, only a few annual harmonics are necessary to fit the

seasonal cycle of geophysical variables (Scharlemann et al.,

2008; Vinnikov et al., 2008). Here we define SMseas to be the

sum of the first two harmonics, since fitting additional har-

monics did not improve the ability to predict withheld data,

following the method of Narapusetty et al. (2009). Note that

since the same annual harmonics are repeated each year, we

are restricting SMseas to represent only the mean seasonal

cycle, and any inter-annual variability at seasonal timescales,

such as anomalous vegetation growth in a given year, will
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be assigned to the subseasonal or inter-annual variability, de-

pending on its temporal characteristics.

We define SMlong by fitting Eq. (2) to the soil moisture

time series using the harmonic frequencies lower than 1 yr−1

that divide into the number of years in the data record (i.e.,

for k/n= 1/m, 2/m, 3/m . . . (m− 1)/m, where m is the

time series length in years). Finally, we define SMshort as the

residual:

SMshort = SM−〈SM〉−SMlong−SMseas. (3)

Note that, as defined here, SMlong, SMseas, and SMshort are

all zero mean, since the time series mean was assigned to a0

in Eq. (2). Both of the AMSR-E and ARS observed time se-

ries are incomplete (Table 2). When applied to incomplete

time series, the sinusoids fitted by Eq. (2) are not necessarily

independent; hence, the fitted SMseas and SMlong may not be

independent. We opted not to use gap-filling prior to fitting

Eq. (2), to keep the method simple, and because gap-filling

would directly affect the SMshort dynamics. In Sect. 3, be-

fore using the decomposed time series we check for signs

of strong dependence between the fitted SMlong, SMseas, and

SMshort, by testing whether the sum of the variances of the

three timescale components differs from the variance of the

original soil moisture time series. We assume that if there

is little difference then any dependence between SMlong,

SMseas, and SMshort has only a minimal impact on our re-

sults. Following initial investigation with this test, the num-

ber of observations used at each location is maximized by

comparing only model (or assimilation) estimates to ARS

in situ measurements, avoiding direct comparison of the in-

complete ARS and AMSR-E time series (which would re-

quire cross-screening for the availability of both). Finally,

we do not use the harmonic fit to interpolate missing data,

and instead screen out the fitted SMlong and SMseas at times

when the original soil moisture was not available. Also, at

Reynolds Creek, where the time series has been truncated to

remove frozen winters, the length of the year used to fit the

harmonics was similarly truncated.

For demonstration purposes, in Sect. 3.3 we decompose

each soil moisture time series into similarly defined timescale

components using moving averages, since moving averages

are often used for calculating anomaly correlations (Draper

et al., 2012; Dorigo et al., 2015). The length of the aver-

aging windows were chosen to give close agreement with

the results of the harmonic decomposition described above.

For the moving average decomposition, the inter-annual soil

moisture time series, SMMA
long, is defined as the 181-day mov-

ing average, and the seasonal cycle, SMMA
seas, is defined for

each day of the year by averaging the data from all years that

fall within a 45-day window surrounding that day of year.

As with the harmonic approach, the subseasonal time series,

SMMA
short, is calculated as the residual, analogous to Eq. (3).

The same data processing and quality control as for the har-

monic decomposition is used (also without gap filling), plus

Table 2. Descriptive statistics for the data sets at each watershed.

Data source Number of Mean Standard

daily data (m3 m−3) deviation

(m3 m−3)

Reynolds Creek, surface

AMSR-E 1209 0.17 0.097

ARS 1944 0.10 0.068

Catchment 2111 0.16 0.039

Walnut Gulch, surface

AMSR-E 1960 0.15 0.067

ARS 3282 0.05 0.023

Catchment 3287 0.14 0.039

Little Washita, surface

AMSR-E 1748 0.27 0.097

ARS 2690 0.13 0.054

Catchment 3287 0.14 0.039

Little River, surface

AMSR-E 1989 0.31 0.100

ARS 3155 0.10 0.044

Catchment 3287 0.19 0.049

Little River, root-zone

AMSR-E – – –

ARS 2808 0.09 0.036

Catchment 2830 0.15 0.038

the moving averages are only calculated when at least 60 %

of the data within the averaging window are available.

3 Results

Below, the original AMSR-E, Catchment, and ARS soil

moisture time series are examined (Sect. 3.1), before being

split into SMseas, SMlong, and SMshort (Sect. 3.2). The dis-

tribution of variance across the different timescales for each

soil moisture estimate is then compared (Sect. 3.3), before

the observations are rescaled (Sect. 3.4), and the benefit of

assimilating the AMSR-E data into Catchment is assessed at

each timescale (Sect. 3.5). Finally, the consequences of us-

ing a relatively short record to rescale the AMSR-E data are

examined (Sect. 3.6).

3.1 The ARS, AMSR-E, and Catchment time series

Figure 1 shows the original time series at each site. In gen-

eral, soil moisture from in situ, modeled, and remotely sensed

estimates have systematic differences in their behavior, due

to representativity or structural differences between each es-

timate (Reichle et al., 2004). The most obvious difference in

Fig. 1 is that the mean and variance of each estimate differ
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Figure 1. The ARS in situ, Catchment model, and AMSR-E remotely sensed surface soil moisture, with near-surface soil moisture at

(a) Reynolds Creek, (b) Walnut Gulch, (c) Little Washita, (d) Little River, and (e) root-zone soil moisture at Little River.

(see also Table 2). Both AMSR-E and Catchment are con-

sistently biased high compared to the ARS soil moisture.

Bias values for the model range from 0.01 m3 m−3 for Lit-

tle Washita to 0.09 m3 m−3 for Little River, and bias val-

ues for the AMSR-E retrievals range from 0.07 m3 m−3 for

Reynolds Creek to 0.21 m3 m−3 for Little River. Addition-

ally, the standard deviation of AMSR-E is 2 to 3 times larger

than the other two estimates. Figure 1 demonstrates that this

is due to greater noise, and also a prominent seasonal cycle at

Little Washita and Little River that is not evident in the other

time series.

In addition to the systematic differences in their mean and

standard deviation reported above, there are more subtle dif-

ferences between the soil moisture dynamics described by

each estimate. For example, for both the surface and root-

zone soil moisture, the ARS time series tend to show a

sharper response to individual rain events than does Catch-

ment, with (relatively) larger peaks followed by more rapid

dry down after each event. At Walnut Gulch this is partic-

ularly obvious, with ARS rapidly drying to a well-defined

lower limit after each precipitation event, while Catchment

has a lesser response to individual events, and a stronger sea-

sonal signal.

3.2 Soil moisture time series at each timescale

Figure 2 shows an example of the timescale decomposition,

for the Catchment surface soil moisture at Little River, for

both the harmonic and moving average approaches. The time

series described by each method are similar in terms of the

magnitude and timing of their dynamics, except that the mov-

ing average inter-annual soil moisture includes more high-

frequency variability than does the harmonic version. Eval-

uation of soil moisture at specific timescales should ideally

be based on time series separated into independent timescale

components. For the harmonic method, independence be-

tween the time series at each timescale is not guaranteed

since the original time series were not complete, while for

the moving average method, independence is not expected.
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Figure 2. Decomposition of the Catchment near-surface soil moisture time series at Little River, using the harmonic (HA; black) and moving

average (MA; cyan) methods, for (a) the original time series (red dots) and the sum of SMlong+SMseas+ the long-term mean soil moisture

(solid lines), and the individual components (b) SMlong, (c) SMseas, and (d) SMshort.
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Figure 3. Time series variance at each timescale, with the Catchment Model (M), original AMSR-E Observed (O), and CDF-matched

AMSR-E Observed (Oc) soil moisture variances plotted for the (a) harmonic, and (b) moving average decomposition methods. The circles

and error bars give the variance of the original soil moisture time series, with 95 % confidence intervals (some very small confidence intervals

are obscured by the plotted circles).

Figure 3 shows an example of the variance bar plots used

to check for signs of dependence between the time series at

each timescale, in this case for the Catchment model and the

AMSR-E observations. In Fig. 3a, for the harmonic method,

the sum of the variances at each timescale (the stacked bars)

is very close (within 2 %) to the total variance of the original

soil moisture time series (the white circles), falling within the

95 % confidence interval of the total variance in each case. In

contrast, for the moving average method in Fig. 3b the sum

of the variances of each timescale falls outside the 95 % con-

fidence interval for the total time series variance at three of

four sites, with a mean difference of 8 % of the total variance
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Figure 4. Fraction of variance at each timescale, obtained by normalizing the time series variance before decomposition. The Catchment

model (M), original AMSR-E observed (O), and the CDF-matched AMSR-E-observed (Oc) soil moisture time series, cross-screened for

AMSR-E availability, are plotted in (a), and the ARS in situ observations (I), Catchment model (M), and baseline assimilation (Ac) soil

moisture time series, cross-screened for ARS availability, are plotted in (b). The circles give the variance of the original (normalized) soil

moisture time series.

(with differences ranging between 1 and 16 %), indicating

strong dependence between the three components. In each

case the sum of the variances of the timescale components is

less than the total variance at each site, indicating positively

correlated features between the moving average timescale

components (since 〈σ 2
X+Y 〉= 〈σ

2
X〉− 2〈σXY 〉+ 〈σ

2
Y 〉). This

positive correlation is intuitively expected, since an anomaly

in the original soil moisture time series has the same direc-

tion of influence on both the moving averages and the resid-

ual from that moving average (e.g., in Fig. 2 note the signal

of the large positive anomaly in early 2004 in both SMMA
long

and SMMA
short). Finally, the distribution of variance across the

timescales is similar for each method, largely because the

moving average window lengths for SMMA
seas and SMMA

long were

selected to generate time series closely matching those from

the harmonic method.

3.3 Variance distribution across timescales

In Fig. 3 the AMSR-E variance is much larger than that for

Catchment (as was discussed in Sect. 3.1), making it difficult

to compare the relative distribution of variance across each

timescale. Figure 4a then shows the AMSR-E and Catch-

ment variance bar plots with the total variance normalized

to one, to allow direct comparison to the fraction of variance

at each timescale. The same plots are also presented for the

Catchment and ARS soil moisture in Fig. 4b (recall we do

not directly compare the ARS and AMSR-E time series, so

as to avoid cross-screening their availability).

In Fig. 4, the distribution of variance across timescales for

each data set can be very different, and there is not a con-

sistent pattern across the four sites. As was previously noted

from Fig. 1, AMSR-E has a very prominent seasonal cycle

at Little River and Little Washita (40–70 % of the total vari-

ance) that is not present for Catchment or ARS, for which

the SMseas fraction of variance is around 10–20 % in Fig. 4.

In contrast, at Reynolds Creek and Walnut Gulch, Catch-

ment has a larger fraction of its variance in the seasonal

cycle (55–70 %) than does AMSR-E (20–40 %), with ARS

agreeing with Catchment at Reynolds Creek only. At Walnut

Gulch the greater variance fraction in the Catchment SMseas

is mostly balanced by less variability in SMshort (30 % com-

pared to 60 % for ARS). This is associated with the differing

responses to precipitation events already noted in Fig. 2.

One might expect AMSR-E to have a larger fraction of

variance at SMshort, due to measurement noise from the re-

mote sensor. However, this is only the case at Reynolds

Creek, where AMSR-E has 50 % of its variance in SMshort,

compared to 20–30 % for Catchment and ARS. At Walnut

Gulch, the AMSR-E and ARS SMshort variance fractions are

similar (50–60 %), while the fraction for Catchment is much

lower (25 %). At Little Washita and Little River the variance

fraction in the AMSR-E SMshort is similar to Catchment (at

around 50 and 30 %, respectively) and both are much smaller

than for ARS (around 70 %). At these two sites the AMSR-E

SMshort variance fraction may well be less than expected due

to the large amount of variance in its exaggerated seasonal

cycle.

For the SMlong variance, the patterns at Little Washita and

Little River are again similar to each other. Catchment has

much more variance in SMlong (40–50 %) than ARS (20 %)

or AMSR-E (10 % or less). At the other two sites, the SMlong

variance fraction is similar for all data sets, except for the

lower value for AMSR-E at Walnut Gulch (< 10 %, com-

pared to around 20 % for ARS and Catchment).

3.4 Baseline observation rescaling

For the baseline experiment, the AMSR-E observations were

rescaled using bulk CDF-matching parameters estimated

over the full data record. By design, the CDF-matched
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Figure 5. Error variances (ubMSE) compared to ARS in situ observations at each timescale, for the near-surface soil moisture at (a) Reynolds

Creek, (b) Walnut Gulch, (c) Little Washita, (d) Little River, and (e) for the root-zone soil moisture at Little River. Bars show the Catchment

model open loop (M), baseline assimilation (Ac), individual Ay assimilation experiments, and the mean across the Ay experiments (〈Ay〉).

Label AyYY indicates the Ay experiment with bias correction parameters estimated from the 12 months from 1 October of 20YY. Circles and

error bars give the ubMSE and its 95 % confidence interval for the original soil moisture time series (some very small confidence intervals

are obscured by the plotted circles). The dashed line at ubMSE of 1.6× 10−3 (m3 m−3)2 is equivalent to the common ubRMSE target of

0.04 m3 m−3.

AMSR-E observations, labeled Oc, have the same mean (not

shown) and variance (Fig. 3a) as the Catchment soil mois-

ture. Figure 4 shows that the CDF matching had little im-

pact on the variance distributions across each timescale. This

suggests that for the particular examples in this study, the

CDF-matching operator could be approximated by a linear

rescaling, in which only the mean and variance of the model

are matched, as in Scipal et al. (2008). To confirm this, the

assimilation experiments were repeated using linear rescal-

ing of the AMSR-E observations in place of CDF match-

ing. The results (not shown) were indeed very similar to the

CDF-matching experiments, in terms of the rescaled obser-

vations and the assimilation output (for both the Oc rescaling

presented in this Section, and the Oy rescaling presented in

Sect. 3.6).

Recall that the distribution of the variance across each

timescale was quite different for the AMSR-E and Catch-

ment soil moisture in Fig. 4. Note that large errors in the

variance at one timescale (in either AMSR-E or Catchment)

will affect the rescaling of the variance at other timescales.

In particular, if the unrealistically large AMSR-E seasonal

cycle at Little Washita were replaced with something more

realistic, for example representing 8 % of the total variance

(as in the ARS time series), then the fraction of variance in

SMshort would increase from the current 48 to 75 %, increas-

ing the SMshort variance in the CDF-matched AMSR-E from

0.0036 to 0.0054 (m3 m−3)2.

3.5 Evaluation of the baseline assimilation experiment

at each timescale

Figure 5 shows the ubMSE for each assimilation experi-

ment, separated into each timescale. Prior to assimilation,

the average ubMSE in the near-surface soil moisture across

the four sites was 1.8× 10−3 (m3 m−3)2 (giving a ubRMSE

just above the 0.04 m3 m−3 target). Close to half (55 %) of

the ubMSE is in SMshort, with the rest split between SMseas

(26 %) and SMlong (19 %). The Ac assimilation significantly

reduced the total ubMSE at each site, reducing the aver-

age near-surface ubMSE across the four sites by 33 % to

1.2× 10−3 (m3 m−3)2, with average reductions in the near-

surface layer of 52 % for SMlong, 25 % for SMseas, and 22 %

for SMshort. The baseline assimilation experiment, labeled

Ac, reduced the total ubMSE at each site for all timescale

components, except for SMseas at Little Washita (where the

model ubMSE was already relatively small).

Root-zone soil moisture observations were available for

the study period only at Little River. Both the distribution of

the ubMSE across each timescale, and the relative reductions
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Figure 6. Harmonic decomposition of the ARS in situ (I), Catchment model (M), and baseline assimilation output (Ac) near-surface soil

moisture time series at Little River, showing the (a) original time series, (b) SMlong, (c) SMseas, and (d) SMshort.

achieved from assimilation, are similar for the near-surface

and root-zone layers at Little River in Fig. 5d and e, adding

confidence that the model improvements reported above for

the near-surface soil moisture are indicative of the perfor-

mance throughout the soil profile.

To illustrate the impact of the assimilation at each

timescale, Fig. 6 compares the decomposed time series for

the Catchment model and Ac assimilation experiments to that

from the ARS in situ observations at Little River. The differ-

ence between the three SMshort time series is difficult to visu-

ally judge in Fig. 6d; however, the impact of the assimilation

on the SMseas and SMlong time series is clear. Figure 6b sug-

gests that the large SMlong ubMSE reduction (by over 80 %)

from the assimilation is due to the reduced amplitude in the

SMlong dynamics, although there is perhaps also an improve-

ment in event timing. In Fig. 6c, the model seasonal cycle has

an overestimated amplitude, and also includes two maxima

per year, where the ARS seasonal cycle has only one. The as-

similation exacerbates the overestimated amplitude, but also

removes the second annual maxima, resulting in an overall

SMseas ubMSE reduction (by 46 %).

3.6 Observation rescaling with a short data record

The 9-year time period used in the baseline experiment to es-

timate the CDF-matching parameters is longer than is often

available for soil moisture assimilation experiments. Obvi-

ously, assimilating a shorter time period will limit the poten-

tial improvements to the model SMlong (of similar magnitude

to the SMshort improvement in this study). The potential ben-

efit of an assimilation over a shorter period may also be lim-

ited by the increased sampling uncertainty in the estimated

observation rescaling parameters. This increased uncertainty

could arise from systematic errors due to inadequate sam-

pling of SMseas and SMlong, or from increased random errors

associated with the smaller sample size. This is tested here

with nine additional experiments, labeled AyYY, in which

the CDF-matching parameters are each based on a 12-month

period starting on 1 October. For example, experiment Ay03

uses CDF-matching parameters based on the 12 months of

data from 1 October 2003 to 30 September 2004. Each of the

nine experiments assimilates the full 8- or 9-year record of

AMSR-E near-surface soil moisture retrievals (including the

data for the year from which the CDF-matching parameters

were determined).

The potential uncertainty introduced by using a single year

to estimate the rescaling parameters depends on the inter-
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Figure 7. Systematic differences between AMSR-E observations and Catchment model near-surface soil moisture, with (a) the mean differ-

ence (〈model〉− 〈observation〉), and (b) the ratio of the standard deviations (σ (model)/σ (observations)). The parameters are estimated using

all years (All), and each year separately (with label YY indicating the parameters estimated from the 12 months from 1 October of 20YY),

and the dashed lines give the mean of the YY parameters.

annual variability in the systematic differences between the

observed and forecast soil moisture. The main systematic dif-

ferences that are addressed by the CDF matching are the dif-

ferences in the observed and forecast mean and standard de-

viation. For demonstrative purposes, Fig. 7 illustrates the dif-

ference between the means, and the ratio of the standard de-

viations, estimated using the full data record, and using each

single year. Note, however, that in the presented Ay exper-

iments the AMSR-E observations are rescaled based on the

full CDF, and not just the mean and variance. In Fig. 7a there

is considerable inter-annual scatter in the yearly mean dif-

ferences, although by linearity the average is unbiased. The

standard deviation ratio in Fig. 7b also shows inter-annual

variability; however, the single year ratios are also biased

low compared to the all-years ratio, since the single year esti-

mates did not sample the SMlong variance (which was consis-

tently a greater fraction of the total variance for Catchment

than for AMSR-E in Fig. 4a). This is particularly marked at

Little River, where the average of the single year standard

deviation ratios was 30 % less than when estimated using all

years (since SMlong makes up close to 50 % of the total vari-

ance in Catchment, compared to less than 5 % for AMSR-E

in Fig. 4a).

Figure 5 includes the ubMSE for the nine Ay assimila-

tion experiments, as well as the mean ubMSE (〈Ay〉) across

all nine. On average, assimilating the AMSR-E observations

that have been rescaled using parameters estimated from a

single year is beneficial. As with the Ac experiment, the 〈Ay〉

ubMSE is consistently less than that of the model at each

timescale, except for SMseas at Little Washita. However, for

individual realizations there is an increased risk when using

the single year parameters that the assimilation will not sig-

nificantly improve the model, or will even significantly de-

grade the model. For example, at Little Washita, where the

Ac experiment reduced the ubMSE by a small but significant

amount, none of the Ay experiments significantly decreased

the ubMSE, and the Ay10 experiment significantly increased

it.

Additionally, comparing the Ay experiments in Fig. 5 to

the baseline Ac experiment shows that at Reynolds Creek,

Walnut Gulch, and Little Washita most of the Ay experi-

ments resulted in larger total ubMSE than for the Ac exper-

iment, while at Little River the opposite occurred. Overall

there were eight Ay experiments for which the total ubMSE

was significantly different (at the 5 % level) and higher than

for the Ac experiment, seven for which it was significantly

different and lower, and 20 where the ubMSE was not sig-

nificantly changed. The differences between the Ac and Ay

ubMSE are skewed, in that when the Ay ubMSE is higher,

the difference tends to be greater than when it is lower. Con-

sequently, the average reduction in the model ubMSE for

the near-surface soil moisture, compared to the model with

no assimilation, is slightly less for 〈Ay〉 (30 %) than for Ac

(33 %).

Each instance of relatively poor ubMSE for an Ay exper-

iment can be traced to the more extreme (i.e., unrepresen-

tative) single year systematic differences in Fig. 7. Going

through the experiments with the largest relative increase

in ubMSE, experiment Ay07 at Reynolds Creek, and ex-

periments Ay05, Ay06, and Ay07 at Walnut Gulch all have

extreme standard deviation ratios, while Ay06 at Reynolds

Creek and Ay10 at Little Washita have extreme mean dif-

ferences. In each case, most of the increase in the ubMSE

is due to increased errors in the SMseas and SMlong compo-

nents, suggesting that the SMshort corrections are more robust

to uncertainty in the scaling parameters. Note that unrepre-

sentative scaling parameters do not necessarily degrade the

assimilation output, and in some instances are even advanta-

geous. Most obviously, at Little River, where the single year

standard deviation ratios were biased low (by 30 %), the Ay
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assimilation experiments all produced slightly lower ubMSE

than the Ac experiment.

In general, the impact of errors in the rescaling of the mean

value are likely under-reported here, since any introduction

of biases into the model will not be directly detected by the

ubMSE. Despite this, the examples cited above in which un-

representative mean difference corrections degraded the bias-

robust ubMSE highlight the potential for a bias-free assimi-

lation of biased observations to degrade model soil moisture

dynamics.

4 Conclusions

Many studies have demonstrated that near-surface soil mois-

ture assimilation can improve modeled soil moisture, in

terms of the anomaly time series used to represent random er-

rors, often implicitly assumed to represent subseasonal scale

variability associated with individual precipitation events

(Reichle et al., 2007; Scipal et al., 2008; Draper et al., 2012).

Here, 9 years of LPRM AMSR-E observations were assim-

ilated into the Catchment model, and the resulting model

output evaluated separately at the subseasonal (SMshort), sea-

sonal (SMseas), and inter-annual (SMlong) timescales against

watershed scale in situ observations at four ARS sites in the

US. The results show that, in addition to reducing the near-

surface SMshort ubMSE averaged across the four sites, the as-

similation also reduced the near-surface SMlong ubMSE. The

magnitude of the reductions in SMshort and SMlong were sim-

ilar (2.1× 10−4 (m3 m−3)2, and 2.5× 10−4 (m3 m−3)2, re-

spectively), although this represented a much larger relative

reduction in the SMlong ubMSE (52 % of the model SMlong

ubMSE, compared to 22 % for the SMshort ubMSE). In situ

observations of the root-zone layer were available for only

one site; however, the similarity between the near-surface and

root-zone results at this site (Fig. 5) is encouraging in terms

our near-surface results being representative of the deeper

soil moisture profile.

The reduced SMlong ubMSE suggests that assimilating a

sufficiently long data record of near-surface soil moisture ob-

servations can improve the model soil moisture dynamics at

inter-annual timescales, enhancing the model ability to sim-

ulate important events such as droughts. There is then a clear

potential for reanalyses, or other long-term simulations, to

benefit from the assimilation of long-term remotely sensed

soil moisture records. Such long records are available from

the AMSR-E satellite used here (May 2002–October 2011),

and increasingly from the active microwave ASCAT se-

ries (ongoing from October 2006). Carefully merged multi-

satellite records, such as the 30-year record being pro-

duced by the Water Cycle Multi-mission Observation Strat-

egy (WACMOS) project (Su et al., 2014; Liu et al., 2012) are

also now providing data records of unprecedented length. As

with SMshort, an important caveat on this finding is that it

is possible that the reduced SMlong ubMSE was associated

with reduced representativity differences compared to the in

situ observations, rather than a true model improvement. For

example, at Little River in Fig. 5 the substantial improve-

ments to the SMlong near-surface and root-zone soil mois-

ture gained by assimilating the AMSR-E observations were

largely due to reduced SMlong variance. If the model’s exag-

gerated SMlong was a representativity or structural error (e.g.,

too strong a signal of underlying water table), then it is not

clear that the model would benefit from correcting this error,

in terms of improvements to forecast skill.

Assimilating the AMSR-E observations also reduced the

near-surface SMseas ubMSE by 26 %, averaged across the

four sites, suggesting the possibility that the assimilation was

beneficial to the modeled mean seasonal cycle, despite not

being designed to address systematic errors. However, even

more so than for SMlong, the reduced SMseas ubMSE could

be due to reduced representativity differences, rather than a

genuine improvement to the model’s ability to represent the

desired physical processes. To confirm that the SMlong and

SMseas ubMSE reductions do indicate improved model soil

moisture would require evaluating the dependent moisture

and energy flux forecast, and unfortunately verifying obser-

vations are not available at the study locations.

In comparing the AMSR-E and Catchment soil moisture

at each timescale in this study, it became apparent that the

distribution of variance across each timescale was very dif-

ferent between the remotely sensed and modeled soil mois-

ture time series (Fig. 4). Traditionally, observation rescaling

strategies used in land data assimilation do not distinguish

between variability at different timescales, and apply a sin-

gle set of bulk rescaling parameters to the full time series.

Consequently, the large discrepancies in the variance at one

timescale (due to errors in one of or both estimates) can have

follow-on effects for the rescaling of other timescales. For

example, the unrealistically large AMSR-E seasonal cycle at

Little Washita caused the variability at SMlong and SMshort

to be overly dampened by the bulk rescaling. This could per-

haps be avoided by rescaling the observations separately at

each timescale using the decomposed time series produced

in this study, or using other methods that distinguish scal-

ing characteristics at different timescales (e.g., Su and Ryu,

2015).

In addition to observation bias removal strategies that re-

spect the timescale-dependent nature of observation–forecast

systematic differences, it may be advantageous to target only

certain timescales, for example by retaining the model sea-

sonal cycle while rescaling other timescales (e.g., Drusch

et al., 2005; Bolten et al., 2010). Ultimately, whether these

approaches will be beneficial will depend on whether the

model observation differences at each timescale are caused

by model or observation errors. This study is a first effort to

investigate soil moisture assimilation at specific timescales

associated with different soil moisture physical processes.

Looking forward, further evaluation of soil moisture at these

timescales will help to identify the physical processes re-
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sponsible for errors in modeled and remotely sensed soil

moisture (including representativity errors in the latter),

which will in turn help to refine observation bias removal

strategies.

Finally, we have updated the investigation of Reichle and

Koster (2004) into the use of short data records for estimating

observation rescaling (CDF-matching) parameters. Nine ad-

ditional assimilation experiments were performed, each with

the AMSR-E observations rescaled using parameters esti-

mated from a single year of data. Compared to the scaling

parameters estimated using the full data record, using only 1

year of data introduced sampling errors due to inter-annual

variability in SMseas and SMshort, and the unsampled SMlong

variability in the parameters.

For hindcasting/reanalysis applications, when the same

short time period is used for bias parameter estimation and

data assimilation, such unrepresentative parameters should

not be problematic, since the rescaled observations will still

be unbiased relative to the model over the length of the as-

similation experiment, allowing shorter timescale errors to

be corrected. However, in a forecasting/analysis application

in which the bias corrections parameters must be estimated

with the available (short) data record, and then applied to fu-

ture observations, unrepresentative parameters can be more

problematic. Our results suggest that, when necessary, for ex-

ample early in the SMAP mission, assimilating near-surface

soil moisture over an extended period using single year pa-

rameters will introduce some additional uncertainty into the

assimilation output; however, over a large domain the over-

all impact will be minor. Of the total of 35 individual as-

similation realizations that we performed with single year

parameters at the four locations, nine resulted in no signifi-

cant change in the near-surface ubMSE compared to the open

loop, and one resulted in significantly increased ubMSE (re-

call that the baseline assimilation significantly reduced the

ubMSE at all four sites). However, averaged across all real-

izations, which should translate to an average across a large

spatial domain, the net impact of the single year parameters

was small, and the benefit gained from the assimilation was

not practically reduced, compared to the baseline assimila-

tion experiment.
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