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Abstract: A new method is presented to estimate the topography of a rough 
surface. A formulation is provided in which immediate measurements and a 
priori observations of surface elevation, slope and curvature, are considered 
simultaneously as a linear algebraic system of finite difference equations. 
Least squares solutions are computed directly by sparse orthogonal-
triangular (QR) factorization of the weighted seminormal equations, an 
approach made practical for large systems with powerful computational 
hardware and algorithms that have become available recently. Retrievals are 
demonstrated from synthetic slope data and from measurements of slope on 
a rough water surface. The method provides a general approach to retrieving 
topography from measurements of elevation, slope and curvature. 
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Introduction 

Surface topography is often characterized indirectly by measurements of slopes. An 
interesting class of examples can be drawn from instruments that make high resolution 
measurements of wind roughened water surfaces [1–6], whose output data is in the form of 
slopes. Such measurements are important in the continuing investigation of rough ocean 
surfaces [7], whose characteristics play a central role in models of radar scatterometry [8], 
lidar [9] and sunglint [10]. It has been shown that accurate models of radiative transfer at the 
ocean surface for near infrared and shorter wavelength bands require characterization of 
topographic details beyond simple slope distributions [11]. Topography data can yield 
significant new insights into the understanding of the rough ocean surface, but enhanced 
understanding requires some method of estimating topography from slope data as no other 
direct method of detailed topographic measurement exists. 

Examples of topographic recovery techniques include approaches based on integration 
[12–14], and expansion of solutions using orthogonal functions, such as sinusoids (Fourier 
transforms) [15, 16], radial basis functions [17] and Legendre polynomials [18] using slope 
data as input. Topography can also be recovered using measurements of curvature [18, 19]. 
These methods can suffer from drawbacks including artifacts caused by the global 
propagation of errors for path integration approaches, sensitivity to high frequency noise for 
Fourier transforms, or poor numerical performance due to the high order polynomials that are 
needed to treat highly curved rough surfaces. Furthermore, it is not clear how a priori data, 
such as the mean and variance of elevation, slope and curvature, can be considered alongside 
measurements in these methods. 

The problem of surface topography retrieval has many similarities to phase retrieval in 
adaptive optics (AO) systems. In many AO systems, the slopes of a distorted incoming plane 
wave are measured, and a compensation is determined and applied, such as by deforming a 
mirror into a shape that matches the distorted wave front. The term “wave front phase” in the 
cited literature is analogous to the surface topography considered here. An important class of 
phase retrieval methods is based on least squares solution of a coupled system of finite 
difference equations relating wave front phase and slope [20–22]. The equations can be 
formulated as a matrix-vector multiplication [23] whose form is similar to the sparse system 
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of equations encountered in the theory of networks [24], which can be solved by sparse 
equation solvers. In this way, large systems can be stored in memory of practical size and 
solved using iterative techniques, such as the method of successive over relaxation (SOR) 
[25]. 

In a variety of physical situations, a sparse system of coupled linear equations results from 
finite difference equations, such as those used to represent measured gradient fields [26], and 
this approach can be generalized to include other quantities such as surface elevation and 
curvature. A priori constraints are often a practical necessity to ensure full system rank. 
Immediate measurements and a priori observations having different units and precision can be 
weighted so that each quantity contributes appropriate constraints to the solution. 

Until recently, computer memory restrictions and computational costs have inhibited 
attempts at direct solution of very large systems of equations containing millions of state and 
measurement vector elements, such as those resulting from megapixel slope image data. 
Advances in computational hardware and software, including the introduction of 64-bit 
operating systems, multithreaded/multicore microprocessor architectures, large low-cost 
memory arrays and powerful new solution algorithms make possible direct solution of large 
systems of coupled linear algebraic equations. 

Developed in this paper is a method of surface topography retrieval via sparse weighted 
linear least squares. The retrieval problem is formulated in such a way that the solution of the 
inverse problem allows for simultaneous consideration of direct measurements of surface 
slopes, a priori observations such as mean surface curvature and elevation without it being 
necessary to directly compute the inverse of the system. This new formulation and the 
corresponding method of solution can be applied to solve a wide variety of classical 
measurement problems, examples of which include topographic retrieval from two 
dimensional arrays of one-dimensional slope measurements [1, 2], two-dimensional arrays of 
two-dimensional slope data [3, 4, 27], and where individual measurement data are irregularly 
sampled, missing or have varying uncertainty [1]. As such, it can be viewed as a generic 
methodology that can be adjusted to suit the particular retrieval problem of interest. To 
demonstrate the power and practical utility of the method, examples are provided in which it 
is applied to large linear systems based on synthetic data as well as real data. 

Mathematical formulation 

Surface elevation and slopes 

A surface can be approximately described by a discrete set of vertices (points on the surface) 
arranged as a mesh to form a collection of triangular planar facets. The slope of a planar facet 
can be characterized by a surface normal vector, computed by the vector cross product shown 
in Fig. 1. 
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Fig. 1. A triangular planar facet (hatched area) is bounded by corners having position vectors 

a
r
�

, 
b

r
�

 and 
c

r
�

 in a Cartesian coordinate system. The surface normal vector n
�

 can be 

computed by cross product and normalized to unit length by ˆ /n n n=
� �

. 

Using the notation [ ]a a a a
r x y z=
�

 for the Cartesian x , y  and z  components of the 

vertex position vector, the surface normal can be computed by the cross product 

( ) ( )b a c a
n r r r r= − × −
� � � � �

, which expands to: 

 

( )( ) ( ) ( )
( )( ) ( )( )

( )( ) ( ) ( )

ˆ

ˆ .

ˆ

b a c a b a c a

b a c a b a c a

b a c a b a c a

y y z z z z y y i

n z z x x x x z z j

x x y y y y x x k

− − − − − +  
= − − − − − +  

− − − − −  

�

 (1) 

where î , ĵ  and k̂  are Cartesian unit vectors pointing along the x , y  and z  axes of the 
coordinate system, respectively. 

The horizontal ( x  and y ) components of the vertex positions, and their differences, can 

be treated as the constant parameters: 1 b a
c x x= − , 2 c a

c x x= − , 3 b a
c y y= −  and 

4 c a
c y y= − . The cross product simplifies to: 

 

( ) ( )
( ) ( )

[ ]

3 4

2 1

1 4 2 3

ˆ

ˆ

ˆ .

c a b a

b a c a

c z z c z z i

n c z z c z z j

c c c c k

− − − +  

= − − − +  

−

�

                           

 (2) 

Surface normal unit vectors can be formed by scaling the surface normal vector of Eq. (2) 

through division by its magnitude ˆ /n n n=
� �

, where ( )1 2
n n n= ⋅
� � �

. Because the vertical 

component of the surface normal vector is equal to the constant 1 4 2 3c c c c− , its magnitude can 
be recovered from a surface normal unit vector by equating vertical components, 

ˆ ˆˆn k n n k⋅ = ⋅
� �

. Surface normal vectors given with unit length can be rescaled to give Eq. (2) 

by multiplication with the magnitude of the surface normal vector, which equals: 

 ( )1 4 2 3
ˆˆ/ .n c c c c n k= − ⋅

�

 (3) 

Arbitrary arrangements of surface normal data provided on non-uniform horizontal grids 
can be related to vertex elevations using Eqs. (2, 3). In many cases, slopes are provided on a 
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grid that has a uniform spacing so that horizontal vertex coordinates can be organized in 
perpendicular rows and columns. This arrangement enables further simplification by aligning 
the x  and y  coordinate axes with the rows and columns of vertices, so that 

a c
x x=  and 

a b
y y= . In this case, 2 3 0c c= = . Surface normal vector components become functions of 

just two vertices: 

 ( )4
ˆ

a b
n i c z z⋅ = −
�

 (4) 

and 

 ( )1
ˆ .

a c
n j c z z⋅ = −
�

 (5) 

For simplicity, the special case of row-column alignment with the x  and y  coordinate 
axes will be considered throughout the remainder of this paper, though this method can be 
applied to arbitrary grids of slopes without loss of generality. 

Arrays of slope data 

In this formalism, an approximation of the surface is represented by a discrete collection of 
vertices, and gradient measurements are represented by surface normal vectors that are 
perpendicular to triangular planar surface facets. In slope imaging systems, pixel data 
represent measurements of the local surface gradient. Each pixel has a finite area with a well-
defined outline in the object plane that suggests a choice of mesh geometry placing the 
horizontal position of vertices at the pixel corners. 

 

Fig. 2. Example mesh shows the ˆ
s

n  surface normal unit vector measurements, and the 
t

z  

vertex elevations. The shaded areas represent locally planar facets on which the measurements 
are considered to occur. 

The vertices and surface normals can be ordered by column, an example of which is 
illustrated in Fig. 2. Because a plane is well-defined by three distinct points, slope 
measurements are considered to occur on triangular planar facets. In this configuration, one 
planar facet corresponds to each pixel, and the triangular facet in the lower right corner of 
each pixel is effectively ignored. 

In this example, there are 4M =  rows and 3N =  columns of surface normal 
measurements, and 1 5M + =  rows and 1 4N + =  columns of vertices. Surface normal 
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vectors and vertices residing at row m  and column n  are numbered with subscripts 

( )1s m M n= + −  and ( ) ( )1 1t m M n= + + − , respectively. 

Matrix-vector formulation 

The surface normal vector measurements can be grouped by Cartesian component to give two 
measurement vectors: 

 1 2
ˆ ˆ ˆ ˆ T

x s M Nn i n i n i n i×
 = ⋅ ⋅ ⋅ ⋅ b
� � � �

⋯ ⋯  (6) 

and 

 1 2
ˆ ˆ ˆ ˆ T

y s M Nn j n j n j n j×
 = ⋅ ⋅ ⋅ ⋅ b
� � � �

⋯ ⋯  (7) 

for the horizontal and vertical components, respectively (the superscript T  indicates vector 
transpose). Vertex elevations are similarly grouped in a column state vector: 

 ( )( )1 2 1 1 1

T

t M N
z z z z + + −
 =  z ⋯ ⋯  (8) 

Related by finite difference equations, the measurement vectors 
x

b  and 
y

b  are linear 

functions of the state vector z  and can be expressed as matrix-vector products: 
x x
=b A z  

and 
y y
=b A z , constructed from Eqs. (4, 5), respectively. Row and column numbering is 

determined by the mesh numbering system, such as in the example of Fig. 2. 

Rank 

A system of equations containing only slope expressions is rank deficient due to an arbitrary 
constant, the so-called “piston” term, that can be added to a solution without changing slopes 
[24]. To resolve this ambiguity, a single equation of average elevation can be added to the 
system to restore full rank. 

Rank deficiency can also arise from “island” vertices or groups of vertices that share no 
adjacency. Such deficiency exists in the example of Fig. 2 where the 20th vertex is 
unconnected by surface normal data to the rest of the mesh. Islands can also arise where one 
or more groups of missing or unreliable data isolate groups from each other. A single 
expression of average elevation generally does not solve the problem of rank deficiency 
arising from topographic islands because an arbitrary constant can be added to one island and 
subtracted from another without affecting the average elevation. 

A priori constraints 

To ensure full system rank, the inclusion of additional relationships is necessary and can be 
accomplished in a variety of ways, such as by direct measurements of the elevation of one or 
more vertices. Alternatively, a priori observations may be added. For example, if the mean 
elevation is known, each vertex can be constrained by augmenting the system with an identity 
matrix that multiplies the state vector and set equal to the mean elevation: =I z z , where each 

row added has the form 
t

z z= . 
Smooth solutions can be constrained on the basis of a priori curvature. Curvature can also 

be considered as immediately measured data, such as in the case of curvature measurements 
[19]. The curvature of plane curves that are specified explicitly as a function of one horizontal 

coordinate can be approximated by a second derivative ( ) 3/221z z zκ
−

′′ ′ ′′= + ≈  for 0z′ ≈ . By 

choosing planes parallel to the rows and columns (where one horizontal coordinate is held 
constant), the second derivative can be approximated by the finite difference equations: 
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 ( )2
1 1, , 1,2xt m n m n m nc z z zκ −

− +≈ − +  (9) 

and 

 ( )2
4 , 1 , , 12 ,yt m n m n m nc z z zκ −

− +≈ − +  (10) 

where the subscripted x and y indicate curvature along columns and rows, respectively. 
Systems of equations 

x x
=K z κ  and 

y y
=Κ z κ  can be constructed from Eqs. (9) and (10), 

respectively, and set equal to the mean curvature (usually zero): 
x y
= =κ κ 0 . A system of 

measured x- and y-slopes, with a priori x- and y-plane curvatures and elevation can be 
combined in a block matrix A : 

 

x x

y y

x x

y y

z

   
   
   
   = = =
   

=   
   =   

A b

A b

A z zΚ κ 0

Κ κ 0

I z

 (11) 

In general, there is considerable flexibility in choosing which measurements and a priori 
constraints to include. Blocks can be added or deleted as needed depending on the problem at 
hand. For example, arrays of one-dimensional slope data [1, 2] could be treated by setting 

x
b  

equal to the slope measurements. If average slope in the perpendicular direction were known 
to be zero, 

y
b  could be set to zero, or 

y
A  and 

y
b  could be deleted from the system 

altogether. 

 

Fig. 3. The non zero entries of the sparse matrix given by the linear system of Eq. (11) using 
the example of Fig. 2. 

An important restriction worth mentioning is that for large systems, memory 
considerations require that any added equation be sparse, generally limiting systems to those 
based on finite difference equations or identity relations. The structure of a sparse system can 
be inspected by plotting the non-zero row-column entries. Figure 3 shows the non zero entries 
of the sparse matrix given by the linear system of Eq. (11) using the example shown in Fig. 2. 
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In the following sections, Eq. (11) will be considered for further analysis using synthetic and 
real data. 

Weighted least squares 

=A z b  has a greater number of rows than columns which results in an over-determined 
system. Over-determined systems generally have no exact solution z . Instead, an 
approximate least squares solution is computed to minimize the 2-norm of a residual error 

vector ( ) ( )2 T
− = − −A z b A z b A z b  by solving the normal equations: =T TA A z A b . 

Biases caused by differences in the relative uncertainty of measurement components can 
be compensated by weighting the individual components of the residual error vector by a 

weighting matrix W  giving: ( ) ( ) ( )
2

− = − −
T

W A z b A z b C A z b , where = TC W W . The 

resulting equations minimize the weighted error: 

 .=T TA CA z A Cb  (12) 

C  can be specified by a covariance matrix Σ , where each matrix element specifies an 

estimate of the error covariance between measurement components: ( )cov ,ij i jb b=Σ . The 

choice of −= 1C Σ  leads to the Best Unbiased Linear Estimate (BLUE) as stated by the Gauss-
Markov theorem [28] which gives the lowest mean squared error of the estimate. 
Specification of variance can be accomplished in several ways: variance of immediately 
measured components can be determined from repeated measurements of an unchanging 
state, and a priori variance is frequently specified explicitly as a parameter of a statistical 
distribution. 

It should be mentioned that for surfaces that are relatively smooth on small scales, the 
elevation of neighboring vertices is likely to have some non-zero covariance that decreases 
with increasing horizontal separation. Therefore, off-diagonal terms will appear in Σ . 
Generally, inversion of an off-diagonal Σ  will fill in nonzero elements so that the resulting 
matrix C  is full and often much larger than the available memory. This practical limitation 
generally prevents the consideration of off-diagonal covariance in large systems, despite any 
additional information that a full covariance matrix might contain. In the following analysis, 
the variance matrix ( )var

ii i
b=Σ  is used instead and off-diagonal terms are ignored 

( 0
i j≠ =Σ ). 

Solution method 

Sparse orthogonal-triangular (QR) factorization is an efficient, numerically stable method of 
solution for overdetermined systems [29], supported in the backslash “\” operator and qr and 
lscov functions in recent versions of Matlab subsequent to R2009b, also available as C +  + 
source code in the SuiteSparse archive [30]. QR factorization expresses a matrix as the 
product of two matrices =A QR , where R  is upper-triangular, and Q  is an orthogonal 

matrix, such that − =1 T
Q Q  and =T

Q Q I . In general, R  is sparse and Q  tends to be full. 
Column reordering is essential to maximize the sparsity of the R  factor (for efficient 

storage in memory) and to maintain practical limits on factorization time. Minimum degree 
column reordering algorithms aim to reduce the number of nonzero matrix elements by 
maximizing the number of elimination steps that can be skipped in the factorization process. 
Column reordering replaces A  and z  in Eq. (12) with the column-permuted matrix 

p
=A AP  and the row-permuted vector 

p

−= 1
z P z , where P  is an orthogonal permutation 

matrix, where − =1 TP P  and =TP P I . 
The normal equations can be solved by factoring the matrix 

p
=WA QR . In cases where 

storage of the factor Q  would exceed available memory resources, the Q  factor is dropped, 
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and the factorization is referred to as “Q-less” QR factorization. Substituting these factors into 

Eq. (12) gives the seminormal equations [31]: ( ) ( )p p=
TT

QR QR z A Cb . The left side 

simplifies to 
p

T
R R z , and the right side of the seminormal equation can be rewritten as the 

vector ( )p=
T

u A Cb , giving: 

 .
p
=T

R R z u  (13) 

The advantage of solving the seminormal equations by factorization is that A  can be 
reordered and factored once and R  can be repeatedly applied to the solution of multiple 
measurement vectors, not all of which may be known or can be stored in memory at the time 
of factorization. The product of two triangular matrices is efficiently solved by forward and 
back substitution for 

p
z . Errors that accumulate due to limited numerical precision can be 

reduced by solving the corrected seminormal equations [32]. An error term is computed by 

substituting the solution 
p

z  into Eq. (13), ( )p p= −r W A z b . This error can be used to 

compute a correction factor by solving ( )p p=
T

T
R R∆z A Cr  for a correction factor ∆z  that 

can be added to find a new solution of reduced error: 
p p p
′ = +z z ∆z . After the corrected 

solution is computed, a least squares solution with proper ordering can be restored by 
multiplication with the permutation matrix: 

p
′=z P z . 

The Matlab backslash operator can be used to perform all of these steps and solve the 
weighted normal equations =WAz Wb  using the syntax: z = (W*A)\(W*b). Multiple 
measurement vectors 1b , 2b … 

n
b  can be combined for efficient solution by horizontal 

concatenation into a matrix B , where the columns of [ ]1 2 n
=B b b b⋯ . In this way, 

Matlab computes the intermediate factorization step only once and applies the results to all of 
the measurement vectors. Solution vectors appear as columns of a solution matrix Z . 

Synthetic data retrieval 

The method of topographic reconstruction is illustrated in an example using synthetic data. 
While no single example will capture the full range of possible topographies that may be 
encountered in real data, much can be learned by examining synthetic data. The procedure 
will be as follows: 

1. A surface is given by an elevation function of two horizontal coordinates 

2. A set of synthetic slope measurements is created by evaluating analytical derivatives of 
the elevation function on a grid of points and adding random numbers to the results 
to simulate noise 

3. Weights for slope and a priori measurement components are chosen 

4. Surface elevation is estimated by the procedure described above. 
The surface chosen is the analytical function: 

 ( ) ( ) ( ), sin / 3 sinz x y x y=   (14) 

with analytical derivatives: 

 ( ) ( )cos / 3 sin / 3
z

x y
x

∂
=

∂
 (15) 

and 
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 ( ) ( )sin / 3 cos .
z

x y
y

∂
=

∂
 (16) 

An ideal surface is constructed by evaluating Eq. (14) on a grid of 641x481 points over a 
spatial domain that shows a handful of peaks. Synthetic slope measurements are computed on 
a grid of 640x480 points by evaluating Eq. (15) halfway between the columns, and by 
evaluating Eq. (16) halfway between the rows of the grid used to evaluate the ideal surface. 

A priori variance is computed by evaluating Eqs. (14–16) and the second derivatives of 
Eq. (14) (for curvature) on a grid of points, followed by computing the variance of the 
resulting sets. Two cases using synthetic slope measurements are made by contaminating the 
synthetic slope measurements with artificial noise by adding normally distributed random 
numbers with specified standard deviation. The weighting of slope measurements is 
determined by the standard deviation of the added noise. 

 

Fig. 4. Left, surface retrieved from low-noise slope data. Right, retrieval error as the difference 
between retrieved and ideal surface. Surface color is a function of elevation shown in the color 
bars. 

A low noise set of synthetic x- and y-slope measurements data is first examined. Figure 4 
shows a retrieval based on nearly ideal synthetic data, where the added noise has a standard 
deviation of 5.118 ×  10−4, one one-thousandth of the a priori y-slope data standard deviation 
(a zero-noise case would have infinite weighting coefficients and cannot be analyzed by this 
method). The retrieved surface appears to be smooth. The difference between the original and 
retrieved surfaces shows deviations on the order of 10−4 times the maximum elevation with a 
standard deviation of error 5.2687 ×  10−5. The errors appear largely random, though signs of 
a periodic artifact reminiscent of the original synthetic data can be seen in this difference. 

 

Fig. 5. Left, surface retrieved from noisy slope data. Right, solution error as the difference 
between retrieved and ideal surface. 

Noisy slope data with noise having a standard deviation of 0.0512 (which is 30% and 10% 
of the x- and y-slope a priori standard deviation, respectively) results in retrievals with more 
distortion, shown in Fig. 5. The distortion appears smooth, with the largest errors less than 2% 
of the original surface’s maximum elevation appearing at the boundaries of the solution. 
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Perhaps the errors in slope balance each other in the interior and errors caused by the 
elevation constraints become apparent at the boundaries. Most importantly, the standard 
deviation of error in elevation is 0.0055, or about 0.5% of the original surface’s maximum 
elevation. 

These computations were performed with Matlab (R2010b) using an Intel Core i3 
processor on a personal laptop computer with 8 GB memory. Column reordering and 
factorization required 25 seconds with the resulting factor residing in 632 MB stored as a 
double precision sparse matrix. Solution of the column reordered prefactored corrected 
seminormal equations computed by forward and backward substitution using the backslash 
operator takes 2.86 seconds of computational time. 

Water topography retrieval 

Slope data were obtained from a refractive color slope imaging system with resolution 
1024x1280 pixels in a construction similar to the surface gradient detector described by 
Zhang and Cox [3]. Imaging data were collected during an experiment in a wind wave tank at 
the NASA Air-Sea Interaction Research Facility at Wallops Island, Virginia with an example 
shown in Fig. 6. The tank geometry is approximately 18x1x1.2 meter in length, width and 
height, respectively. The water fills approximately 2/3 of the vertical space. Wind blows 
along the longest dimension of the tank. Image data were collected approximately 9 meters 
from the air inlet. Hence, the waves are fetch-limited, just beginning the growth process of 
increasing in amplitude and wavelength. 

 

Fig. 6. Left: color image data from the refractive slope imaging system. Middle and right, x 
and y surface normal unit vector components, respectively. 

The measurement system also employed capacitive elevation sensing probes that are 
visible in the corners of the image as dark pixels. These pixel data are considered to be 
contaminated so that no slope information can be obtained. Contaminated pixels are identified 
and set to zero slope before further analysis. Horizontal components of the surface normal 
unit vector were retrieved from the color image data using a newly developed method that 
will be detailed in an upcoming publication. 

The variance matrix was scaled based on the height, slopes, and curvature having standard 
deviations of 0.1 meter, 0.058 meters per meter, and 500 per meter, respectively. The 
elevation standard deviation was set much greater than the observed wave amplitude, acting 
only loosely as a constraint. The standard deviation of slope was estimated directly from 
repeated measurements of a flat surface, corresponding to a one-sigma slope error of 
approximately 3.3° degrees, which may be considered relatively noisy slope measurements. 
Curvature standard deviation was established by comparing repeated solutions having 
different curvature standard deviations. High values of standard deviation had no appreciable 
effect on smoothness, whereas very low values tended to “blur” the surface, obscuring the 
smallest waves entirely. A compromise was established using the standard deviation at which 
a small smoothing effect became noticeable. 
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Fig. 7. Single frame example of retrieved elevation rendered using an artificial illumination 
model (Media 1). 

The retrieval results shown in Fig. 7 demonstrate well-behaved topographical solutions. 
All topographic points are found very close to the mean elevation, qualitatively similar to how 
wind waves appear by eye. The amplitudes of the retrieved wave crests are approximately the 
same amplitude as observed through the glass walls of the tank. Areas contaminated by 
identifiably bad data do introduce observable artifacts. In these areas, isolated islands of 
vertices that are unconnected by slopes can be found. Here, a priori data take over to fill in 
the blanks with reasonable estimates. Overall, the retrieved topography is free of obvious 
defects, which indicates that the solution is reasonable. Future work will examine in detail 
errors in slope and elevation using a standard reference surface with a shape that can be 
measured independently. 

In terms of computational performance, the factorization procedure required 3.4 GB of 
memory and 95 seconds of computational time using an Intel Core i7 processor on a personal 
desktop computer. Prefactored seminormal equations are computed by elimination using 5.2 
seconds of computation time and requires an additional 3.4 GB of memory as two copies of 
the factor are held in memory during the solution process. 

Conclusions 

A novel approach to the retrieval of surface topography is formulated in which the solution of 
the inverse problem allows for simultaneous consideration of immediately measured and a 
priori observations. Observations that can be included in this framework are modeled as 
coupled finite difference equations that result in a sparse linear system of algebraic equations. 
Observables such as elevation, slope and curvature can be included, treated as either 
immediate measurements or a priori constraints. By including such a priori observations, full 
system rank can be ensured, despite noisy or missing data points. Solutions are computed 
directly by multifrontal QR factorization without inversion of the full system matrix. 

Synthetic data as well as imaging slope data obtained in a wave tank are used to 
demonstrate that solutions can be computed using least squares by combining noisy slope 
measurements with a priori elevation and curvature data, with each observation weighted by 
estimates of variance. Solutions retrieved from synthetic data have error standard deviations 
of approximately 1/10th of slope measurement error standard deviation. Solutions retrieved 
from imaging data are well behaved even in places where pixel data are known to be corrupt. 
The computations for the examples shown were achieved using a personal laptop and desktop 
computer. Reasonable solution times enabled the analysis of long time series of wind wave 
slope images, an example of which is shown in the companion movie file. 

The enabling factors for this new method are computing resources of modest cost that 
have recently become available. The equations can be solved efficiently by utilizing 
capabilities of multicore/multithread processing and large memory arrays. The examples used 
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to illustrate the method can be considered as members of a broader class of least squares 
retrievals that are also treatable by this method. This new formulation and the corresponding 
method of solution can be applied to solve a wide variety of other classical measurement 
problems. It is expected that these new developments will open new avenues to develop 
solutions for topographic and other more general sparse retrieval problems. 
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