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The numerically exact superposition T -matrix method is used to compute, for the first time to our knowledge, elec-
tromagnetic scattering by finite spherical volumes composed of polydisperse mixtures of spherical particles with
different size parameters or different refractive indices. The backscattering patterns calculated in the far-field zone
of the polydisperse multiparticle volumes reveal unequivocally the classical manifestations of the effect of weak
localization of electromagnetic waves in discrete random media, thereby corroborating the universal interference
nature of coherent backscattering. The polarization opposition effect is shown to be the least robust manifestation of
weak localization fading away with increasing particle size parameter. © 2011 Optical Society of America
OCIS codes: 030.5620, 030.6600, 290.1350, 290.4210, 290.5850, 290.5855.

Coherent backscattering (CB) or weak localization of
electromagnetic waves in discrete random media is a re-
markable phenomenon [1–4] explained qualitatively in
the framework of far-field Foldy–Lax equations as con-
structive interference of partial wavelets caused by “con-
jugate” multiparticle sequences [5]. The quantitative
corroboration of this qualitative explanation based on di-
rect computer solutions of the Maxwell equations is a
nontrivial problem that has been the subject of active re-
cent research [6–11]. Although CB has been viewed as a
ubiquitous phenomenon [1–4], expected to exist for poly-
disperse as well as monodisperse particulate media [5],
numerically exact modeling results published so far have
been obtained for monodisperse particles only. It is,
therefore, important to verify the qualitative explanation
of CB and demonstrate its universal physical character
by means of numerically exact computer calculations
for polydisperse discrete random media.
We address this problem using a direct computer sol-

ver of the Maxwell equations for a multisphere group
called the superposition T -matrix method (STMM) [12].
Within the range of numerical convergence, the corre-
sponding computer program [13,14] generates results
with a guaranteed number of accurate decimals, which
makes STMM a numerically exact technique. Our model
of discrete random medium is an imaginary spherical vo-
lume randomly filled with N nonoverlapping spherical
particles (Fig. 1). The dimension of the volume is defined
by its size parameter kR, where k is the wavenumber in
the homogeneous space surrounding the particles and R
is the volume radius. The particle size parameter is given
by kr, r being the particle radius.
To model statistical randomness of particle positions

within the imaginary spherical volume, we use one ran-
domly configured N -particle group and average all opti-
cal observables over the uniform orientation distribution
of this configuration with respect to the laboratory refer-
ence frame. This procedure yields an infinite continuous
set of realizations of the scattering volume and allows us
to use the highly efficient STMM orientation averaging
procedure [12].

The statistically random particulate volume is illumi-
nated by a plane electromagnetic wave or a parallel
quasi-monochromatic beam of light propagating in the in-
cidence direction n̂inc (Fig. 1). The observation point is
located in the far-field zone of the entire volume in the
scattering direction n̂sca. Because the scattering proper-
ties of the particulate volume are averaged over all orien-
tations of an N -particle group, they depend only on the
scattering angle Θ provided that the Stokes parameters
of the incident and scattered light are defined relative to
the scattering plane. The transformation of the Stokes
parameters I, Q, U , and V upon the far-field scattering
is described by the normalized Stokes scattering matrix
of the entire volume [15]:
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The zeros denote scattering matrix elements negligibly
small (in the absolute sense) relative to the other ele-
ments at the same scattering angle.

The elements of the scattering matrix are used to
define specific optical observables corresponding to
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Fig. 1. (Color online) Electromagnetic scattering by a
spherical volume of discrete random medium.
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different types of polarization state of the incoming light.
For example, if the incident light is unpolarized, then the
phase function a1�Θ� describes the angular distribution
of the scattered intensity, while the ratio −b1�Θ�=a1�Θ� is
the corresponding degree of linear polarization. If the in-
cident radiation is polarized linearly in the scattering
plane, then the angular distribution of the cross-polarized
scattered intensity is given by 1

2 �Isca − Qsca� ∝ 1
2 �a1�Θ� −

a2�Θ�� [7].
We model particle polydispersity by mixing within one

volume particles with different size parameters or differ-
ent refractive indices. In the former instance, we first use
the procedure described in [16] to generate random posi-
tions ofN � 400 particles with a size parameter of kr � 3
inside a kR � 40 spherical volume. Then a certain num-
ber of these particles are replaced randomly with kr � 2
particles having the same refractive index (m � 1:31).

The centers of the smaller particles coincide with those
of the removed larger particles. In the latter instance, we
use the same procedure to generate random positions of
240 particles with a size parameter kr � 4 and refractive
index m � 1:31 inside a kR � 40 spherical volume. Then
a certain number of these particles are replaced
randomly with equally sized m � 1:5 particles.

The results of the corresponding T -matrix computa-
tions are displayed in Figs. 2(a) and 2(b). We depict
the backscattering profiles of the degree of linear polar-
ization, as well as of the phase function and the cross-
polarized intensity normalized by their respective values
atΘ � 180°. The normalized phase functions exhibit nar-
row backscattering peaks, which are totally absent in the
corresponding single-particle phase functions [solid gray
and dashed–double-dotted yellow curves in the left-hand
panel of Fig. 2(a)] and have an angular semiwidth at
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Fig. 2. (Color online) Ratios of the elements of the Stokes scattering matrix. The left- and right-hand parts of the color legend in
Fig. 2(d) apply to the plots in Figs. 2(a) and 2(b), respectively.
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half-maximum comparable to 1=kR. The invariance of the
phase-function angular profiles and their amplitudes with
changing ratio N�m1 � 1:31�=N�m2 � 1:5� in the left-
hand panel of Fig. 2(b) is especially remarkable. The
angular profiles and amplitudes of the cross-polarized in-
tensity peaks in the right-hand panel of Fig. 2(a) are also
virtually independent of the ratio N�kr1 � 3�=N�kr2 �
2�: These traits are clear indications of the fundamental
interference nature of the backscattering peaks (see
[6,7]).
The middle panel of Fig. 2(a) shows the classical

angular profile of the polarization opposition effect
(POE) caused by CB [17–19]. The scattering angle at
which polarization changes sign from negative to positive
decreases with increasing numbers of kr � 3 particles.
Still, the single-particle polarization of the kr � 3 parti-
cles [Fig. 2(c)] remains sufficiently Rayleigh-like to make
POE work. The horizontal “shelves” of neutral polariza-
tion at backscattering angles exhibited by both curves in
Fig. 2(c) make the identification of POE in the middle
panel of Fig. 2(a) unequivocal (see [19]).
The single-particle polarization curves in Fig. 2(e) are

substantially different from those in Fig. 2(c), especially
the m � 1:5 one. The strong negative polarization ob-
served for the m � 1:5 particles at backscattering angles
with a deep minimum centered at Θ ≈ 156° obviously
dominates the N�m2� � 60, 120, 180, and 240 curves in
the middle panel of Fig. 2(b). The N�m2� � 0 curve
shows some traits of POE including the angular position
of the minimum, but the angular shape of the minimum
deviates from those in the middle panel of Fig. 2(b). This
is a natural consequence of the strong deviation of the
angular profile of the m � 1:31 single-particle curve in
Fig. 2(e) from the bell-shaped Rayleigh profile [see the
curves in Fig. 2(c)].
In summary, the results of our numerically exact

STMM computations of electromagnetic scattering by
polydisperse discrete random media fully corroborate
the universal interference nature of CB. They also illus-
trate that one manifestation of CB, namely, the POE, is
less robust and hence less ubiquitous than the others. In-
deed, it has the tendency to weaken and even disappear
once the particle size parameter is outside the Rayleigh
range, thereby causing single-particle polarization curves
to deviate significantly from the classical bell-shaped pro-
file with a strong maximum at side-scattering angles.
While our conclusions are based on computations for

“discretely” polydisperse particulate volumes, one can
expect them to apply, at least qualitatively, to “continu-
ously” polydisperse discrete random media. We plan to
analyze this more challenging model of polydispersity
in the future.
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