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ABSTRACT

The land surface freeze–thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus

affects water and energy exchanges and vegetation productivity at the land surface. In this study, an F/T

assimilation algorithm was developed for the NASAGoddard Earth Observing System, version 5 (GEOS-5),

modeling and assimilation framework. The algorithm includes a newly developed observation operator that

diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. The F/T analysis is a rule-

based approach that adjusts Catchment model state variables in response to binary F/T observations, while

also considering forecast and observation errors. A regional observing system simulation experiment was

conducted using synthetically generated F/T observations. The assimilation of perfect (error free) F/T ob-

servations reduced the root-mean-square errors (RMSEs) of surface temperature and soil temperature by

0.2068 and 0.0618C, respectively, when compared to model estimates (equivalent to a relative RMSE re-

duction of 6.7% and 3.1%, respectively). For a maximum classification error CEmax of 10% in the synthetic F/T

observations, the F/T assimilation reduced the RMSE of surface temperature and soil temperature by 0.1788
and 0.0368C, respectively. For CEmax 5 20%, the F/T assimilation still reduces the RMSE of model surface

temperature estimates by 0.1498C but yields no improvement over the model soil temperature estimates. The

F/T assimilation scheme is being developed to exploit planned F/T products from the NASA Soil Moisture

Active Passive (SMAP) mission.

1. Introduction

Over one-third of the global land area undergoes

a seasonal transition between predominantly frozen and

nonfrozen conditions each year (Kim et al. 2011). This

land surface freeze–thaw (F/T) transition is closely linked

to the timing and length of the vegetation growing season

(e.g., Black et al. 2000; Grippa et al. 2005; Kimball et al.

2006), the seasonal evolution of land–atmosphere carbon

dioxide (CO2) exchange (Goulden et al. 1996), and the

timing of seasonal snowmelt, soil thaw, and spring flood

pulses (Kimball et al. 2001; Rawlins et al. 2005; Kane et al.

2008). The land surface F/T state thus acts as a natural

on/off switch for hydrological and biospheric processes

over northern land areas and at high elevations where

seasonal frozen temperatures represent a significant

portion of the annual cycle (Kim et al. 2011).
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Studies show that the growing season, vegetation

productivity, and land–atmosphere CO2 exchange pat-

terns are shifting as a result of global warming (e.g.,

Randerson et al. 1999; Nemani et al. 2003). For example,

Smith et al. (2004), McDonald et al. (2004), Kimball

et al. (2006), Kim et al. (2012), and Wang et al. (2013)

found consistency between these patterns and changes in

seasonal F/T dynamics observed by satellite microwave

remote sensing. Thus, for more accurate modeling and

prediction of land surface hydrological and biospheric

processes, a good representation of the landscape F/T state

in land surface schemes is needed. Recent efforts to en-

hance F/T modeling through improved and more expan-

sive representation of permafrost include work on the

Variable Infiltration Capacity model (VIC; Cherkauer

et al. 2003), theCommunity LandModel (CLM;Lawrence

et al. 2008, 2012), ORCHIDEE (Koven et al. 2009), the

Joint UKLandEnvironment Simulator (JULES;Dankers

et al. 2011), and the pan-Arctic water balance model

(Rawlins et al. 2013).

Surface air temperature measurements from regional

weather stations can provide an indication of the land-

scape F/T state. However, the limited coverage of global

weather station networks, especially at higher latitudes

and elevations, severely limits the capability for global

monitoring and the ability to capture F/T spatial and

temporal patterns (Kim et al. 2011). Satellite observa-

tions of passive and active microwaves are well suited

for characterizing the landscape F/T state (Frolking

et al. 1999; Bateni et al. 2013; Rautiainen et al. 2012,

2014). Lower-frequency (#37GHz) microwave obser-

vations vary significantly between frozen and thawed

landscapes as a result of the strong sensitivity to con-

trasting dielectric properties.

A number of algorithms have been developed to detect

the landscape F/T state at 25–50-km resolution using

brightness temperaturemeasurements from theAdvanced

Microwave Scanning Radiometer for the Earth Observing

System (Zhao et al. 2011), the Scanning Multichannel

Microwave Radiometer (Zuerndorfer and England 1992),

the Special Sensor Microwave Imager (Zhang and

Armstrong 2001), and the Soil Moisture and Ocean

Salinity mission (Rautiainen et al. 2014). Similarly, radar

backscatter data have been utilized in several studies for

the detection of the land surface F/T state (Frolking et al.

1999; Kimball et al. 2001; Bartsch et al. 2011; see also

section 2). The L-band (1.4GHz) radar observations

from the Soil Moisture Active Passive (SMAP) mission

(to be launched in early 2015) will provide a global

classification of the F/T state at a 3-km spatial resolution

and with a 3-day temporal fidelity (Entekhabi et al. 2010,

2014). The lower sensitivity to snow and vegetation of

the L-bandmeasurements compared to higher-frequency

measurements should result in better detection of the

landscape F/T signal. Moreover, the 3-km SMAP F/T

product represents a considerable improvement in reso-

lution compared to current radiometer F/T products (e.g.,

Kim et al. 2012). See section 2 for more discussion.

The assimilation of remotely sensed F/T retrievals

into land surface models might improve the simulation

of carbon and hydrological processes that are especially

relevant during F/T transitions. Accurate estimates of

soil temperature and F/T conditions are critical in this

context. At northern latitudes, carbon source–sink ac-

tivity is strongly correlated with the length of the vege-

tation growing season, which, for the most part,

coincides with the summer period of thawed conditions.

Moreover, soil respiration strongly depends on soil

temperature conditions. Finally, hydrological conditions

change dramatically between frozen and thawed soil

conditions (Zhang et al. 2011; Kimball et al. 2004a).

In this study, the potential of the F/T assimilation to

improve estimates of land surface (skin) and soil temper-

ature is investigated. To this end, an algorithm was de-

veloped for the assimilation of binary F/Tobservations into

the NASA Catchment land surface model (Koster et al.

2000) within theNASAGoddardEarthObserving System,

version 5 (GEOS-5), modeling and assimilation frame-

work. The assimilation algorithm includes a newly de-

veloped observation operator that diagnoses the F/T state

of the Catchment model and is compatible with the in-

formation contained in the remotely sensed landscape F/T

state at different microwave frequencies. The F/T analysis

consists of a rule-based approach that updates Catchment

model prognostic variables for surface and soil temperature

in response to binary F/T observations and considers

forecast and observation errors. To test the methodology,

an observing system simulation experiment is conducted

using synthetically generated F/T observations. The ulti-

mate goal of this study is to provide a framework for the

assimilation of F/T retrievals from SMAP into the Catch-

mentmodel in the context of the SMAP level 4 surface and

root-zone soil moisture (L4_SM) algorithm (Reichle 2012)

and the SMAP level 4 carbon (L4_C) algorithm (Kimball

et al. 2012). Future research will explore the direct assim-

ilation of brightness temperature or backscatter measure-

ments to analyze the landscape F/T state.

2. F/T detection using remote sensing

At microwave frequencies, the landscape dielectric

constant and thus the radar backscatter and the emission

of passive microwaves undergo large temporal changes

associated with corresponding changes in the pre-

dominant landscape F/T state within the satellite foot-

print (Mironov et al. 2010), which makes spaceborne
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microwave measurements well suited for global F/T

monitoring (Kim et al. 2011). In most studies, 08C is con-

sidered the temperature threshold between the frozen and

thawed states (Colliander et al. 2012). The temperature at

which the F/T transition occurs, however, varies with the

water solute concentration and shows strong heterogeneity

across different landscape elements andwithin the satellite

field of view. Thus, the 08C threshold is only an approxi-

mation of the landscape F/T transition point.

The contribution of different land surface elements to

the retrieved F/T index depends on the microwave fre-

quency used for the F/T classification. Colliander et al.

(2012) used QuikSCAT Ku-band (13.4GHz) backscatter

measurements to investigate the relationship between in-

dividual land surface elements (e.g., soil, snow cover, and

vegetation) and the aggregate landscape F/T state in-

dicated by the surface backscatter. It was observed that the

temperature of the soil and that of vegetation stems and

branches are generally better indicators of Ku-band F/T

dynamics than surface air temperature, with soil temper-

ature being a better indicator than vegetation temperature.

Colliander et al. (2012) did not consider the effect of snow

cover despite the fact that for their study domain the fro-

zen condition is dominated by a snow-covered landscape.

The rationale for their approach is the fact that the land-

scape thawing can be detected even under snow-covered

conditions, as demonstrated by Kimball et al. (2004a,b)

using Ku-band measurements from the NASA Scatter-

ometer. The freeze–thaw product for SMAP will be de-

rived using a time series analysis of the high-resolution

L-band (1.4GHz) radar backscatter (Entekhabi et al.

2010). Because of their longer wavelength, L-band obser-

vations from SMAP should be less sensitive to snow and

vegetation scattering effects under dry/frozen snow con-

ditions and penetrate more deeply into the soil than Ku-

band measurements. This increases the sensitivity of the

microwave signals to the F/T state of the underlying sur-

face soil layer. However, for wet snow the penetration

depth of microwaves is drastically reduced to a few centi-

meters or less (Mätzler and Schanda 1984). Thus, sensi-
tivity to soil conditions is minimal under wet snow,

regardless of the microwave frequency, and the satellite

signal will largely reflect snow cover conditions when

a significant amount of wet snow is present on the surface.

3. F/T diagnosis using the Catchment land surface
model

This section first provides a brief description of the

NASA GEOS-5 Catchment model (Koster et al. 2000;

Ducharne et al. 2000; Reichle et al. 2011; Reichle 2012),

a state-of-the-art global land surface model. Next, an

observation operator is introduced for the diagnosis of

the landscape F/T state in the model. This observation

operator is needed for the F/T analysis (section 4) and is

designed to be compatible with the information con-

tained in remotely sensed F/T observations at different

microwave frequencies.

a. Catchment model overview

The Catchment model’s basic computational unit is the

hydrological catchment (or watershed). In each catch-

ment, the vertical profile of soilmoisture is determined by

the equilibrium soil moisture profile from the surface to

the water table and by two additional variables that de-

scribe deviations from the equilibrium profile in a 1-m

root-zone layer and in a 2-cm surface layer, respectively.

Based on soil moisture, each catchment is separated into

three distinct and dynamically varying subareas: a satu-

rated region, an unsaturated region, and a wilting region.

The Catchment model also includes a three-layer snow

model that accounts for snow melting and refreezing,

dynamic changes in snow density, snow insulating prop-

erties, and other physics relevant to the growth and ab-

lation of the snowpack (Lynch-Stieglitz 1994).

In the snow-free portion of the catchment, the surface

energy balance is computed separately for the saturated,

unsaturated, and wilting subareas of each catchment. In

each of these three subareas, the land surface tempera-

ture is modeled with surface temperature prognostic

variables that are specific to the soil moisture regime (TC1

for the saturated region, TC2
for the unsaturated region,

and TC4
for the wilting region). The effective soil depth

associated with the TC1
, TC2

, and TC4
variables is negli-

gible except for areas with broadleaf evergreen (typically

tropical) land cover (Reichle 2012), which are of little

importance for F/T studies. The area-weighted average

of the three prognostic surface temperature variables de-

termines the surface temperature in the absence of snow

Tno snow
surf , which is then averaged (again area weighted)

with the surface snow temperature Tsnow
surf , to provide the

land surface temperature Tsurf of the entire catchment:

Tsurf 5 (12 asnow)Tno snow
surf 1 (asnow)Tsnow

surf . (1)

The surface snow temperature and the snow area frac-

tion asnow are themselves diagnosed from the model’s

snow prognostic variables (snow water equivalent SWE,

snow depth, and snow heat content).

Subsurface temperatures are modeled using a soil

heat diffusion model that consists of six layers. The

thicknesses of the layers are about 10, 20, 40, 75, 150, and

1000 cm starting from the topmost soil temperature

layer. The layer thicknesses are the same for all catch-

ments and each layer’s soil temperature represents an

average value over the entire catchment. The prognostic
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variables for the heat diffusion model are the ground

heat contents ght in the six layers from which the soil

temperatures Tsoil in each layer are diagnosed. For the

remainder of this paper, ght and Tsoil refer to the values

in the topmost (10 cm thick) soil layer only.

b. Freeze–thaw state in the Catchment model

The F/T analysis (section 4) requires diagnosing the

landscape F/T state of the Catchment model based on its

prognostic variables. As outlined in section 2, the land-

scape F/T state observed by L-band microwave remote

sensing is assumed to be primarily related to the near-

surface soil and vegetation canopy temperature under dry/

frozen snow condition. Under wet snow, however, the

satellite F/T signal will largely reflect snow cover condi-

tions. We therefore first define an effective temperature

Teff that vertically averages the (snow free) portion of the

surface temperature and the top-layer soil temperature:

Teff 5 (12a)Tsoil1aTno snow
surf . (2)

Given the wavelengths used for F/T remote sensing,

which typically range from 1 to 20cm, and the resulting

penetration depths, the contribution of the lower-layer

soil temperatures to the microwave signal is small and

neglected here. The parameter a determines the relative

contributions of the surface temperature and the soil

temperature and can be adjusted according to the mi-

crowave frequency used for the F/T classification so that

it better reflects sensor signal penetration depth. Besides

the effective temperature, additional information on the

landscape F/T state is contained in the modeled snow

conditions. Here, asnow is most relevant. In the Catch-

ment model, the snow cover fraction increases linearly

with the SWEduring the accumulation phase and reaches

full cover (asnow 5 100%) when the total amount of

SWE accumulated over the catchment reaches a model

constant of SWEMIN 5 26kgm22 (Reichle et al. 2011).

The landscape F/T state is then diagnosed from the

Catchment model variables via the following observa-

tion operator, which is also illustrated in Fig. 1:

Thawed(F/T 5 1) if

Teff $Teff_Threshold and asnow, asnowThreshold

Frozen(F/T 5 21) if

Teff ,Teff_Threshold or asnow$ asnowThreshold.

(3)

The effective temperature that determines the transition

between frozen and thawed conditions isTeff_Threshold 5 08C.

The snow cover threshold value asnowThreshold de-

termines the maximum modeled snow cover fraction

that is still compatible with a thawed condition. The

penetration depth at C band (5.6GHz) can be as large

as several meters in dry snow conditions (Bingham and

Drinkwater 2000; Dall et al. 2001) and is likely even

larger at L band (1.27GHz; Rignot et al. 2001). For wet

snow, however, the penetration depth of microwaves

is drastically reduced to a few centimeters or less

(Mätzler and Schanda 1984). The value for asnowThreshold

is fixed at 10% in this study and depends on the micro-

wave frequency and the associated penetration depth

through snow.

4. F/T data assimilation module (F/T analysis)

The assimilation of F/T observations is conceptually

similar to the assimilation of snow cover observations.

In both cases, the observed variable is, at least at the

satellite footprint scale, essentially a binary observa-

tion. [Note that the daily SMAP F/T product provides

categorical information including frozen, thawed,

transitional, and inverse transitional F/T states, with

the latter two occurring when the F/T observations

for the morning and evening overpasses indicate op-

posing conditions (McDonald et al. 2012)]. Binary ob-

servations cannot be assimilated with a Kalman filter,

because this requires continuous variables. For the

assimilation of F/T observations, we propose a rule-

based assimilation approach, similar to the rule-based

assimilation of binary snow cover observations (Rodell

and Houser 2004). In short, if the model forecast and

FIG. 1. Schematic representation of the model diagnosis of the

land surface F/T state as a function of effective temperature and the

snow cover fraction.
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the corresponding SMAP observations disagree on

the F/T state, that is, if the model indicates frozen

conditions and observation indicates thawed condi-

tions (or vice versa), the model prognostic variables

related to the soil temperature and the snow-free sur-

face temperature are adjusted to match the observed

F/T condition more closely. To account for model and

observation errors, the delineation between frozen and

thawed regimes is defined with some uncertainty in

the assimilation algorithm, as will be detailed below

(section 4a).

a. Uncertainty in F/T simulations and observations

The perhaps simplest F/T analysis could use the ob-

servation operator defined in Eq. (3) to determine the

F/T state of the model forecast and then apply in-

crements to switch the model’s F/T state whenever the

model’s F/T state differs from that of the observations.

However, such an analysis would ignore any un-

certainty (representativeness error) associated with the

formulation of the observation operator [Eq. (3)]. It

would also ignore any errors in the observations

themselves.

For the purpose of the F/T analysis, we therefore

refine the observation operator by introducing a regime

of undetermined F/T status, which is defined by upper

and lower bounds for the effective temperature and

snow cover thresholds, as illustrated in Fig. 2. Specifi-

cally, the model F/T state for the purpose of the F/T

analysis is

Completely Thawed(F/T 5 1) if

Teff .UBT
eff

and asnow,LBasnow

Completely Frozen(F/T 5 21) if

Teff ,LBT
eff

or asnow.UBasnow

Undetermined(F/T 5 0) otherwise. (4)

In this study, UBTeff
and LBTeff

are fixed at 18C and

218C, and LBasnow is set to 5%. A value of 100% was

chosen forUBasnow. This assigns an ‘‘undetermined’’ F/T

regime to situations with considerable snow cover on

soil that is thawed or close to thawing. Under these

circumstances, it is difficult to determine whether the

model F/T state should be thawed or frozen in a manner

that would be fully consistent with the retrieval algo-

rithm that was used to determine the value of the F/T

observation.

The ‘‘undetermined’’ regime impacts the computa-

tion of the increments in two ways. First, if the model

forecast F/T state is ‘‘undetermined,’’ no increments

will be applied. With increasingly uncertain forecast

or retrieval F/T estimates, the undetermined regime

should expand and fewer observations will impact the

data assimilation results. Second, the upper and lower

bounds for the effective temperature threshold

(UBTeff
; LBTeff

) will be used to formulate the rule-

based increments that result from the F/T analysis

(section 4b). In either case, the ‘‘undetermined’’ re-

gime implicitly assigns weight to the model forecast

in the analysis update and thus assumes imperfect

observations.

b. Update rules

The assimilation of F/T observations is based

on a number of rules. No updates are performed

(i) if both the model and the observations agree

on the F/T state or (ii) if the model F/T state is un-

determined per Eq. (4). When the observations

and simulations indicate a contrasting F/T state, then

the model prognostic variables associated with Teff

are updated (i.e., TC1
, TC2

, TC4
, and ght; section 3).

Specifically, if the observations indicate a thawed

condition (F/T 5 1) whereas the model is in a frozen

regime, then Teff is increased to LBTeff
. Conversely,

if the observations indicate freezing (F/T 5 21)

and the model is in a thawed regime, then Teff is de-

creased to UBTeff
. The updates can be summarized

as follows:

T1
eff 5T2

eff 1DT , (5)

FIG. 2. Schematic representation of three distinct F/T state re-

gimes defined by upper and lower uncertainty bounds on the ef-

fective temperature and snow cover thresholds for the purpose of

the F/T analysis. The upper bound for the snow cover threshold is

set to UBasnow 5 100%.
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where

DT5min(UBT
eff
2T2

eff, 0)# 0 if

obs(F/T)521,model(F/T)511,

DT5max(LBT
eff
2T2

eff, 0)$ 0 if

obs(F/T)511,model(F/T)521, and

DT5 0 otherwise.

In this equation, T2
eff represents the priori estimate and

T1
eff represents the analysis. The same increment DT is

applied to the prognostic temperature variables TC1
, TC2

,

and TC4
(the weighted average of which determines

Tno snow
surf ) and the soil temperatureTsoil. For the latter, the

ght (the model prognostic variable that determines the

soil temperature) is adjusted accordingly to match

the updated soil temperature T1
soil. Note that the updates

to TC1
, TC2

, and TC4
also adjust Tsurf following Eq. (1). In

this study, we are only updating the surface temperature

and the soil temperature (and ground heat content) of the

topmost soil layer. For future studies, updating the tem-

perature of lower soil layers can also be considered.

The update rules [Eq. (5)] intentionally do not ad-

just the snow variables directly. As mentioned in sec-

tion 4a, UBasnow 5 100% has been selected to avoid

uncertainties related to the role of snow in determining

the F/T state. This choice is supported by several ex-

periments that were performed with smaller threshold

values for UBasnow and in which a portion of the snow

was removed if the observed F/T state indicated thawed

conditions. These additional experiments (not shown)

indicated that (error prone) F/T observations sometimes

mistakenly removed the model snow, which resulted in

large subsequent forecast errors. It is difficult to recover

from such errors, because once themodel snow has been

removed, the missing snow cannot easily be redeposited

at future analysis times because of the lack of quanti-

tative information about snow mass in the F/T obser-

vations. Consequently, in the following, the snow

prognostic variables are not adjusted as part of the F/T

analysis update. Nevertheless, at later time steps the

model’s snow conditions will respond to the adjusted soil

temperatures and corresponding updated hydrological

fluxes.

5. Synthetic twin experiment

The twin experiment consists of several components.

A Catchment land surface model integration serves as

the ‘‘truth’’ and is used (i) to generate synthetic F/T

observations and (ii) to validate the analysis results. The

data assimilation experiment is performed with imper-

fect simulations and observations. The synthetic ob-

served F/T state is obtained by adding classification

error CE to the true F/T state (section 5b). The imper-

fect Catchment land surface model integration is pro-

duced with a different forcing dataset to mimic forcing

errors. This imperfect model simulation without data

assimilation is referred to as the open loop (OL; see

discussion in section 5b). The F/T analysis is performed

by assimilating the synthetic F/T observations into the

imperfect model simulation using erroneous forcing

data and is referred to as the data assimilation (DA)

integration. The OL and DA results are compared

against the truth and the relative importance of assimi-

lating observed F/T data is investigated (section 6).

a. Study domain and time period

The study domain is a region in North America be-

tween 458 and 558N and 908 and 1108W (Fig. 3). The

simulations are performed on a 36-km Equal-Area

Scalable Earth Grid (EASE-Grid), covering 1137 grid

cells in the study domain. The Catchment model in-

tegration is conducted using the GEOS-5 land data as-

similation system (Reichle et al. 2014) with a time step of

20min. The selected period of investigation is 8 years

(from 1 January 2002 to 1 January 2010), and the tem-

poral resolution of the model output is 3 hourly. The

model was spun up by cycling 10 times through the 1-yr

period from 1 January 2001 to 1 January 2002.

b. Synthetic truth, synthetic observations, and open
loop

The synthetic truth is based on a Catchment model

simulation that uses surface meteorological forcing data

from the Modern-Era Retrospective Analysis for Re-

search andApplications (MERRA;Rienecker et al. 2011).

The MERRA data product is provided at an hourly tem-

poral resolution and a 1/28 3 2/38 (latitude–longitude)

FIG. 3. Map of study domain.
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spatial resolution. The resulting 8 years of synthetic true

hydrological state variables and fluxes are used for the

validation of the F/T analysis (DA). The synthetic true

F/T state is obtained by applying the observation oper-

ator [Eq. (3)] using a 5 0.5, asnowThreshold 5 10%, and

Teff_Threshold 5 08C.
The synthetic observed F/T indices are obtained by

corrupting the true F/T dataset with spatially un-

correlated synthetic classification error. Specifically, the

classification error is defined by the probability of mis-

classification. The SMAP mission requirements call for

an F/T product with no more than 20% mean spatial

classification error (McDonald et al. 2012). Here, we

assume that the classification error is greatest near 08C,
where it reaches CEmax, linearly tapers off toward colder

and warmer temperatures, and vanishes below2108 and
above1108C. That is, this physically based classification

error model is given by the following piecewise linear

function of the land surface temperature:

CE5

8>>>>>>><
>>>>>>>:

CEmax

Tsurf 110

10
2108#Tsurf # 08C

CEmax

102Tsurf

10
08#Tsurf # 108C

0 Tsurf . 108 or Tsurf ,2108C.

(6)

This parameterization of the classification error is il-

lustrated in Fig. 4.

The synthetic F/T observations are generated at each

time and for each location (or grid cell) by obtaining the

probability of misclassification based on the land surface

temperature from Eq. (6). We then randomly select

a number from a uniform distribution between 0 and 1.

If the selected random number is less than the specified

classification error for that land surface temperature,

then the observed F/T index is obtained by changing the

sign of true F/T classification. Otherwise, the observed

F/T index is equal to the true F/T state. The sensitivity of

the data assimilation experiments to different levels of

observation classification errors will be investigated

below.

The open-loop dataset is obtained from an integration

of the Catchment model with forcing data that differ

from those used for the truth. Forcing errors were im-

posed by replacing the MERRA surface meteorological

forcing fields with data from the Global Land Data

Assimilation System (GLDAS; Rodell et al. 2004) as

used in a former version of the NASA GMAO seasonal

prediction system at 3-hourly temporal resolution and at

2.08 3 2.58 (latitude–longitude) spatial resolution. The
hydrological response associated with the differences

between MERRA and GLDAS in precipitation and

radiation timing and intensity results in considerable

differences in the diagnosed F/T state at the grid scale.

c. F/T assimilation setup

The F/T assimilation experiment uses the same model

settings as described for the open-loop model, that is, it

uses GLDAS forcings to mimic forcing errors relative to

the MERRA truth. No additional perturbations are

imposed and a single deterministic integration is per-

formed for a period of 8 years (from 1 January 2002 to 1

January 2010). In this study, the synthetic observed F/T

index is assimilated into the imperfect model integration

at 0600 and 1800 local time (LT; F/T analysis update).

The proposed assimilation time steps are compatible

with the planned overpass times of SMAP.

The various tunable parameters in the diagnosis of the

(uncertain) F/T state and the update rules are as follows.

The parameter a [which determines the weight of the

components of the effective temperature; Eq. (2)] is set

to 0.5 for the generation of F/T observations. This pa-

rameter is tunable and the sensitivity of data assimila-

tion experiments to this parameter in the observation

operator [Eq. (3)] will be explored in section 6b. The

values for the lower and upper bounds on the snow

cover threshold (LBasnow; UBasnow) are 5% and 100%,

respectively. The uncertainty range for asnow accounts

for the combined uncertainty associated with the di-

agnosis of the modeled F/T state and the classification of

the F/T observations in the presence of snow. To account

for the uncertainty of the 08C threshold value across dif-

ferent landscape elements within the satellite field of view,

the upper and lower bounds for the effective temperature

thresholds are 118 and 218C, respectively. This range in

the Teff_Threshold also accounts for variability (or subgrid

heterogeneity) in a number of factors, including soil ex-

posure (vegetation cover), topography, mineral/organic

FIG. 4. Classification error function.
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layer characteristics, and water solute concentration. The

F/T analysis may benefit from adjusting these uncertainty

bounds in response to the F/T classification error in the

synthetic observations or in the model F/T state, but in

the present paper we keep the bounds fixed.

d. Validation of temperature estimates

By design, the analysis update [Eq. (5)] does not alter

the F/T state of the model forecast, but the update rules

will alter the temperature variables whenever the model

forecast F/T state differs from the observed F/T index. It

is expected that the differences in surface and soil tem-

peratures (with respect to the truth) are smaller in the

assimilation estimates than in the open-loop estimates.

We therefore focus the validation on the computation of

root-mean-square errors (RMSEs) of surface and soil

temperatures versus the truth dataset.

The F/T data assimilation is expected to be most rel-

evant when temperatures are near 08C because it is

straightforward to estimate the F/T state accurately

during clearly warm or cold conditions.We thus limit the

validation to time steps where the air temperature is

above 278 and below 178C (as indicated by the

MERRA surface air temperatures). Furthermore, we

restrict the validation to 0600 and 1800 LT only, com-

patible with the time of the SMAP overpasses.

6. Results and discussion

a. OL and DA with standard settings

To assess the impact of the imperfect forcing on the

diagnosis of the F/T state without data assimilation, we

first examine the OL results. As mentioned in section 5,

theOL utilizes GLDAS forcings and the ‘‘truth’’ utilizes

MERRA forcings. When compared to the truth, the OL

has an F/T classification error of 4.85% (Table 1). The

table also shows that theRMSE value for theOL surface

temperature is 3.088C and that of the first soil layer

temperature is 1.978C.
Again, by design the F/T analysis update does not

alter the F/T state of the model forecast, and conse-

quently the F/T classification error of the assimilation

estimates is nearly the same as that of the OL. But

through the assimilation of the F/T observations, we

hope to reduce the OL temperature errors. The F/T

analysis involves adjusting the land surface effective

temperature, and subsequently Tno snow
surf and Tsoil, if the

observed and simulated F/T states do not agree. Table 2

summarizes the reduction in RMSE (DRMSE 5
RMSEOL 2 RMSEDA) by assimilating synthetic F/T

observations with four different levels of classification

error (CEmax), and assuming default values for the

tunable parameters, as introduced in section 5c.

Assimilating observed F/T indices without classifica-

tion error results in an RMSE improvement of 0.2068C
for the land surface temperature and an RMSE im-

provement of 0.0618C for the first layer soil temperature.

When compared to the OL results for these two vari-

ables, the F/T analysis results in relative RMSE im-

provements of 6.7% and 3.1% for Tsurf and Tsoil,

respectively. The skill improvement decreases mono-

tonically with increasing classification error in the ob-

servations. For a CEmax 5 20% the assimilation of F/T

observations still reduces the surface temperature

RMSE by 0.1498C, but it no longer improves the soil

temperature estimates.

Figure 5 shows theTsurf andTsoil skill improvements in

the study domain for the assimilation of F/T observa-

tions with CEmax5 0%, 5%, and 20%. Figures 5a and 5b

show that as a result of assimilating perfect F/T obser-

vations, the skill of Tsurf and Tsoil improves for almost all

grid cells within the study domain. However, the effi-

ciency of the F/T analysis deteriorates as the classifica-

tion error is increased (Figs. 5c–d). For CEmax 5 20%,

many grid cells in the study domain have negative or no

improvement in Tsoil skill. As mentioned above, the F/T

analysis may benefit from adjusting the uncertainty

bounds in response to the classification error of the

synthetic F/T observations, but the above results in-

dicate that using a single set of uncertainty bounds al-

ready provides reasonable assimilation estimates.

Figure 6 shows the skill improvement for each grid cell

binned as a function of the number of analysis updates

per grid cell (i.e., the skill improvement is spatially av-

eraged across grid cells experiencing a similar number of

analysis updates in time within the study domain). The

TABLE 1. Metrics for OL vs truth estimates for a period of

8 years (2002–10) and at 0600 and 1800 LT. The RMSE for Tsurf

and Tair is computed excluding times and locations where Tair .
78C or Tair , 278C.

Variables Metric Value

Tsurf RMSE 3.088C
Tsoil RMSE 1.978C
F/T Classification error 4.85%

TABLE 2. RMSE improvement (DRMSE 5 RMSEOL 2
RMSEDA; 8C) for Tsurf and Tsoil, for different CEmax, excluding

times and locations whereTair . 78C orTair ,278C, for a period of
8 years (2002–10) and at 0600 and 1800 LT.

CEmax

DRMSE 0% 5% 10% 20%

Tsurf (8C) 0.206 0.192 0.178 0.149

Tsoil (8C) 0.061 0.049 0.036 0.006
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data points are assigned to six bins with equal numbers of

grid cells. Each bin center is assigned the average number

of analysis updates for the grid cells in that particular bin.

When more error-free observations (Figs. 6a,b) or obser-

vations with modest classification errors (Figs. 6c,d) are

assimilated, the average skill improves with the number of

analysis updates for both the temperatures, Tsurf and Tsoil.

However, as the maximum classification error is increased

to 20% (Figs. 6e,f), the average skill in the temperature

variables does not improve with the number of analyses.

This is due to the negative effect of assimilating mis-

classified observed F/T indices into the model.

FIG. 5. The DRMSE (5 RMSEOL 2 RMSEDA) in (left) Tsurf and (right) Tsoil across the study domain for

assimilation of synthetic F/T observations with CEmax of (a),(b) 0%; (c),(d) 5%; and (e),(f) 20%. A positive

DRMSE indicates a skill improvement in the assimilation results. Lakes are shown in white. See Fig. 3 for a map of

the study domain.

738 JOURNAL OF HYDROMETEOROLOGY VOLUME 16



b. Sensitivity of assimilation results to the formulation
of the effective temperature

The effective temperature, which is an important

variable in diagnosing the F/T state, is a weighted av-

erage of the surface temperature in the absence of snow

and the soil temperature [Eq. (2)]. The weight should

be a function of the microwave penetration depth. An

increase (decrease) in penetration depth results in a de-

crease (increase) in parameter a and hence an increase

(decrease) in the weight of the soil temperature

component of effective temperature. In this study, the

FIG. 6. Spatially averagedDRMSE for (left)Tsurf and (right)Tsoil with one spatial std dev around themean as a function

of the number of analysis updates for the assimilation of synthetic F/T observations with CEmax of (a),(b) 0%; (c),(d) 5%;

and (e),(f) 20%. A positive DRMSE indicates a skill improvement in the assimilation results.
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synthetic true F/T state was obtained based on the as-

sumption that the parameter a equals 0.5. Thus, Tno snow
surf

and Tsoil have similar weights in determining the effec-

tive temperature and thus the F/T state of the soil.

However, when determining the F/T index from (real)

remote sensing observations, the relative effect of Tno snow
surf

and Tsoil in those observations is not known a priori. Here,

we investigate the sensitivity of theDAperformance to the

choice of this factor in the observation operator. A phys-

ically meaningful range of a between 0.25 and 1 was se-

lected. This means that the weight of soil temperatureTsoil

ranges between 0.75 and 0 in the model.

The sensitivity of the assimilation results to the value of

a in the forecast F/T state is illustrated Fig. 7. The skill

improvements (DRMSE) are shown for the case where no

classification error (CEmax 5 0%) is associated with the

assimilated F/T indices. As expected, the maximum skill

improvement for both Tsurf and Tsoil occurs when the pa-

rametera is 0.5, that is, when thea value that is used in the

observation operator of the assimilation system matches

the a value that was used to generate the synthetic F/T

observations. The figure shows that the sensitivity of Tsurf

to the parameter a seems to be higher than that of Tsoil.

The skill of Tsurf is reduced by up to 50% when a is not

selected correctly, while the skill is reduced by at most 8%

for Tsoil. It is thus important to understand how different

land surface variables contribute to the observed F/T and

to mimic this relationship adequately in the F/T observa-

tion operator used in the data assimilation scheme.

7. Conclusions

In this study an algorithm for the diagnosis of the F/T

state in the NASA Catchment land surface model was

developed. The algorithm is compatible with the in-

formation contained in remotely sensed retrievals of

landscape F/T state at different microwave frequencies.

The GEOS-5 land data assimilation system in offline

mode was updated with the newly designed F/T assim-

ilation module. The ultimate goal of this research is to

provide a framework for the assimilation of SMAP F/T

observations into the Catchment model.

The performance of the method for a synthetic ex-

periment showed encouraging improvements in the skill

of soil temperature and land surface temperature esti-

mates. However, the average skill improvement de-

pends on the classification error in the F/T observations.

In our synthetic study, the open-loop simulation has

a modeled F/T classification error of 4.85% error com-

pared to the truth. When assimilating perfect (error

free) F/T observations, the RMSE for land surface

temperature (Tsurf) and soil temperature (Tsoil) im-

proves by 6.7% and 3.1%, respectively. Yet, the skill

improvement decreases monotonically with increasing

classification error in the assimilated F/T observations.

No more improvements in soil temperature were found

withmaximum classification errors of CEmax5 20% and

fixed uncertainty bounds on the snow cover threshold

and effective temperature. The assimilation estimates

can perhaps be improved further by adjusting the un-

certainty bounds in the rule-based update. For example,

increased uncertainty bounds will prevent adverse ef-

fects from assimilating retrievals with increased classi-

fication errors. However, refinements of the algorithm

calibration are left for future work.

The results also discuss the sensitivity of the data as-

similation (DA) to the a parameter in the observation

operator. This parameter controls the relative contribution

FIG. 7. The DRMSE for (a) Tsurf and (b) Tsoil as a function of the a parameter chosen in the observation operator.

A positive DRMSE indicates a skill improvement in the assimilation results.
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of the snow-free surface temperature and the top-layer

soil temperature to the F/T state in the modeling system

and impacts the temperature increments applied during

the F/T analysis. The maximum skill improvement can

only be expected if the observation operator in the

modeling system closely mimics the relative importance

of various landscape components, including the surface

and soil temperatures, in the determination of the sat-

ellite F/T observations. Therefore, the observation op-

erator could also benefit from further tuning to improve

the linkage between the modeled snow cover and the

expected F/T index retrieved from themicrowave signal.

Moreover, the limitations of the present study could

perhaps be overcome in the future by directly assimi-

lating backscatter or brightness temperature observa-

tions (instead of F/T retrievals).

The regional domain of the experiment investigated in

this research represents a relatively flat terrain area of

central North America. In this region, the model with-

out assimilation (open loop) produced an F/T classifi-

cation error of only 4.85%. This modeling error is

a direct result of the assumption that all F/T classifica-

tion errors are solely due to errors in the forcing data (as

reflected in the difference between the GLDAS and

MERRA data). When the F/T assimilation method is

applied with high-resolution satellite observations (in-

stead of synthetic retrievals), we expect relatively larger

errors in the simulated F/T state, especially over regions

with more complex topography (e.g., regions in western

North America) where global forcing fields do not re-

solve the considerable heterogeneity of the surface

conditions. The benefit of assimilating high-resolution

(3 km) SMAP F/T retrievals is therefore expected to be

greater for specific applications such as improving the

simulation of ecohydrological processes. Additional

benefits might be derived from combining the F/T

analysis presented here with established data assimila-

tion algorithms that use satellite observations of land

surface temperature, snow cover, or snow water equiv-

alent (e.g., Reichle et al. 2010; De Lannoy et al. 2012).
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