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ABSTRACT

Extrememonsoon rainfall in India has disastrous consequences, including significant socioeconomic impacts.

However, little is known about the overall trends and climate factors associated with extreme rainfall because

rainfall greatly varies across India and because few appropriate methods are available to measure extreme

rainfall in the context of such heterogeneity. To provide a comprehensive assessment of extreme monsoon

rainfall, the authors developed a metric using record rainfall data to measure the changes in the likelihood of

extreme high and extreme low rainfall over time; this metric is independent of the characteristics of the un-

derlying rainfall distributions. Hence, the metric is ideally suited to aggregate extreme rainfall information

across heterogeneous regions covering India. The authors found that from 1930 to 2013, the likelihood of

extreme high and extreme low rainfall increases 2-fold and 4-fold, respectively. These overall trend increases are

driven by anomalous increases, particularly in the early 2000s; the likelihood of extreme high and extreme low

rainfall increases 5-fold and 18-fold in 2005 and 2002, respectively. These findings imply a broadening of the

underlying monsoon rainfall distribution over the past century. The authors also show that the time patterns of

the likelihood of extreme rainfall in recent decades are correlated with ElNiño–SouthernOscillation, especially

when it is in the same phase with the Pacific decadal oscillation and Indian Ocean dipole.

1. Introduction

Extreme high and extreme low rainfall, particularly in

India during the monsoon season (June–September), can

result inmajor catastrophes, such as soil erosion (Martinez-

Casasnovas et al. 2002), flash floods (Guhathakurta et al.

2011), flood-damaged crops (Gadgil andKurma 2006), and

droughts (Kumar et al. 2013). Therefore, understanding the

changes in extreme rainfall events across India is important

for developing better disaster management and mitigation

policies.

Several studies have examined extreme rainfall events

in India (Goswami et al. 2006; Ajayamohan and Rao

2008; Rajeevan et al. 2008; Ghosh et al. 2009, 2012;

Krishnamurthy et al. 2009). The methodology used in

these studies is based on the frequency of rainfall ex-

ceeding a threshold value.We refer to this framework as

the fixed threshold method. Although this approach has

intuitive appeal, the fixed thresholdmethod has inherent

limitations that prevent a comprehensive assessment of

extreme rainfall across India. First, the choice of

a threshold value is ad hoc because it depends on the

empirics of the underlying rainfall distribution. Second,

the study of changes at the very extremes of a distribu-

tion is hindered by the fact that, at high threshold values,

the observations that exceed the threshold may result in

small sample size issues. Third, the most severe limita-

tion, in our view, is that this approach is applicable only

to regions that have homogeneous rainfall. Hence, this

fixed threshold method is not well suited to synthesize

changes in extreme rainfall throughout India, where

vastly different regional rainfall distributions occur.

Note that the regional heterogeneity in Indian monsoon

rainfall is the primary obstacle in assessing the overall

trends in the monsoon rainfall (Ghosh et al. 2009, 2012;

Krishnamurthy et al. 2009), and this heterogeneity has
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become more pronounced in recent years (Ghosh et al.

2012). However, as noted inGoswami et al. (2006), using

a fixed threshold to define extreme rainfall events is

justified only if the area it covers is reasonably homo-

geneous. Otherwise, extreme rainfall in one region may

be considered ‘‘normal’’ in another region. Therefore,

this approach inevitably restricts the scope of the anal-

ysis to central India, where the rainfall distribution is

assumed to be fairly uniform. As a consequence, the

behavior of extreme rainfall throughout India is not well

understood.

In principle, this fixed threshold method can be

adapted to analyze heterogeneous rainfall regions by

defining different (and possibly time-varying) thresholds

to accommodate the differences in rainfall distributions

across regions. By assessing the changes in the aggregate

count of rainfall events that exceed these various

threshold values, an overall measure of changes in ex-

tremes can be obtained. However, implementing this

concept is not feasible given the amount of information

that would be needed on the specifics of rainfall distri-

butions in each region to select comparable thresholds.

The method we propose is essentially a generalization

of the concept that ascribes a rainfall distribution to each

region. Themajor difference is that our method does not

require any information on the specifics of the un-

derlying distributions to aggregate extreme outcomes

across diverse regions. More specifically, our metric is

exclusively based on record rainfall indicators that are

independent of the underlying distribution. As a conse-

quence, this approach is ideally suited to study extreme

rainfall behavior across heterogeneous regions, such as

India.

Using the empirical frequency of record observations

to infer changes in the underlying distribution is certainly

not new (Yang 1975), and this concept has been applied

in climate science (Benestad 2003;Meehl et al. 2009). The

aim of these applications is to exploit the difference be-

tween the predicted (assuming stationarity) and the ob-

served likelihood of a record to determine changes in the

underlying distributions. However, these analyses have

been solely limited to the characterization of record

events. In our study, we advance this methodological

framework, whereby we use record information to infer

the likelihood of extreme events.

Our method also complements extreme value theory

(EVT), which is a widely known approach for charac-

terizing changes in the tails of distributions. EVT has

been applied extensively to measure climate extremes

(Zwiers and Kharin 1998; Min et al. 2011). However, the

estimation procedures based on EVT are also based on

events that exceed a preselected threshold. Therefore, in

the context of heterogeneous rainfall distributions, as is

the case of India, the same issues of ‘‘standardizing’’

thresholds across regions arise (Min et al. 2011).

A further contribution of this study is an analysis of ex-

treme low rainfall. Previous research has largely neglected

Indian monsoon droughts, even though droughts can be as

economically important as extreme high rainfall, particu-

larly because of their adverse effects on agricultural pro-

ductivity (Kumar et al. 2013). In this study, we provide

a detailed analysis of the changes in the likelihood of ex-

treme low rainfall across India.

Given that our method allows us to compute an ag-

gregate measure of the likelihood of an extreme high

and an extreme low rainfall for the entirety of India, we

assess the statistical correlation between these likeli-

hoods and various climate factors that are known to be

related to monsoon rainfall, such as El Niño and the
Indian Ocean dipole. Although numerous studies ex-
amined the correlation using mean monsoon rainfall, no
studies have associated the climate factors with extreme
monsoon rainfall over India. An exception is the study
by Ajayamohan and Rao (2008), in which the relation-

ship between extreme daily rainfall in central India and

the Indian Ocean dipole mode was examined. Hence,

we address this gap in the literature by analyzing the

statistical correlation between related climate factors

and the likelihood of extreme rainfall.

The remainder of the paper is organized as follows. In

section 2, we present the data description, the basic

theory, the derivation of our metric, and the estimation

framework. In the theory subsection, we illustrate the

construction of our metric with a simple example to

clarify the logic behind our approach. Section 3 presents

our main results on the changes in the likelihood of

extreme high and extreme low rainfall across India.

Section 4 discusses the results from our correlation

analyses between the likelihood of extreme rainfall and

climate factors related to monsoon rainfall. Section 5

concludes with a brief summary and a further discussion.

2. Data and methods

a. Data

We use gridded monsoon [June–September (JJAS)]

rainfall data with a 0.258 3 0.258 resolution for 1901–

2013 based on rainfall gauge stations in India. The

original station data and construction of the grid points

are discussed in Pai et al. (2014). The gridded data points

are based on daily rainfall data from a total of 6995

rainfall stations over India; the data are interpolated by

an inverse distance-weighted scheme to create grid

points. As a result, our panel consists of 4964 evenly

spaced grids spanning the entirety of India. An average

1 APRIL 2015 JUN ET AL . 2843



of 2600 stations per year is used to create the daily grid

points; note that the number of stations per year is not

constant. Because the original data are recorded daily,

we sum them over amonth and then construct a monthly

time series [section 2b(6)].

We also attempt to measure the statistical correlation

between the likelihood of extreme rainfall and climate

factors that are potentially associated with monsoon

rainfall. Among the oceanic factors, we use El Niño–
Southern Oscillation (ENSO), the Indian Ocean dipole

(IOD), IndianOcean surface temperature (IOSST), and

the Pacific decadal oscillation (PDO). The following is

the list of data sources:

d ENSO: ENSO is represented by the mean Niño-3
index from June to September during 1901–2013 and is
based on the HadISST1 dataset (Rayner et al. 2003).

d IOD: The IODduring 1901–2013 is the anomalous SST

gradient between the western equatorial Indian Ocean

(108S–108N, 508–708E) and the southeastern equatorial

Indian Ocean (108S–08, 908–1108E) and is based on the

Hadley Centre Sea Surface Temperature dataset, ver-

sion 3.1 (HadSST 3.1.0.0; Kennedy et al. 2011a,b).
d IOSST: The area-weighted mean sea surface tempera-

ture (SST) of the tropical Indian Ocean during1901–

2013 is computed for the region of 248S–248N, 408–1208E
and is based onHadSST3.1.0.0 (Kennedy et al. 2011a,b).

d PDO: The PDO index during 1901–2013 is derived from

the leading principal component of monthly SST anom-

alies in the North Pacific Ocean (poleward of 208N)

(Mantua et al. 1997). The PDO time series is available

from the Joint Institute for the Study of theAtmosphere

and Ocean at the University of Washington.

Note that the dominant variability in the Indian Ocean

is from ENSO, which accounts for 37% of the Indian

Ocean variability (Saji et al. 1999). Therefore, the vari-

ability in the IOSST and in IOD are partly contributed by

ENSO. We remove the ENSO signal embedded in the

IOSST and IOD by using regression techniques from

Clark et al. (2000).

Among the atmospheric factors, we consider snow

cover extent (SCE) over Eurasia, the North Atlantic

Oscillation (NAO), and the Northern Hemisphere sur-

face air temperature (NH temperature). The gridded

SCE data are from the Northern Hemisphere SCE

version 1 by the Rutgers Global Snow Laboratory. The

SCE data cover the period from October 1966 to June

2014. In addition to snow cover, theNAO in thewinter is

used to represent atmospheric variability in the pre-

monsoon season. The NAO index from 1901 to 2013 is

the time series of the leading empirical orthogonal

function (EOF) of sea level pressure anomalies over the

Atlantic region defined by the following coordinates:

208–808N, 908W–408E (Hurrell 1995). The surface air

temperature in the Northern Hemisphere is based on

the NASA GISS surface temperature dataset (Hansen

et al. 2010).

b. Methods

1) SIMPLE ILLUSTRATION

Before we fully develop our metric, we present

a simple example to illustrate the method. We focus on

exploiting the record rainfall information to infer

changes in the tails of the underlying distribution,

without relying on information about the distribution.

Statistically, the monsoon rainfall system is governed

by some underlying distribution, and each observed

rainfall is a random draw (or sample) from this distri-

bution.We define a rainfall observation from a station as

a record high (low) if it is highest (lowest) among all

previous observations at the same station (and the same

month). Suppose that there are a large number of sta-

tions reporting rainfall in each time period. The basics of

record theory (Rényi 1962) imply that, if the underlying

rainfall distribution is time invariant [i.e., independent

and identically distributed (i.i.d.)], then the likelihood of

a record high in a given time period is simply the inverse

of the elapsed time periods over which the records are

kept. More simply, the likelihood of a record high in the

second period is 1/2, because two draws (over two pe-

riods) are sampled from the same distribution; thus, for

every two draws, each draw is equally likely to be higher

than the other draw. By the same argument, the likeli-

hood of observing a record high in the third period is 1/3.

The actual pattern of rainfall records may not match

this pattern predicted by a stationary distribution. The

discrepancy between the predicted (assuming statio-

narity) and the observed frequency of a record implies

a change in the underlying distribution. The technical

challenge is how to measure a shift in the underlying

distribution that would be consistent with this discrep-

ancy. Our solution is to estimate an implied sampling

rate, what we call record equivalent draws (RED), from

the same distribution that would match the empirical

frequency of the records. Hypothetically, we pretend to

sample more (or less) random draws from the same

original distribution until the predicted record high rate

equals the higher (or lower) observed record high rate.

For example, under the stationary distribution, it is

expected that one-half of the stations will report a re-

cord high in the second period. In contrast, suppose 75%

of the stations actually report a record high rainfall. To

explain this difference between the predicted and the

observed frequency of the record high, consider the

following hypothetical scenario: the observed rainfall in
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the first period was from a single draw from the rainfall

distribution, whereas the observed rainfall at each sta-

tion in the second period was the maximum of three

independent draws from an identical rainfall distribu-

tion. Because each of the four draws (one from the first

period and three from the second period) is equally

probable to be the highest, the likelihood of observing

a record high in the second period is 3/4.

In the third period, suppose 50% of the stations report

record highs. Given that the total draws in the first two

periods add up to four, an equal number of hypothetical

draws in the third period are required to predict that

50% of the stations will report a record high in the third

period. Therefore, the estimated sequence of RED for

the first three periods is 1, 3, and 4. By proceeding sim-

ilarly for the later time periods, the number of hypo-

thetical draws for each year can be computed by

exploiting the difference between the predicted and the

observed likelihood of the record highs. The same con-

struction applies to the number of draws based on record

lows. This is the number we refer to as RED. We show

that RED is a proxy for the likelihood of extreme events

[section 2b(5)].

Note that the above procedure presupposes that the

data are balanced (i.e., all the time series data cover the

same time period without any missing information).

Therefore, in the case of balanced data, we only need the

empirical frequency of records in each time period to

compute RED. Hence, the implementation of our

method is both intuitive and computationally similar to

the fixed threshold approach. If the underlying data are

unbalanced, then the computation of RED is more

complicated becausewe need to usemaximum likelihood

techniques. We detail this procedure in section 2b(4).

2) RECORD THEORY

Before we present our multiple-draw framework, we

start with the classic single-draw framework that implies

a stationary rainfall distribution. Specifically, let k de-

note a composite index formonth i and grid j. For each k,

a single rainfall observation is randomly drawn from

a continuous and strictly increasing rainfall distribution

function Fk(�) in each year t 5 1, 2, . . . , T. Let fxkt g
denote a sequence of such rainfall draws that are in-

dependent random variables for each k. We call a rain-

fall observation a ‘‘record high’’ at time t if it is the

highest rainfall among all previous t 2 1 number of

observations. We similarly define a record low using this

method. The rainfall at time 1 is trivially a high or low

record. Under our assumptions, it is inconsequential

whether we refer to record highs or record lows

(Chandler 1952); hence, we only refer to record high

rainfalls in the following discussion (i.e., simply

‘‘record’’). To formally define a record, we first denote

Vk
r as the rth time for the record high in k and define it

inductively as follows:

Vk
r 5min(t j t.Vk

r21, x
k
t . xkVk

r21
), where Vk

1 5 1.

The variable ekt is the record high indicator in year t for k,

and it is defined as follows: ekt 5 1 if for some r, Vk
r 5 t;

otherwise, ekt 5 0.

The key result (Rényi 1962) is as follows: under the i.i.d.
assumption of the rainfall distribution, the record in-

dicators ek2, e
k
3 , . . . are independent Bernoulli variables

with the following probability:

P(ekt 51)5 1/t . (1)

A new record is set at time t if and only if the obser-

vation at time t is the maximum of the first t re-

alizations. Because each rainfall observation is drawn

from the same stationary distribution, each realization

has the identical probability of being the maximum.

This probability is independent of the underlying

rainfall distribution, and it does not depend on the

specifics of the distribution.

This nonparametric nature of record processes is key

for synthesizing record monsoon rainfall observations

from different geographic regions. Hence, one station

may be located in the hot and dry zone in central India,

and a second station may be in a warm and humid zone

along the coast. Therefore, we drop the index k from the

definitions of the distribution and record indicators and

simply denote them as F(�) and et.

3) CONSTRUCTION OF RED

Here, we introduce time-varying multiple draws to

drop the i.i.d. assumption and incorporate changes in the

underlying distribution. Let Ft(�) denote the rainfall dis-

tribution at time t such that it is now time dependent.

Suppose that for s . t, Fs(�)represents a ‘‘wetter’’ distri-

bution than Ft(�). We express this relationship as follows:

Fs(�)5F
g(t,s)
t (�) .

By induction, this becomes

Fs(�)5F
g(1,s)
1 (�) , (2)

where g(1, s) $ 1. Equation (2) implies that the distri-

bution Fs(�) is generated by taking the maximum of

g(1, s) draws from the initial (or base) distribution F1(�).
Thus, the likelihood of observing rainfall smaller than

some fixed value is lower in year s than in the initial year.

The number of draws at any time is measured relative to

the number of draws in the initial year.
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Because draws in any given time period are assumed

to arrive from the same base distribution, Rényi’s (1962)
result in Eq. (1) holds in this multidraw context as fol-

lows: the record indicators e2, e3, . . . are independent

Bernoulli variables with the probability

P(et51)5 g(t2 1, t)= �
t

t.1

g(t2 1, t) . (3)

As a consequence, the number of draws in any time

period is independent of the rainfall distribution. In the

next section, we derive an empirical counterpart of Eq.

(3) to estimate the number of draws based on the record

rainfall data.

4) ESTIMATION OF RED

Let ct (RED) be the empirical counterpart of g in year

t, defined as the area-weighted (by the cosine of the lat-

itude) number of draws over the 4-month time series

(representing the 4 monsoon months per year) and grids

in year t. The total number of draws until time t is defined

as lt 5�t
t5 1ct . Then, the probability that a recordwill be

set in year t is

P(et51)5 ct/lt , (4)

which is the empirical counterpart of Eq. (3). If ct is

constant, then both the probability in Eqs. (3) and (4)

simplify to 1/t, which is the classical case with a constant

draw rate.

Our empirical strategy is to estimate the fctg sequence
using the maximum likelihood estimation. Let nt and bt
denote the area-weighted number of distinct rainfall

observations and the number of records in year t, re-

spectively. Then, define ft 5 bt/bt, which is an unbiased

estimator of ct/lt.

In general, the stationsmay have begun record keeping

at different times. According to Eq. (4), given that ev-

erything else is equivalent, a record is less likely to be set

from stations (or grids in our dataset) with longer re-

porting histories. To incorporate this difference, we

construct cohorts of grids, depending on their start times,

as follows. We group the sequences that started at time

t 1 1 as cohort h(t) (the earliest time series are those of

cohort 0) (note that lt,h(t) 5 lt 2 lh(t), where l0 5 0). Let

nt,h(t) and bt,h(t)denote the area-weighted number of dis-

tinct observations and the area-weighted number of re-

cords in cohort h(t), respectively, at time t. The logarithm

of likelihood Lt,h(t)(ĉ) of observing bt,h(t) records among

nt,h(t) observations for cohort h(t) is equal to:

Lt,h(t)(ĉ)’ bt,h(t) lnĉt 1 [nt,h(t) 2 bt,h(t)] lnl̂t21,h(t)

2 nt,h(t) lnl̂t,h(t) ,

where ĉ5 (ĉ1, ĉ2, . . . , ĉT). By summing the likelihoods

of all of the cohorts, we obtain

L(ĉ)5 �
T

t51
�

h(t)#t21

Lt,h(t)(ĉ) . (5)

By fixing ĉ1 to 1, a vector of ĉ to maximize Eq. (5) is the

number of hypothetical draws that best fit the area-

weighted likelihoods of the observed records.

5) RELATION BETWEEN RECORDS AND EXTREME

EVENTS

Equation (2) shows that EVT shares a theoretical

foundation with our approach. Under both approaches,

the observed rainfall data are assumed to be drawn from

the distribution implied by multiple draws that are

sampled from some underlying distribution. Under

EVT, Eq. (2) is extended by taking the limit of the

number of draws g(1, s) to infinity, which establishes

the asymptotic distribution of the tails. However, when

the sample size is relatively small, as seen with the In-

dian monsoon rainfall data, it is not obvious whether the

assumed extreme rainfall is truly extreme. Therefore,

errors from assuming the same asymptotic tail for the

heterogeneous rainfall distributions across the region

can be sizable.

Our approach instead is to identify the link between

RED and the likelihood of extreme rainfall. Here, we

show that the change in RED converges to the change in

the likelihood of observing extreme rainfall. We nor-

malize the high-rainfall RED (RED-H) in the base year

to one and assume that the RED-H in the current year is

equal to n. 0.Assume thatZ1,Z2, . . . ,Zn, and n draws in

the current year are from a continuous and strictly in-

creasing cumulative distribution function F(z) ; [a, b],

where F(z) is the underlying rainfall distribution in the

base year. Let Z(k) denote the kth smallest Z such that

Z(1) ,Z(2) ,⋯,Z(n21) ,Z(n). The probability of ob-

serving rainfall greater than h (the previous record high)

fromamaximumofn draws in the current year is given by

gn(h)5P(Z
(n) . h)512P(Z

(n), h)5 12P
n

i51

P(Zi , h)

5 12Fn(h) .

Similarly, the probability of observing rainfall greater

than h from a single draw in the base year is given by

g1(h)5 12F(h) .

Then, the ratio gn(h)/g1(h) represents the change in

the likelihood of observing rainfall greater than h in the

current year compared with the base year. Taking the
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limit of the ratio gn(h)/g1(h) as h approaches the upper

bound of the distribution, we obtain

lim
h/b

gn(h)

g1(h)
5 lim

h/b

12Fn(h)

12F(h)
5 lim

h/b
�
n

t51

[F(h)]t215 n .

Therefore, changes in RED-H approximate the change

in the likelihood of observing an extreme high rainfall.

The ratio approaches this limit monotonically as h ap-

proaches extreme values because F(�) is strictly in-

creasing. The same argument holds for the likelihood of

observing an extreme low rainfall that is derived from

changes in the low-rainfall RED (RED-L). Therefore,

changes in RED measure change in the likelihood of

extreme rainfall relative to the base year.

6) RECORD RAINFALL DATA CONSTRUCTION

For our empirical analysis, the record rainfall data

(based on the monthly-mean rainfall) are prepared as

follows. We substitute rainfall information in 1930

with the mean rainfall in the first 30 yr (1901–30) of

the period, which is used as the reference period for

comparison. Therefore, RED estimates in subsequent

time periods are evaluated relative to the climato-

logical normal of 1901–30. To identify the indicators

of record rainfall events for each month and grid, we

select the record high and record low monthly rainfall

up to that time period. The indicator for a record high

(low) is set to 1 if the observed rainfall for that year is

a record high (low); otherwise, the indicator is zero.

Finally, the time series of record high and record

low indicators are aggregated to construct the likeli-

hood function in Eq. (5). The coefficients that

maximize the likelihood functions for record high and

record low data are denoted as RED-H and RED-L,

respectively.

The observed rainfall records may be biased because

of both the inconsistent use ofmeasurement instruments

and the location changes of the stations. However, the

impact of these inconsistencies on the RED estimates is

likely to be minimal for the following reasons. The

original work by Pai et al. (2014) extended the method

used in a previous version of this dataset (Rajeevan et al.

2006); thus, they used stations that had at least 90% of

the available observations over 1901–2013. Therefore,

the data are relatively consistent at each station. The

main inhomogeneity in the station-level data is the

change in the number of stations for creating the grid

points. However, the interpolation method used in Pai

et al. (2014) limits the maximum number of nearby

stations to 4 and weights the observations by distance. In

addition, the resulting gridded dataset has no missing

observations. Therefore, the interpolation scheme

minimizes the possible bias resulting from the change in

the number of stations.

3. Likelihood of extreme rainfall

a. RED-H and RED-L

We present the RED estimates based on monsoon

rainfall from 1930 to 2013 in Fig. 1. We find statistically

significant linear trends in both RED estimates: RED-H

and RED-L increased 2-fold and 4-fold from 1930 to

2013, respectively, based on the linear trend estimates.

We interpret this result as follows: an extreme high (low)

FIG. 1. (a) RED-H and (b) RED-L estimates based on monsoon rainfall during 1930–2013 throughout India. All

REDestimates are normalized to 1 in 1930. TheREDestimates are represented by the thin lines, and the 5-yrmoving

averages (MA) of the RED estimates are represented by the thick lines. The 95% confidence interval (CI) of RED

estimates is based on a bootstrapping experiment where we randomly select 1000 time series of rainfall observations.

The black lines represent the linear trend on RED.
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rainfall event is twice (4 times) as likely to occur in 2013

as in the first 30 yr of the past century.

A more disaggregated analysis reveals other in-

teresting temporal patterns. In particular, during 1930–

65, 1966–94, and 1995–2013, we observe increases in

RED-H, followed by a rapid decline. The average

RED-H during these time intervals increases over time

from 1.4 in the first interval to 1.8 in the second interval

and to 2.2 in the final interval, compared with the base

time period of 1901–30 (set to 1). Thus, the overall in-

creases are due to the dominance of the gradual increases

in these distinctive time periods over the sharp declines at

the end of the intervals. However, the positive linear

trend of RED-L has been driven by large anomalies since

1960. For example, RED-L estimates greater than 5,

which are approximately two standard deviations above

the mean, only occurred after 1960. The most dramatic

increases in both RED-H and RED-L occurred in the

early 2000s: a RED-H estimate of 5 in 2005 and a RED-L

estimate of 18 in 2002.

To investigate further the overall changes in underlying

rainfall distribution, we examine the associations be-

tween the likelihood of extreme rainfall (as measured by

RED) and the mean rainfall. Note that the mean mon-

soon rainfall increased from 1901 to 1950 and has de-

creased since (Annamalai et al. 2013). Hence, the

decrease in themean rainfall since 1951 is coincident with

the expansion of both tails of the rainfall distribution.

Moreover, we find that the simple correlation coefficients

between mean rainfall and RED-H and RED-L are 0.54

and 20.63, respectively. The respective signs of these

correlation coefficients confirm the consistency of the

RED estimates: an increase in RED-H is associated with

an increase in mean rainfall, and an increase in RED-L is

associated with a decrease in mean rainfall. Despite the

increase in RED-H, the relatively larger increases in

RED-L (during 1951–2013) and relatively higher abso-

lute value of the RED-L correlation coefficient imply

a net decrease in the mean rainfall. Hence, the observed

decrease in the mean rainfall since 1951 is explained by

recognizing that the likelihood of extreme low rainfall has

increased more than the likelihood of extreme high

rainfall, rather than by suggesting that the likelihood of

extreme high rainfall decreased. Consequently, our

analysis of extremes highlights the fact thatmean changes

in rainfall can camouflage significant changes that occur

at the tails of the distribution, such as the broadening of

the distribution. We pursue this investigation further in

the next section.

b. Relationship to the variability in the distribution

The increase in the likelihood of both extreme high

and extreme low rainfall implies a broadening of the

rainfall distributions across India. To test whether this

broadening is significant, we compute a variance de-

tector (Anderson and Kostinski 2010) denoted as a in

Fig. 2. The value ofa is defined as the area-weighted sum

of the number of records (high and low) minus the same

FIG. 2. The estimated distribution of the variance detector a based on the number of record

highs and record lows. The smoothed black line represents the fit of the normal distribution.

The estimated â is equal to 2.62, which indicates increasing variance. The bootstrapping

method based on a random sample of 10 000 observations is used to measure the statistical

confidence interval for â. The 95% confidence interval is (2.54, 2.72); hence, the estimated â is

significantly different from zero.
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sum in reverse time order, and measures the changes in

the variance of the underlying distributions. A signifi-

cant positive value of this variance detector implies

more frequent records as time progresses in comparison

to the predicted rate of stationary distributions; thus, the

variance increases. The advantage of this variance de-

tector is that the result is independent of the underlying

distributions; thus, it is appropriate to test whether changes

in RED are associated with significant changes in the un-

derlying variability. The results (Fig. 2) point to a statisti-

cally significant increase in the variance during 1930–2013:

the estimatedmean ofa is 2.62 and is significantly different

from zero.

c. Comparison to the fixed threshold approach

Our estimates of the likelihood of extreme high and

extreme low rainfall are consistent with findings from

previous studies using frequency counts beyond some

extreme threshold value in central India. For example,

Goswami et al. (2006), using rainfall observations from

daily rainfall data (Rajeevan et al. 2006), also found that the

frequency of very heavy rainfall (rainfall .150mmday21

in a grid point) in central India has been increasing since the

middle of the last century.

To perform a direct comparison between the RED

and the threshold methods, we use a time series of

monthly rainfall observations in central India and

compute the frequencies of high and low extreme rain-

fall based on high and low threshold values at the 5%

observed cutoffs.We find that the correlation coefficient

between RED-H (RED-L) and the frequency of high

(low) rainfall is 0.64 (significant at 1%). This result

confirms that our RED estimates are consistent with

previous findings using fixed thresholds when the data

samples are restricted to homogeneous rainfall regions

during the monsoon season.

4. Correlation analyses

Our main objective in this section is to assess how

various climate factors that are correlated with themean

monsoon rainfall might also be correlated with the

likelihood of extreme rainfall. Below, we present the

correlations of the RED estimates with the following

seven climate factors: ENSO, IOD, IOSST, NH tem-

perature, NAO, PDO, and Eurasian snow cover extent.

a. ENSO–RED relationships

Previous studies (Kumar et al. 1999; Wang et al. 2003)

have found that monthly-mean monsoon rainfall is

negatively correlated with ENSO over long historical

periods. The observed negative correlation between the

Indian monsoon rainfall and ENSO can be explained by

changes in the zonal pattern of moisture transport by the

Walker circulation (Pokhrel et al. 2012). In the warm (or

positive) ENSOphase (ElNiño) the ascending branch of
theWalker circulation, shifts eastward in response to the
anomalous warming in the central and eastern Pacific,
which results in subsidence over the Indo–western Pa-

cific region. Therefore, El Niño is associated with the
occurrence of below-normal monsoon rainfall. The op-
posite climate conditions prevail during the cold phase of
ENSO (La Niña). Here, we examine whether the like-
lihoods of extreme high and extreme low rainfall are
associated with the ENSO phases.
A simple correlation shows that the Niño-3 index is

negatively (positively) correlated with the likelihood of
extreme high (low) rainfall: the correlation coefficients
are 20.53 and 0.48 (significant at 1%) for RED-H and

RED-L, respectively. In other words, the warm phase of

ENSO is associated with a higher (lower) likelihood of

extreme low (high) rainfall, and vice versa for the cold

phase of ENSO.

The Niño-3 index and RED-L have been significantly
correlated in recent decades, while the Niño-3 index and
RED-H correlation has weakened (Fig. 3a). The nega-

tive correlation between RED-H and the Niño-3 index
was significant during 1930–80, but the correlation has

since weakened. In contrast, a significant positive cor-

relation between RED-L and the Niño-3 index has been
observed in the 1930s and since 1970 (an exception is in
1997, when the Niño-3 index was more than three stan-
dard deviations larger than its mean). This finding is in
sharp contrast to the correlation between the mean
monsoon rainfall and the Niño-3 index [i.e., the corre-
lation has weakened since the late 1970s (Kumar et al.

1999)].

b. IOD–RED relationships

The simple correlations between the IOD index and

RED-H and RED-L are 0.38 and 20.30 (significant at

1%), respectively. These correlations are consistent with

the well-noted positive association between mean

monsoon rainfall and the IOD (Saji et al. 1999; Pokhrel

et al. 2012); the simple correlation between the IOD

index and mean monsoon rainfall is 0.32 according to

Saji et al. (1999). A more disaggregated analysis shows

that our correlations are nonstationary over time

(Fig. 3b): the IOD index is positively correlated with the

likelihood of extreme high rainfall in 1975–90 and is

negatively correlated with the likelihood of extreme low

rainfall since the mid-1980s.

Notice that the IOD–RED-L correlation has been

significant in recent decades. This observation is con-

sistent with the recent finding (Ajayamohan and Rao

2008) of a significant negative correlation (up to 20.69)
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FIG. 3. The 11-yr sliding correlations between the RED estimates and six climate factors in 1930–2013.

The climate factors are as follows: (a)Niño-3 in themonsoon season, (b) IOD in themonsoon season, IOSST
in the (c) spring and (d)monsoon season,NH temperature in the (e) spring and (f)monsoon season, (g) PDO
in themonsoon season, and (h) snow cover over western Europe in thewinter. The correlations withRED-H
are in blue, and the correlations with RED-L are in red. The 5% thresholds for statistical significance are
shown as black horizontal lines. The years correspond to the middle of the 11-yr period.
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between daily level heavy rainfall (.100mmday21 in

a grid point) and SST anomalies at the eastern edge of

the IOD region (108S–08, 908–1108E). According to

Ajayamohan and Rao (2008), the responsible physical

mechanism is possibly the anomalously cold SST at the

eastern edge of the IOD region and the associated

strong easterlies, which are responsible for transporting

moisture from the southeastern equatorial Indian

Ocean to the Bay of Bengal. This process leads to the

convergence of moisture over India.

c. IOSST–RED relationships

In this section, we examine the IOSST–RED corre-

lations. Investigating the association between IOSST

andRED is important because of the hydrological cycle:

a warmer ocean evaporates more water into the atmo-

sphere (Clark et al. 2000; Dai et al. 2001), and a portion

of the water evaporated from the ocean is transported to

the continent where it precipitates. Annamalai et al.

(1999) show that during the monsoon season, circula-

tions transport moisture from the surrounding Indian

Ocean, particularly the Arabian Sea, to the Indian

subcontinent. We test whether changes in IOSST are

also associated with changes in the likelihood of extreme

rainfall. To do so, we correlate the area-weighted mean

sea surface temperature in the tropical Indian Ocean

[248S–248N, 408–1208E, as in Clark et al. (2000)] in the

spring [March–May (MAM)] and in the monsoon sea-

son with RED.

We find a positive (negative) association, in general,

between IOSST and RED-H (RED-L) in the spring and

monsoon seasons. Upon closer examination, we find

that the strength of these correlations changes over time.

The correlation of the preceding spring IOSSTwith both

RED-H and RED-L (Fig. 3c) is significant during 1960–

75 and the early 1990s. In contrast, during the monsoon

season in 1960–90, the significance of the correlations

between IOSST and RED-H and RED-L alternate:

RED-H is positively correlated in the 1960s and 1980s,

andRED-L is negatively correlated in 1965–80 (Fig. 3d).

To determine the robustness of the results, we examine

these correlations within subregions of the IndianOcean

and confirm the same correlation patterns between

IOSST and RED (see supplementary Fig. 1 in the sup-

plemental material).

Since 1990, none of the correlations between IOSST

and RED have been significant. According to Copsey

et al. (2006), this weakening relationship is related to the

increase in the sea level pressure (SLP) over the Indian

Ocean, which peaked in the early 1990s. In the past half

century, the Indian Ocean has undergone significant

warming (Annamalai et al. 2013). In the tropics, de-

creasing SLP is a typical feature of the warming ocean

surface. However, the Indian and Atlantic Oceans have

experienced increasing SLPs over the past half century,

while the central and western Pacific Oceans have expe-

rienced decreasing SLPs (Copsey et al. 2006; Annamalai

et al. 2013). Therefore, the air mass shifted from the Pa-

cific to the east and west. This increase in SLP over the

Indian Ocean can override the warming of the Indian

Ocean by suppressing rising air that supplies moisture.

This observation implies that warming in IOSST is less

efficient in generating monsoon rainfall when it is coun-

tered by increases in SLP.

d. NH temperature–RED relationships

The physical link between large-scale atmospheric

warming and local precipitation, such as Indian mon-

soon rainfall, is difficult to establish since this relation-

ship is jointly determined by changes in the hydrologic

cycle resulting from increased warming and interaction

with regional climate conditions, such as snow cover

(Kumar et al. 1999; Fan et al. 2009). In this section, we

examine the statistical correlation between NH tem-

perature and the likelihood of extreme rainfall. Note

that the NH temperature increased rapidly from the

mid-1970s until the early 2000s; the greatest variability

occurred in the midlatitudes (308–608N). Hence, we

correlate the NH surface air temperature in the mid-

latitudes with RED and use both the spring and mon-

soon season temperatures, which are correlated with

mean monsoon rainfall (Kumar et al. 1999).

We find that the NH temperatures in the spring

(MAM) and RED are not significantly correlated in the

past century (Fig. 3e). In the concurrent monsoon sea-

son, the NH temperature and RED-H correlation is

significantly positive around the late 1960s, the 1980s,

and the early 2000s, while the correlation with RED-L is

insignificant throughout the entire time period (Fig. 3f).

Because both NH temperature and monsoon rainfall

are associated with ENSO (Fan et al. 2009), the corre-

lation between the NH temperature and RED is likely

to be complicated by the ENSO–monsoon relationship.

To measure the NH temperature–RED correlation net

of ENSO variability, we low-pass filtered both time se-

ries—RED and NH temperature—via Baxter and King

(1999) to remove signals at frequencies shorter than 7 yr,

since ENSO typically occur on a time scale of 3–7 yr. We

then computed simple correlations with the filtered time

series over the entire sample period (rather than time-

varying correlations, as in Fig. 3). The results show that

the simple correlation between the filtered NH tem-

perature in the monsoon season and filtered RED-L is

significant, while the other correlations remain un-

affected by filtering. Specifically, the correlations with

RED-L are 0.18 (insignificant) and 20.24 (significant at
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1%) before and after applying the filter, respectively.

This finding suggests that the negative correlation be-

tween NH temperature in the monsoon season and the

likelihood of extreme low rainfall is obscured by the

ENSO effect.

Since the NH temperature in the spring season is not

strongly correlated with the likelihood of extreme

rainfall, it is interesting to examine whether the un-

derlying atmospheric variability in the premonsoon

season might be associated with the likelihood of ex-

treme rainfall. One source of variability could arise from

the NAO. The NAO is significantly associated with the

temperature and precipitation of the winter season in

regions from eastern North America to western and

central Europe (van Loon and Rogers 1978; Robock

et al. 2003). A physical mechanism for this association is

that the positive phase of the NAO induces stronger

westerlies that advect warmer ocean air over the land

regions; the result is warm surface air temperature

anomalies over Europe and eastern North America, and

vice versa for the negative phase of the NAO.

In this study, we test whether the strong NAO’s as-

sociation with atmospheric variability in the winter

season might be extended to a significant correlation

with the likelihood of extreme rainfall in the monsoon

season. We find that the NAO–RED correlations are

insignificant for both RED-H and RED-L (see supple-

mentary Fig. 2 in the supplemental material). This result

is consistent with the observation by Hori and Yasunari

(2003), who found that atmospheric variability caused

by the NAO in the winter does not last long enough to

correlate with extrememonsoon rainfall, and the finding

from climate models that the NAO–monsoon associa-

tion is random (Robock et al. 2003). This result parallels

with our observation of the weak correlation between

NH temperature in the spring and RED estimates.

e. PDO–RED relationships

The PDO, which cycles every 20–30yr, influences the

variability in the tropical PacificOcean and thus determines

the interannual variability in monsoon rainfall in Asia.

Previous studies (Chan and Zhou 2005; Krishnamurthy

and Krishnamurthy 2014) show a significant negative

correlation exists between the PDO and mean monsoon

rainfall.

Although the PDO is most influential in the North

Pacific, it produces circulation patterns that are similar

to ENSO, both temporally and spatially.When the PDO

is in the positive phase, the SST is anomalously cool in

the interior North Pacific and warm along the Pacific

coast. Similarly, in the warm phase of ENSO, abnor-

mally warm SSTs occur from the date line (i.e. 1808
longitude) to the South American coast. The climate

conditions reverse in the cold phases of the PDO and

ENSO. Because of the similarity between the PDO and

ENSO, we examine whether the PDO has any signifi-

cant correlation with RED and whether the correlation

is similar to the ENSO–RED association.

We find that the PDO is generally negatively (posi-

tively) correlated with RED-H (RED-L), which is

consistent with the patterns of the ENSO–RED corre-

lations (in Fig. 3a). A more detailed analysis shows that

the statistical significance of these correlations changes

over time (Fig. 3g); the likelihood of extreme low rain-

fall is positively associated with the PDO in 1965–70 and

in 1989–95. The likelihood of extreme high rainfall is

negatively associated with PDO for short time periods in

the late 1960s and early 1990s.

Interestingly, the troughs of the PDO–RED-L corre-

lation occurred at approximately the time when the PDO

changed phases. Specifically, the PDO switched phases in

1925, 1947, 1977 (Mantua et al. 1997), and 1998. The

troughs of the PDO and RED-L correlation occurred in

1947, 1977, and 1999. Therefore, the PDO and RED-L

correlation has the same periodicity as the PDO.

Notably, the PDO and ENSO may influence each

other (Newman et al. 2003). In particular, the warm

phases of the PDO and ENSO can complement each

other to induce further subsidence over the Indian

subcontinent, and vice versa for the cool phase of the

PDO and ENSO. To test whether the co-occurrence of

PDO and ENSO phases enhances the likelihood of ex-

treme rainfall, we divide the entire sample period of

1930–2013 into three categories: warm, cold, and neutral

phases. The warm and cold phases are years when both

Niño-3 and PDO indices are in the upper and lower
quartiles of all observations in 1930–2013, respectively.
The neutral phases compose the rest of the sample. The

number of years with warm, cold, and neutral phases are

6, 9, and 69, respectively.We compare themeanRED-H

and RED-L for each of the three categories. We find

that the mean likelihood of extreme high rainfall is

highest in cold phases, followed by neutral and warm

phases; the opposite is true for RED-L [i.e., the mean

likelihood of extreme low rainfall is highest in warm

phases, followed by neutral and warm phases (see sup-

plementary Table 1 in the supplemental material)]. This

result is robust for different thresholds of warm and cold

phases. Therefore, the likelihood of an extreme rainfall

event, either high or low, may be enhanced when ENSO

and the PDO are in the same phase. This result is con-

sistent with the relationship among the triad—PDO,

ENSO, and monsoon rainfall—in South China (Chan

and Zhou 2005; Zhou et al. 2006) where summer mon-

soon rainfall over South China are more likely to be

below (above) normal when both ENSO and the PDO
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are in the warm (cold) phase, while the rainfall show no

particular deviation from normal when the two indices

are in the opposite phase.

f. Eurasian snow cover–RED relationship

Previous studies show that snow cover in the pre-

ceding winter and spring over Eurasia is, in general,

negatively correlated with the mean monsoon rainfall

(Robock et al. 2003; Peings and Douville 2010). The

negative correlation is confirmed by a number of nu-

merical simulations using general circulation models

(Barnett et al. 1989). However, large variability occurs

in the strength of the correlation across different regions

of Eurasia because of differences in local climate con-

ditions (Fasullo 2004; Peings and Douville 2010).

Therefore we choose the area-weighedmean SCE in the

winter [December–February (DJF)] in western Europe

(458–558N, 08–108E), where the correlation between

SCE and the mean monsoon rainfall is strongest within

Eurasia (Robock et al. 2003; Fasullo 2004).

We find (Fig. 3h) that a significant positive correlation

existed between SCE and RED-L in 1980–95, and

a significant negative correlation existed between SCE

and RED-H in the mid-1980s. We also confirm that

these RED correlations with snow cover are the most

significant in western Europe compared with other parts

of Eurasia (see supplementary Fig. 3 in the supple-

mental material). However, no significant correlations

have been observed since the mid-1990s.

The lack of significant correlations between RED and

SCE in recent decades is partly related to the ENSO–

monsoon rainfall association. Previous studies (Fasullo

2004; Peings and Douville 2010) show that the re-

lationship between Eurasian snow cover and monsoon

rainfall is overwhelmed (or disrupted) during strong

ENSO years. Specifically, observations indicate that the

regions with a significant snow cover and monsoon

correlation broadly coincide with the regions with sig-

nificant correlations between snow cover and ENSO.

Thus, the observed correlation (or lack of correlation)

between SCE and monsoon rainfall could be related to

the SCE–ENSO association.

To test whether SCE–RED correlations become

stronger after removing the influence of ENSO vari-

ability, we apply a low-pass filter to both the time series

of SCE and RED to eliminate the influence of ENSO

and thus retain only the variations of periods greater

than 7 yr (see section 4d for more details on filtering

process). We then estimate simple correlations between

the filtered RED and filtered SCE. The results show that

the SCE and RED-H correlations become stronger

when the two time series are filtered. The correlation

with the filtered time series is 20.33 (significant at 1%),

while it is only 20.18 (insignificant) with the unfiltered

series. By contrast, the SCE and RED-L correlation

remains unchanged after filtering. Therefore, a stronger

SCE and RED-H correlation may exist, but it is ob-

scured by the presence of ENSO.

5. Summary and discussion

In this study, we develop a new metric to measure the

likelihood of extreme events without needing the spe-

cifics of the underlying distributions. The method is

particularly useful for examining the overall changes in

extreme rainfall patterns in India, where rainfall distri-

butions are heterogeneous. Our approach builds upon

several findings from previous studies that rely on de-

fined thresholds to identify extreme rainfall events and

that are restricted to regions with homogeneous rainfall

distributions, such as central India. Using our metric, we

find a substantial increase in both the likelihood of ex-

treme high and extreme low rainfall over the past cen-

tury; the extremes reached a peak in the early 2000s. We

confirm that the increase in the likelihood of extreme

rainfall is associated with the increase in the variance of

the rainfall distributions.

Our correlation analyses reveal that in the recent

decades, the likelihood of extreme low rainfall is posi-

tively correlated with ENSO and negatively correlated

with IOD. The weak correlations in recent decades be-

tween climate factors, such as IOSST and Eurasian snow

cover, and the likelihood of extreme rainfall are asso-

ciated with countervailing forces from increased sea

level pressure over the Indian Ocean and the opposite

phase of ENSO, as argued in several other studies.

Moreover, the temporal patterns of the likelihood of

extreme rainfall exhibit multidecadal variability: RED-H

exhibits approximately three-decade-long periodicity in

1930–65, 1966–94, and 1995–2013; and RED-L is gener-

ally higher in the period 1960–90 than in the previous

three decades. This implies that the strong correlations of

RED in the late 1960s and around 1990 with Niño-3,
IOSST, and the PDO mostly coincide with periods of
transition between extreme wet and extreme dry decades
of monsoon rainfall. Therefore, further investigation of
the physical base for decadal behavior and phase changes
of extreme rainfall will be useful in predicting future ex-
treme monsoon rainfall.
Although the association between ENSO and the

likelihood of extreme rainfall has been significant in

recent decades, the likelihood of extreme rainfall in the

future is uncertain, particularly because of our lack of

understanding of the future changes in ENSO intensity.

Some studies (Turner et al. 2007) have suggested a pos-

sible increase in the ENSO amplitude in the future,
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while other studies (van Oldenborgh et al. 2005) have

suggested no significant changes. Therefore, further re-

search is needed to predict the likelihood of extreme

monsoon rainfall in the future.
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