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ABSTRACT

The accurate knowledge of soil moisture and snow conditions is important for the skillful characterization of

agricultural and hydrologic droughts, which are defined as deficits of soil moisture and streamflow, respectively.

This article examines the influence of remotely sensed soilmoisture and snowdepth retrievals toward improving

estimates of drought through data assimilation. Soilmoisture and snowdepth retrievals froma variety of sensors

(primarily passivemicrowave based) are assimilated separately into the Noah land surfacemodel for the period

of 1979–2011 over the continental United States, in the North American Land Data Assimilation System

(NLDAS) configuration. Overall, the assimilation of soil moisture and snow datasets was found to provide

marginal improvements over the open-loop configuration. Though the improvements in soil moisture fields

through soil moisture data assimilation were barely at the statistically significant levels, these small improve-

ments were found to translate into subsequent small improvements in simulated streamflow. The assimilation of

snow depth datasets were found to generally improve the snow fields, but these improvements did not always

translate to corresponding improvements in streamflow, including some notable degradations observed in the

westernUnited States. A quantitative examination of the percentage drought area from root-zone soil moisture

and streamflow percentiles was conducted against the U.S. Drought Monitor data. The results suggest that soil

moisture assimilation provides improvements at short time scales, both in the magnitude and representation of

the spatial patterns of drought estimates, whereas the impact of snow data assimilation was marginal and often

disadvantageous.

1. Introduction

Drought is one of the costliest environmental disasters

and has profound socioeconomic consequences, as it

typically occurs at long time scales and in virtually all

climatic zones. Droughts are generally classified into three

physical types: meteorological drought resulting from

precipitation deficits, agricultural drought due to total soil

moisture deficits, and hydrological drought related to the

shortage of streamflow or runoff (Keyantash and Dracup

2002; Mo 2008; Shukla and Wood 2008). The accurate

determination of soil moisture states is important not only
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for the characterization of agricultural drought, but also

for hydrologic droughts, since the knowledge of initial soil

moisture states also influences the predictability of runoff

fields (Koster et al. 2014; Mahanama et al. 2008). In ad-

dition to soil moisture, snow conditions also play an im-

portant role in contributing to the skill of streamflow

predictions (Wood et al. 2005; Berg and Mulroy 2006;

Koster et al. 2010). Inmanymid- and high-latitude regions,

the seasonal water storage and the associated spring

snowmelt dominate the local hydrology. Snowpack in the

western United States, for example, is the largest compo-

nent of water storage (Mote et al. 2005) and is the primary

source of water supply. Maurer and Lettenmaier (2003)

examined the importance of initial soil moisture and snow

states toward the predictability of runoff fields. Their re-

sults showed that these states contribute significantly to

runoff predictability at seasonal time scales. The accurate

determination of moisture storages of soil moisture and

snow conditions, therefore, is critical for supporting agri-

culture and water resources needs in the context of

drought mitigation (Pomeroy and Gray 1995; Ffolliott

et al. 1989; Barnett et al. 2005; Bales et al. 2006; Franz and

Sorooshian 2008).

Unfortunately, long-term spatially and temporally con-

tinuous records of snow and soil moisture states are not

available in many parts of the world. Both in situ and re-

mote sensing measurements of these variables are avail-

able from many observation networks and satellites, and

several studies have shown their utility for improving

runoff estimation (Rango et al. 1977; Ferguson 1985; Yang

et al. 2007). These datasets, however, are typically dis-

continuous in their spatial and temporal coverages and are

subject to uncertainties because of errors in the retrieval

models and instrument noise. An alternate approach for

runoff estimation is the use of land surfacemodels (LSMs)

forced with observed meteorology, which generate spa-

tially and temporally continuous estimates of land surface

conditions (Mitchell et al. 2004; Rodell et al. 2004; Kumar

et al. 2006). The gridded runoff can be subsequently routed

to generate estimates of streamflow, and several studies

provide descriptions and evaluations of these approaches

(Schlosser et al. 1997; Nijssen et al. 1997; Boone et al. 2004;

Lohmann et al. 2004; Zaitchik et al. 2010; Xia et al. 2012c).

These studies note that the model-based estimates suffer

fromuncertainties in the forcing inputs,model parameters,

and model structural errors. Data assimilation (DA)

techniques have been employed as an effective strategy to

combine the strengths of both modeling and observations

to generate superior estimates by appropriately weighting

their respective sources of errors (Reichle 2008).

There have been several studies that have examined

the assimilation of soil moisture and snow observations

into land surface models and that have demonstrated

that model-simulated soil moisture can be improved

through the assimilation of passive microwave soil

moisture retrievals (e.g., Margulis et al. 2002; Reichle

et al. 2007; Q. Liu et al. 2011; Draper et al. 2012;

Nagarajan et al. 2012; Hain et al. 2012). These studies

demonstrate improvements not only in near-surface soil

moisture fields, but also in fields that are connected to

the observations through modeled processes, such as

root-zone soil moisture. Peters-Lidard et al. (2011) dem-

onstrated that the assimilation of passive microwave

soil moisture observations can be used to improve esti-

mates of evapotranspiration. A number of studies have

focused on enhancing runoff prediction through the as-

similation of remotely sensed soil moisture. The assimi-

lation of data from a passive microwave radiometer was

found to improve the correlation between antecedent

soil moisture and subsequent storm-scale runoff ratios

(Crow et al. 2005). Other studies (Pauwels et al. 2002;

Parajka et al. 2006) reported marginal improvements in

runoff estimates from the assimilation of scatterometer

soil moisture data.

Snow DA includes the assimilation of snow fraction

products (e.g., Rodell and Houser 2004; Slater and Clark

2006; Zaitchik andRodell 2009;Arsenault et al. 2013) and

snow water equivalent (SWE) and snow depth products

(e.g., Andreadis and Lettenmaier 2006; Liu et al. 2013).

Compared to the visible or near-infrared-based snow

cover fraction (SCF) products, the passive microwave–

based SWE or snow depth products are typically coarser

in resolution and lower in accuracy (Foster et al. 2005;

Dong et al. 2005). As a result, studies that employ the

assimilation of passive microwave–based retrievals have

reported only limited success (Andreadis and Lettenmaier

2006;Dong et al. 2007). In amore recent study,DeLannoy

et al. (2012) present results from the joint assimilation of

both Moderate Resolution Imaging Spectroradiometer

(MODIS) SCF retrievals and Advanced Microwave

Scanning Radiometer for Earth Observing System

(AMSR-E) SWE retrievals over a region near northern

Colorado. Marginal improvements through assimilation

were observed, with the lack of interannual variations in

the AMSR-E SWE retrievals limiting the success of data

assimilation.

Several studies have employed the assimilation of re-

motely sensed snow observations into land surface and

hydrological models for improving streamflow predictions

(Roy et al. 2010; Thirel et al. 2011; Yatheendradas et al.

2012).Most of these studies employ fractional snow cover

extent data for assimilation, and they report improve-

ments in streamflow simulations as a result of assimila-

tion. Dressier et al. (2004) and He et al. (2011) assimilate

in situ measurement-based SWE data for assimilation

into hydrological models, leading to improved streamflow
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simulations. Few studies, however, have reported im-

proved streamflow through the assimilation of passive

microwave–based observations within LSMs, partly

because of the low skill of these retrievals. Dechant

and Moradkhani (2011) examined different scenarios

of assimilating brightness temperature observations

from AMSR-E and gauge-measured streamflow into

the operational SNOW-17 and Sacramento Soil Mois-

ture Accounting models with mixed results. The as-

similation of passive microwave–based data alone was

unable to significantly improve the streamflow simu-

lations. Similar results are reported in Liu et al. (2013),

where improvements in the snow states were reported

with the assimilation of bias-corrected snow depth re-

trievals from AMSR-E, but these improvements did

not necessarily translate to improvements in stream-

flow prediction.

In this article, we present the assimilation of re-

motely sensed soil moisture and snow depth retrievals

into the Noah land surface model covering a time pe-

riod of 1979–2011 over the continental United States

(CONUS) and provide an assessment of their impact

toward drought estimation. Retrieval products from

a number of microwave instruments are used during

this time period, including the Scanning Multichannel

Microwave Radiometer (SMMR; 1978–87), the Special

Sensor Microwave Imager (SSM/I; since 1987), and

AMSR-E (2002–11). To improve the skill and reduce

biases in the passive microwave snow depth retrievals,

they are augmented with in situ meteorological station–

based measurements. The improvements to the soil mois-

ture, snow, and streamflow fields from data assimilation

are evaluated by comparing them to a number of in-

dependent datasets. Estimates of agricultural and hydro-

logic drought are generated from the model simulations

using root-zone soil moisture– and streamflow-based per-

centiles, respectively. A quantitative evaluation of the

impact of assimilating soil moisture and snow depth data

toward the characterization of agricultural and hydrologic

droughts is presented by comparing it with available

drought percentage area data from the U.S. Drought

Monitor (USDM).

The paper is organized as follows. Section 2 provides

a brief description of the experiment setup of the assim-

ilation of passive microwave–based retrievals. This sec-

tion also presents a description of the data sources used in

this study. Section 3 contains a description of the DA

method used, including details about the bias correction

done for both the soil moisture and the snow depth.

Section 4 presents the results of the DA experiments,

including the evaluation of modeled soil moisture, snow

depth, and streamflow fields. Finally, section 5 provides

the summary and main conclusions.

2. Approach

In this study, we employ a domain configuration

similar to the one used in the North American Land

Data Assimilation System (NLDAS) project (Mitchell

et al. 2004), which is a multi-institution effort focused on

generating high-quality, spatially and temporally con-

sistent LSM datasets from best available observations

and model outputs. The NLDAS domain consists of

a 1/88 regular latitude–longitude grid centered over the

CONUS (258–538N, 1258–678W). The NLDAS project

produces an LSM forcing dataset from a daily gauge-

based precipitation analysis, bias-corrected shortwave

radiation, and surface meteorology reanalysis. This

meteorological dataset is then used to drive a number of

LSMs to generate hourly model outputs of land surface

conditions including fluxes, soil moisture, snow states

(snow cover, SWE, and snow depth), runoff, and stream-

flow. Phase 2 of the NLDAS project (NLDAS-2; Xia et al.

2012b) includes several enhancements over phase 1 to the

forcing datasets and generates themodel products innear–

real time from 1979 to the present. Phase 1 and phase 2 of

the NLDAS projects, however, do not employ the assim-

ilation of remotely sensed datasets. In this article, we use

the samedomain configuration used in theNLDASproject

in order to evaluate the added impact of remotely sensed

soil moisture and snow depth DA on improving modeled

land surface states and subsequent estimates of drought.

All model simulations are conducted using the Na-

tional Aeronautics and Space Administration (NASA)

Land Information System (LIS; Kumar et al. 2006;

Peters-Lidard et al. 2007) on the NLDAS gridded do-

main, using Noah LSM, version 3.3 (Ek et al. 2003). The

domain configuration is designed in a manner as similar

as possible to the NLDAS-2 Noah model simulations.

The simulations are run with a 30-min time step, and the

Noah LSM is spun up by running from 1979 to 2012

twice and then reinitializing the model in 1979. Noah

LSM is used operationally at the National Centers for

Environmental Prediction (NCEP) as the land compo-

nent of regional and global weather forecasting models

and at the Air Force Weather Agency (AFWA) in the

offline land analysis system. More recent upgrades to

the model have focused on improving the snow physics

within Noah (Barlage et al. 2010; Livneh et al. 2010;

Wang et al. 2010) by providing modifications to snow

albedo, surface roughness, and surface exchange coef-

ficient formulations. These studies demonstrated im-

provements to the timing and magnitude of seasonal

SWE simulations.

To generate routed streamflow estimates from the

gridded runoff fields from the LSM, we employ the

streamflow routing model used in the Project for
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the Intercomparison of Land-surface Parameteriza-

tion Schemes (PILPS; Lohmann et al. 1998) and in

NLDAS-1 (Lohmann et al. 2004) and NLDAS-2 (Xia

et al. 2012c) projects. This model routes the modeled

runoff from each interior grid cell to the basin outlet

using a flow direction mask (Lohmann et al. 2004). The

routing model computes the timing of the runoff at the

grid outlet and the water transport through the river

network. Using a linearized version of the Saint-Venant

equation, both within-grid-cell and river-routing contri-

butions are represented with causal functions with non-

negative impulse response characteristics (Lohmann

et al. 1996). The water transported out of the grid cell is

further routed through the river network to generate es-

timates of streamflow, using the distributed approach of

Lohmann et al. (1998).

Satellite retrievals

Microwave remote sensing measurements have

a long legacy of providing estimates of near-surface soil

moisture from a number of sensors (Jackson 1993;

Njoku and Entekhabi 1996) for several decades. They

include the SMMR (1978–87); the SSM/I (since 1987);

the Tropical Rainfall Measuring Mission (TRMM)

Microwave Imager (TMI; since 1997); the AMSR-E

(2002–11); scatterometer-based products from European

Remote Sensing Satellites 1 and 2 (ERS-1 and ERS-2;

1991–2006) and Advanced Scatterometer (ASCAT; since

2007); and more recently, the Soil Moisture Ocean Sa-

linity (SMOS; since late 2009) and Advanced Microwave

Scanning Radiometer 2 (AMSR2) on theGlobal Change

Observations Mission 1–Water (GCOM-W1) satellite and

the soon-to-be-launched Soil Moisture Active Passive

(SMAP) mission (Entekhabi et al. 2010b). Y. Liu et al.

(2011) developed a merged soil moisture product for

the period of 1979–2010 by blending data from these

different satellite sensors [known as theEssential Climate

Variable (ECV) product]. In this study, we employ the

ECV product for data assimilation between 1979 and

2002. From 2002 to 2011, we employ the surface soil

moisture retrievals from AMSR-E generated using the

Land Parameter Retrieval Model (LPRM) developed by

the NASA Goddard Space Flight Center (GSFC) and

Vrije Universiteit (VU) Amsterdam (Owe et al. 2008).

Similar to soil moisture retrievals, passive microwave

radiometry has been used for estimating snow depth and

SWEmeasurements in the last 30 years (Chang et al. 1987;

Foster et al. 1997; Pulliainen and Hallikainen 2001; Kelly

et al. 2003; Cordisco et al. 2006; Kelly 2009; Tedesco et al.

2010). From 1978 to 1987, snow depth retrievals from the

passive microwave data from SMMR on the Nimbus-7

satellite using the 19- and 37-GHz channels (Chang et al.

1987) are available. A similar product was derived from

SSM/I using the Chang et al. (1987) algorithm for the pe-

riod from 1987 to the present. Passive microwave–based

retrievals using several channels (10, 18, 23, 36, and

89GHz) from AMSR-E (Kelly et al. 2003) on board the

NASAAqua satellite are available from 2002 to 2011. The

Kelly et al. (2003) algorithm generates snow depth fields

first, and SWE is then calculated by multiplying the snow

depth fields with a snow density map. The retrieval algo-

rithm employs snow density fields from the datasets of

Brown and Braaten (1998) and Krenke (2004). Here we

use the following three snow depth products for data as-

similation: the SMMR-based retrievals from 1979 to 1987,

SSM/I-based retrievals from 1987 to 2002, and AMSR-E–

based retrievals from 2002 to 2011. All three products are

available at approximately 25-km spatial resolution.

3. Data assimilation method

A one-dimensional ensemble Kalman filter (EnKF;

Reichle et al. 2002a) algorithm is used to separately

assimilate the soil moisture and snow depth retrievals

into the Noah LSM. The EnKF is a widely accepted

technique for sequential assimilation of hydrologic

variables, and several studies have employed EnKF for

the assimilation of soil moisture, skin temperature, and

snow observations (Crow andWood 2003; Reichle et al.

2007; Kumar et al. 2009; Reichle et al. 2010; De Lannoy

et al. 2012; Liu et al. 2013). An ensemble size of 12 is

used in the simulations with perturbations applied to

both meteorological fields and model prognostic fields

to simulate uncertainty in the model estimates. We

chose 12 as the ensemble size in this experiment on the

basis of prior studies (Reichle et al. 2002b, 2007; Kumar

et al. 2008, 2009, 2012b) leading up to this work and

because the size of the model state vector is small (four

Noah soil moisture state variables). The parameters

used for these perturbations are listed in Table 1, which

are based on earlier DA studies (Kumar et al. 2008,

2009; Peters-Lidard et al. 2011).

Multiple quality-control measures are applied to the soil

moisture and snow depth retrievals prior to data assimi-

lation. Similar to the approach of Reichle et al. (2007),

Q. Liu et al. (2011), and Peters-Lidard et al. (2011), the soil

moisture retrievals from ECV and LPRM that are flagged

for being at the edge of the swath; near water bodies; or

impacted by dense vegetation, precipitation, frozen

ground, snow cover, or radio frequency interference (RFI)

are excluded in the assimilation system. Moreover, an

additional layer of quality control is applied on the basis of

the information from the LSM by excluding the retrievals

when the LSM indicated active precipitation, nonzero

snow cover, frozen soil, or dense vegetation (when

green vegetation fraction is .0.7). The snow depth
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retrievals are excluded when the model skin tempera-

ture or top-layer soil temperature is higher than 58C. In
addition, the dense vegetation–related flags are also

applied to the snow depth retrievals prior to data as-

similation.

Data assimilationmethods, including the EnKF, assume

that the model and observations are climatologically un-

biased and are designed to correct the randomerrors in the

model background. The handling of systematic errors is

a key issue in allDA systems, andwe employ the following

strategies for addressing bias issues in soil moisture and

snow depth DA.

a. Bias correction of soil moisture retrievals

For soil moisture DA integrations, the biases be-

tween the model and the observations are addressed

using the commonly followed approach of a priori

cumulative distribution function (CDF) scaling (Reichle

and Koster 2004; Drusch et al. 2005), where observa-

tions are scaled into the model climatology. First, the

model CDF and the observation CDF are computed

independently using all available data (for ECV using

1980–2010, AMSR-E using 2002–11, and model using

1979–2012) separately for each grid point. The obser-

vations are rescaled next, separately for each grid

point, such that the CDFs of the rescaled observations

and the model match. Thus, the approach corrects all

the moments of the distribution regardless of its shape.

This approach of rescaling the observations prior to data

assimilation has been used in several soil moisture DA

studies (Reichle and Koster 2005; Crow et al. 2005;

Reichle et al. 2007; Kumar et al. 2009; Q. Liu et al. 2011;

Draper et al. 2011). The input observation error stan-

dard deviations for the unscaled retrievals are set to be

0.04 and 0.08m3m23 for ECV and LPRM, respectively.

Similar to the strategy used in Q. Liu et al. (2011), these

input observation error standard deviations are scaled by

the ratio of the soil moisture time series standard de-

viation of the Noah LSM to that of the soil moisture re-

trievals (ECV or LPRM), resulting in observation error

standard deviations that are spatially distributed.

b. Bias correction of snow depth retrievals

The a priori scaling approach used for soil moisture as-

similation essentially assimilates the anomaly information

and ignores the mean field skill in the observations. Prior

studies (e.g., De Lannoy et al. 2012) found this approach

to be less effective for snow DA, possibly because of the

low skill of the passive microwave snow retrievals, which

are affected by several factors, including errors related

to variations in snow physical properties, surface, and

the atmosphere (Foster et al. 2005; Markus et al. 2006;

Tedesco and Narvekar 2010). The snow retrievals are also

prone to large errors in the presence of dense vegetation

and water bodies (Foster et al. 2005).Moreover, they have

been shown to be less sensitive to thin snow packs (SWE

less than around 10mm) and to saturate for thick snow-

packs (SWE above ground 200mm;Dong et al. 2005). The

gauge measurements of snow, on the other hand, are ob-

tained through direct measurements and are often used to

calibrate and validate the indirect measurements from

remote sensing platforms. In addition, the information

from gauge measurements is employed by several opera-

tional agencies to augment estimates of snow from air-

borne satellite platforms and model simulations (Carroll

et al. 2001; Bissolli and Maier 2009; Pulliainen 2006; Ross

and Brasnett 2010).

Similar to the strategies reported by Brasnett (1999),

Drusch et al. (2004), de Rosnay et al. (2013), and Liu

et al. (2013), we employ the available in situ snow depth

measurements to augment the retrievals from the passive

microwave sensors, using the Cressman objective analysis

TABLE 1. Parameters for perturbations to meteorological forcings and model prognostic variables in the EnKF assimilation experiments.

Variable Perturbation type Std dev Cross correlations with perturbations in

Meteorological forcings SWY LWY PCP

Downward shortwave (SWY) Multiplicative 0.3 1.0 20.5 20.8

Downward longwave (LWY) Additive 50Wm22 20.5 1.0 0.5

Precipitation (PCP) Multiplicative 0.50 20.8 0.5 1.0

Noah LSM soil moisture states sm1 sm2 sm3 sm4

Total soil moisture–layer 1 (sm1) Additive 6.0 3 1023m3m23 1.0 0.6 0.4 0.2

Total soil moisture–layer 2 (sm2) Additive 1.1 3 1024m3m23 0.6 1.0 0.6 0.4

Total soil moisture–layer 3 (sm3) Additive 0.60 3 1025m3m23 0.4 0.6 1.0 0.6

Total soil moisture–layer 4 (sm4) Additive 0.40 3 1025m3m23 0.2 0.4 0.6 1.0

Noah LSM snow states SWE snod

SWE Multiplicative 0.01 1.0 0.9

Snow depth (snod) Multiplicative 0.02 0.9 1.0
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(Cressman 1959). This technique adjusts the background

value (satellite retrievals) by a linear combination of re-

siduals between the station and satellite data. In situ

measurements from the Global Historical Climatology

Network (GHCN; Menne et al. 2012) meteorological

station network are used to generate gauge–satellite

merged analyses of snow depth. A number of quality-

control procedures are applied to the GHCN data before

they are used in the Cressman analysis. The stations are

chosen only if they report at least 3 months of valid data

during the winter season (December–April) and if they

report at least 2 years of data during the 1979–2011 time

period. The location of the GHCN stations used in the

Cressman analysis is shown in Fig. 1.

The residuals are weighted based on the distance be-

tween the grid point of the background data and the grid

point of the station data, as shown in Eq. (1):

SDa5 SDb1

�
N

n51

wn(SD
o
n 2 SDb0

n )

�
N

n51

wn

, (1)

where SDo
n is the in situ snow depth at location n; SDb is

the background snow depth field from the passive mi-

crowave sensor; SDb0
n is the background passive micro-

wave snow depth field at the station location n; and wn is

the weight function, defined as

wn 5H(rn)y(hn) , (2)

where H(rn) and y(hn) are the horizontal and vertical

impact functions. Specifically,

H(rn)5max

�
r2max2 r2n
r2max1 r2n

, 0

�
(3)

and

y(hn)5

8>>>>><
>>>>>:

1 if h. 0

h2max2h2n
h2max1h2n

if 2 hmax, hn, 0

0 if hn , 2 hmax

(4)

where rmax is the maximum influence radius defined as

100 km, rn is the distance between the location of the

station n and the background data grid point, hmax is the

maximum vertical influence height defined as 300m, and

hn is the height of the model grid point minus the height

(or elevation) of the observing station n. The back-

ground data are successively adjusted based on nearby

observations through multiple iterations. The maximum

radius of influence is reduced on successive iterations in

order to build smaller-scale information into the analysis

where data density supports it. In the current study, the

standard deviation of the observation error is assumed

to be 20mm after bias correction for all three snow

depth datasets.

4. Results

This section presents the results from various model

and DA integrations. The model simulations are evalu-

ated by comparing themagainst a number of independent

datasets using the Land Surface Verification Toolkit

(LVT; Kumar et al. 2012a). Only values at times and lo-

cations for which observations are assimilated contribute

to the computation of various analysis metrics shown

below. Figure 2 shows the effective mask of locations

where at least 400 observations are assimilated during the

entire simulation period. For streamflow, however, no

data masking is employed since the streamflow estimates

are influenced by calculations at upstream locations.

Furthermore, only grid points with at least 1 yr of as-

similated observations during the evaluation period are

FIG. 1. Location of the GHCN sites used in the Cressman analysis correction of snow depth

retrievals.
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included in the evaluations, similar to the strategy used in

Kumar et al. (2009) and Kumar et al. (2012b). In the soil

moisture, snow depth, and streamflow evaluations, we

compare the gridbox estimates from the model in-

tegrations to point-scale in situ measurements and ignore

the impact of spatial scaling errors.

a. Evaluation of soil moisture estimates

The soil moisture estimates from the simulations are

compared against two reference datasets: 1) surface soil

moisture measurements from four U.S. Department of

Agriculture (USDA) Agricultural Research Service

(ARS) experimental watersheds (Jackson et al. 2010)

and 2) soil profile measurements from the USDA Soil

Climate Analysis Network (SCAN; Schaefer et al.

2007). The four ARS watershed networks include

Reynolds Creek (Idaho), Walnut Gulch (Arizona),

Little Washita (Oklahoma), and Little River (Georgia).

The area-averaged surface soil moisture measurements

from individual sensor measurements at each watershed

are used in this study. The stations in the SCANnetwork

provide hourly soil moisture measurements at soil pro-

file depths of 5, 10, 20, 50, and 100 cm wherever possible.

A number of extensive quality-control procedures were

applied to the raw data from the SCAN sites, the de-

tails of which are described in Q. Liu et al. (2011). We

employ this quality-controlled dataset in our evalua-

tions. Figure 3 shows the locations of the four ARS and

60 SCAN stations employed in the evaluations. These

sites reflect locations that passed the quality control of

the in situ data and where adequate soil moisture ob-

servations were assimilated.

Table 2 shows the comparison of the domain-averaged

anomaly correlation R, anomaly root-mean-square error

(RMSE), and unbiased RMSE (ubRMSE) metrics for

the open-loop (OL) and soil moisture DA integrations

compared to the ARS and SCAN site data. The associ-

ated 95% confidence intervals are computed using the

Student’s t test (applied temporally to individual sites)

and the average confidence interval is reported in Table 2.

The anomaly time series for each grid point is estimated

by subtracting the monthly-mean climatology values

from the daily average raw data, so that the anomalies

represent the daily deviations from the mean seasonal

cycle. The anomaly R and RMSE values are computed

(separately at each grid point), as the correlation co-

efficient and RMSE between the daily anomalies from

the assimilation estimates and the corresponding in situ

data, respectively. The ubRMSE metric is computed

from the time series after the removal of the long-term

mean bias (Entekhabi et al. 2010a). The error metrics are

computed for the period from January 2000 toDecember

2011 when ARS and SCANmeasurements are available.

In the evaluations, model surface soil moisture is defined

as the top 10 cm of the soil column (which is the top soil

layer thickness in the Noah LSM), and the measurement

at 5 cm is chosen as the observation surface soil moisture.

The root-zone soil moisture is defined as the soil moisture

content in the top 1m of the soil column (derived as

a suitably weighted vertical average over the model and

observation layers).

Table 2 indicates that the open-loop soil moisture es-

timates showhigh skill compared to bothARSand SCAN

data, likely due to the high-quality, gauge-adjusted pre-

cipitation product (Matsui et al. 2010) used to force the

LSM integrations. Overall, the improvements obtained

from data assimilation are minor and are not statistically

significant in some cases. The comparison to the ARS

sites indicates that there are improvements in all three

metrics because of soil moistureDA, though barely at the

statistically significant levels indicated by the 95% confi-

dence intervals that are given for each metric. The aver-

age anomaly R for surface soil moisture across the four

sites is 0.84, and it increases to 0.86 with soil moisture

assimilation. The anomaly RMSE and ubRMSE values

for the OL (0.021 and 0.024m3m23, respectively) de-

crease with assimilation to 0.019 and 0.022m3m23, re-

spectively. The results are still less conclusive in the

comparisons to the in situ measurements at the SCAN

sites. The domain-averaged anomaly R values do not

FIG. 2. Effective mask of the locations where at least 1 yr of observations are assimilated: (left) soil moisture DA and (right) snow

depth DA.

2452 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



show a statistically significant improvement or degra-

dation for both surface and root-zone comparisons.

The anomaly RMSE and ubRMSE metrics for surface

soil moisture estimates decrease with data assimilation,

but not at a statistically significant level. Similar trends are

seen for the root-zone soil moisture estimates, with

marginal improvements in anomaly RMSE and ubRMSE

values.

b. Evaluation of snow depth estimates

The spatially distributed snow depth estimates from

the Canadian Meteorological Centre (CMC) daily

snow depth analysis (Brown and Brasnett 2010) and

the National Oceanic andAtmospheric Administration

(NOAA) National Weather Service’s National Oper-

ational Hydrologic Remote Sensing Center (NOHRSC)

Snow Data Assimilation System (SNODAS; Barrett

2003) outputs are used to evaluate the snow depth

fields from model integrations. The CMC analysis is

available at approximately 25-km spatial resolution

globally from March 1998 to the present. SNODAS

data products are generated at 1-km spatial resolution

beginning in October 2003 and at hourly temporal

resolution over the CONUS. Both the CMC and

SNODAS analyses are generated by combining the

estimates from a snow model with satellite-derived,

airborne, and ground-based observations of snow

from surface synoptic observations, meteorological

aviation reports, and special aviation reports acquired

from the World Meteorological Organization (WMO).

A time period from March 1998 to December 2011 is

used in the CMC comparisons, and a time period

from October 2003 to December 2011 is used in the

SNODAS comparisons.

Table 3 presents the domain-averaged RMSE and

bias values versus CMC and SNODAS products for the

snow depth estimates from the OL and snow depth

assimilation integrations, and Fig. 4 shows the seasonal

breakdown of these errors. The domain-averaged values

are computed from dailyRMSE and bias values across all

grid points in the domain. The model integration without

assimilation has larger errors, and the assimilation helps

in improving the snow depth estimates throughout the

snow season. More significant improvements are ob-

tained in the peak winter months (December–February)

compared to the snow accumulation and melt periods.

Table 3 indicates that the errormetrics are improvedwith

snow depth DA in both sets of comparisons. The OL

integration has a domain-averaged RMSE of 60.8mm

and a domain-averaged bias of 9.8mm, and they reduce

to 54.9 and 0.2mm, respectively, in the comparisons

FIG. 3. Location of the ARS and SCAN soil moisture sites used in the soil moisture

evaluations.

TABLE 2. Comparison of domain-averaged anomaly R, anomaly

RMSE, and unbiased RMSE of OL and soil moisture DA in-

tegrations compared to ARS and SCAN site data (all with 95%

confidence intervals). CalVal refers to calibration and validation.

OL Soil moisture DA

vs ARS CalVal sites (surface soil moisture)

Anomaly R 0.84 6 0.02 0.86 6 0.02

Anomaly RMSE (m3m23) 0.021 6 0.001 0.019 6 0.001

ubRMSE (m3m23) 0.024 6 0.002 0.022 6 0.002

vs SCAN sites (surface soil moisture)

Anomaly R 0.67 6 0.02 0.67 6 0.02

Anomaly RMSE (m3m23) 0.037 6 0.002 0.036 6 0.002

ubRMSE (m3m23) 0.043 6 0.003 0.041 6 0.003

vs SCAN sites (root-zone soil moisture)

Anomaly R 0.60 6 0.02 0.59 6 0.02

Anomaly RMSE (m3m23) 0.032 6 0.002 0.030 6 0.002

ubRMSE (m3m23) 0.041 6 0.003 0.039 6 0.003
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against CMC. Similarly, in the SNODAS comparisons,

both domain-averaged RMSE and bias reduce through

data assimilation (the domain-averaged RMSE is re-

duced from 68.2 to 66.3mm and the domain-averaged

bias is reduced from 222.3 to 219.7mm). All these

differences are statistically significant, as shown by the

95% confidence intervals in Table 3. It was also noticed

(not shown) that most major degradations in the sim-

ulated snow fields were in the western parts of the

domain.

Note that since the GHCN measurements are al-

ready used in the bias correction of the snow depth

retrievals, we cannot use these same station measure-

ments for evaluating the model integrations. On the

other hand, CMC and SNODAS are model-based

products that possibly ingest some of the same

GHCN stations in their analysis. Nevertheless, we use

them to evaluate the model integrations primarily be-

cause of the lack of another independent observation

data product. These results confirm that the strategy of

bias correction through GHCNmeasurements, and the

subsequent improvements obtained through data as-

similation are consistent with the both CMC and

SNODAS products.

c. Evaluation of streamflow estimates

To evaluate the streamflow estimates, we use two

reference datasets: 1) daily streamflow data from 1979

to 2012 obtained from the U.S. Geological Survey

(USGS; http://nwis.waterdata.usgs.gov/nwis) over 572

small, unregulated basins and 2) monthly ‘‘naturalized’’

streamflow data at 19 major basin outlets (Mahanama

et al. 2012), which were developed by removing water

management effects. The small basins range in size from

625 km2, the approximate size of theAMSR-E footprint,

up to 10 000 km2 and had no visible signs of reservoir

operation. These basins were also part of the model

evaluations used in the NLDAS-2 project (Xia et al.

2012c) and are a subset of the Model Parameter Esti-

mation Experiment (MOPEX) study basins.

1) EVALUATION OVER SMALL CATCHMENTS

Because the magnitude of streamflow estimates varies

significantly across different basins, we use a normalized

information contribution (NIC) measure to quantify the

improvement or degradation due to data assimilation,

across different analysis metrics [similar to the approach

used inKumar et al. (2009)]. The NICs for RMSE,R, and

Nash–Sutcliffe efficiency (NSE) are defined as follows:

NICRMSE 5
(RMSEo 2RMSEa)

RMSEo

, (5)

NICR 5
(Ra2Ro)

(12Ro)
, (6)

and

NICNSE5
(NSEa2NSEo)

(12NSEo)
, (7)

where the subscripts o and a denote open loop and as-

similation, respectively. Each NIC metric is defined as

a measure of how much of the maximum skill im-

provement [which, in the case of R, is (1 2 Ro)] is re-

alized through data assimilation [which, in the case of R,

is (Ra 2 Ro)]. Note that in the case of RMSE, the NIC

metric is defined as the ratio of (RMSEo 2 RMSEa)

(which is the skill improvement through data assimila-

tion) and RMSEo, which is the maximum skill im-

provement. If assimilation improves over the open-loop

skill, then the NIC metric will be positive. It will be

negative if the assimilation degrades compared to the

open loop. For NIC 5 0, the assimilation does not add

any skill, and for NIC 5 1, the assimilation realizes the

maximum skill improvement.

Figure 5 presents the NIC values for RMSE, R, and

NSE from both soil moisture and snow depth assimila-

tions (relative to the OL integration) and their distribu-

tion across the basins. The histograms indicate that

improvements in streamflowareminor acrossmost basins

and that soil moisture DA on average provides slightly

more consistent improvements compared to snow DA

(the frequencies of positive NIC values are higher for soil

moisture DA, whereas the frequencies of negative NIC

values are larger for snow DA). This is also reflected in

the domain-averaged NIC values. Though small, the

domain-averaged NIC metrics are positive for soil mois-

ture DA for all three metrics. NIC values from snow

depth DA, on the other hand, show mixed results. The

domain-averaged NIC values for RMSE and NSE from

snow DA are negative, indicating overall degradation

in these metrics due to snow depth DA. To compute

the statistical significance of the NIC values, the 95%

TABLE 3. Comparison of domain-averaged RMSE and bias

values of snow depth vs CMC and SNODAS estimates from

the OL and DA-SNOW integrations (all with 95% confidence

intervals).

OL DA-SNOW

vs CMC

RMSE (mm) 60.8 6 1.0 54.9 6 1.0

Bias (mm) 9.8 6 1.0 0.2 6 1.0

vs SNODAS

RMSE (mm) 68.2 6 1.0 66.3 6 1.0

Bias (mm) 222.3 6 1.0 219.7 6 1.0
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confidence intervals of the metrics for the assimilation

(dRMSEa, dRa, and dNSEa) and the OL integrations

(dRMSEo, dRo, and dNSEo) are translated into a corre-

sponding 95% confidence interval for the NIC values

(dNIC) using a similar approach as that of Kumar et al.

(2009). The 95% confidence intervals computed for the

NIC values provide a range of approximately 60.003–

0.08, indicating that the domain-averaged trends shown in

Fig. 5 are not always statistically significant.

The variation in the streamflow skill improvements

across the domain in Fig. 5 also shows several interesting

features, which correlate with the areas of the domain

where data assimilation occurs (shown in Fig. 2). As ex-

pected, the snow depth retrievals are available over the

Midwest, parts of theNortheast,High Plains, andwestern

United States. The soil moisture retrievals are available

over parts of the Mississippi basin, Midwest, and western

United States. Overall, most improvements from snow

depth DA are obtained over parts of the Missouri and

upperMississippi basins and the Northeast. Most notable

degradations in streamflow due to snow depth assimila-

tion are observed over the Colorado headwater region

and over the northwestern United States. This indicates

that the in situ bias correction with GHCN data is still

insufficient to provide subsequent skill improvements in

streamflow simulations over these areas. In these regions,

snow sampling representativeness is a known issue, where

the observations considerably undersample the highest

elevations, because of logistical constraints. The skill

improvements from soil moisture assimilation are mostly

over parts of theMississippi,Missouri andArkansas–Red

basins and parts of the southeastern United States. The

NSE values themselves have a large range among these

individual basins (not shown). As a result, even the

FIG. 4. Average seasonal cycle of (left) RMSE and (right) bias of snow depth estimates (mm) from the OL and snow

depth DA (DA-SNOW) integrations compared to the (top) CMC and (bottom) SNODAS products.
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normalized NIC metric values show more magnified

trends of improvement and degradation, compared to

those seen with NIC for RMSE and R.

2) EVALUATION AT MAJOR BASIN OUTLETS

In this section,wepresent an evaluationof the streamflow

estimates at several large basin outlets, where the modeled

streamflow estimates are compared against ‘‘naturalized’’

streamflowdata (withwatermanagement effects removed),

similar to the evaluations used in Mahanama et al. (2012).

Table 4 lists the details of the major basins examined in this

study. Note that the Ohio and Rio Puerco gauges are not

naturalized and were selected based on minimal diversion

upstream of the gauge.

Figure 6 shows the NIC values for RMSE, R, and NSE

at these major basin outlets from soil moisture and snow

depth DA. The basins are listed from left to right (in

Fig. 6) in the increasing order of their latitude location.

The trends in the figure indicate that skill improvements

from snow depth DA are generally obtained at higher

latitude basin outlets (e.g., Green River, Musselshell, and

Missouri River). Soil moisture assimilation also provides

skill improvements at several basin outlets, including

Apalachicola, Alabama, Willamette, and the Missouri at

Garrison, whereas degradations in skill metrics are ob-

served at a few outlets, including Rio Puerco, Red River,

Ohio, and the Missouri at Fort Peck. The largest basins

(based on basin area) among these are the Missouri at

Fort Randall Dam (RAN), Ohio (OHI), Missouri at

Garrison (GAR), and upper Mississippi (UPM), which

all have basin areas larger than 400000 km2. Soilmoisture

assimilation provides marginal improvements (in R) at

Garrison, with marginal degradations at Ohio and upper

Mississippi. Except at Garrison, snow DA leads to deg-

radations at all of these large basin outlets.

Asnoted inLohmann et al. (2004) andXia et al. (2012c),

the simulated streamflow skills in the NLDAS simulations

show large variations across the basins. They reported

differences by a factor of up to 4 inmodeled runoff relative

to the observations at some basins. Similar trends are ob-

served in our results, with large biases observed in the

model simulations at some basins such as at Rio Pureco,

Ohio, and upper Mississippi (not shown). Figure 7 shows

a comparison of the mean seasonal cycles of streamflow at

four basin outlets (Missouri at Fort Peck, Gunnison,

Green, and Musselshell). Except in the case of the Green

River, the impact of data assimilation is very small. At the

Green River outlet, snow DA helps in correcting a sys-

tematic phase shift possibly due to a late spring snowmelt in

theOL simulation. The impact of soil moistureDA, on the

other hand, is marginal and is primarily in modifying the

bias characteristics of theOL-based streamflow simulation.

d. Evaluation of drought estimates

The typical approach to characterizing drought is

through normalized indices that capture the deficits of the

water cycle variable of interest (e.g., precipitation, soil

moisture, or streamflow) from average conditions. As

presented in Heim (2002), there is a broad variety of

metrics that have been developed for drought quantifica-

tion, each with its own strengths and weaknesses. In this

section, we present an evaluation of the impact of data

assimilation on drought estimates through percentile-

based drought indices, used in the NLDAS drought

monitoring system (Ek et al. 2011; Sheffield et al. 2012).

The percentiles are calculated as follows: for the variable

TABLE 4. List of the major basins.

Station River name Lat (8N) Lon (8W) Basin area (km2)

1 (APA) Apalachicola River near Sumatra 29.95 85.02 49 728

2 (ALA) Alabama River near Claiborne 31.55 87.51 56 900

3 (RED) Red River near Arthur City 33.88 95.50 115 335

4 (PUE) Rio Puerco near Bernardo 34.41 106.85 19 036

5 (RAL) Arkansas River near Ralston 36.50 98.73 141 064

6 (LEE) Colorado River at Lees Ferry 36.87 111.58 289 562

7 (OHI) Ohio River at Metropolis 37.15 88.74 525 770

8 (UPM) Upper Mississippi near Grafton 38.90 90.30 443 660

9 (GUN) Gunnison River near Grand Junction 38.98 108.45 20 533

10 (POT) Potomac River at Point of Rocks 39.27 77.54 25 000

11 (DEL) Delaware River near Memorial Bridge 39.69 75.52 28 567

12 (SBB) Sacramento River near Bend Bridge 40.29 122.19 23 051

13 (GRE) Green River near Greendale 40.91 109.42 50 116

14 (RAN) Missouri River at Fort Randall Dam 43.07 98.55 682 465

15 (WIL) Willamette River near Oregon City 45.34 122.62 25 900

16 (ICE) Snake River at Ice Harbor Dam 46.25 118.88 281 015

17 (MUS) Musselshell River near Moseby 46.99 107.89 20 321

18 (GAR) Garrison Reservoir (Missouri River) 47.39 101.39 469 826

19 (FTP) Missouri River at Fort Peck Reservoir 48.04 106.36 149 070
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of interest (e.g., soil moisture) the climatology is generated

first, using daily outputs from 33yr of model simulations

from1979 to 2011, and for each grid point. The climatology

is generated by assembling the variable values for a par-

ticular calendar day across all 33 yr. To improve the sam-

pling density and to smooth out the record, a moving

window of 5 days is employed. For example, 3 January

climatology is assembled by using all the values from 1 to 5

January, across all years (leading to 5 3 33 5 165 values

for each calendar day). Once the climatology is assembled,

the daily percentile values are computed by ranking each

day’s estimate against the climatology.

Since 1999, the National Drought Mitigation Center

(NDMC) has been producing weekly estimates of

drought conditions through the USDM (Svoboda et al.

2002). Drought intensity is classified in the USDM into

five categories: D0 (abnormally dry, percentile#30%),

D1 (moderate drought, percentile #20%), D2 (severe

drought, percentile #10%), D3 (extreme drought,

percentile #5%), and D4 (exceptional drought, per-

centile #2%). In this section, we compare the weekly

percentage of area in drought over CONUS from

model simulations against data from the USDM ar-

chives (http://droughtmonitor.unl.edu/MapsAndData/

MapArchive.aspx) for these five categories, during the

time period of 2000–11. These weekly drought per-

centage area values are produced for six different

regions of the United States: South, Southeast,

Northeast, Midwest, High Plains, and West (as defined

in the USDM; Fig. 8).

Root-zone soil moisture estimates are frequently used

as leading indicators of agricultural drought (Bolten and

FIG. 6. Streamflow NIC values for (top) RMSE, (middle) correlation coefficient, and (bottom)

NSE from soil moisture DA and snow depth DA at major basin outlets listed in Table 4.
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Crow 2012), especially in warm seasons and climates.

Figure 9 shows a weekly time series of the drought area

percentage based exclusively on root-zone soil moisture

percentiles from the OL and DA integrations for the

South region of the USDM.We focus on the South region

first, since the effect of cold season processes is small, and

hence soil moisture percentiles alone are a good proxy for

drought, and also because this region provides sufficient

soil moisture retrievals for soil moisture DA. The per-

centage drought area estimates from the OL simulation

show high skills, as they match the corresponding drought

percentage areas from the USDM throughout the evalu-

ation period and across the five categories. As ex-

pected, the snow depthDA does not add any skill to the

estimates in this region. Soil moisture DA, on the other

hand provides added improvements, most notably in

the D0 and D1 drought categories. During the signifi-

cant drought events in 2006, 2008, and 2011, the

drought percentile areas from soil moisture DA are

systematically closer to the USDM values, relative to

the OL estimates. For more severe drought categories

(D2–D4), the added improvements from soil moisture

assimilation are marginal.

Quantitative evaluation of the drought area percent-

age values against the USDM for all six regions is

shown in Table 5 using R, RMSE, and bias estimates.

The highest skills in R values are observed in the South

region (with open-loop R values ranging from 0.73 to

0.91 across different drought categories). The other cli-

mate regions also show reasonably high skills, except in

a few cases (such as over the Northeast and Midwest for

D3 andD4 categories). Thoughminor, soil moistureDA

provides improvements in RMSE and bias for the OL

estimates over the South, Southeast, High Plains, and

West regions with degradations observed over the

Midwest. Even though the metrics in Table 5 generally

indicate trends of improvement (for soil moisture DA),

only a few are in fact statistically significant (as shown in

Table 5 in boldface). The results also indicate that the

impact in the root-zone soil moisture–based drought

percent area metrics from snow depth DA is small in

most regions, with some statistically significant degra-

dation noted over the Midwest and West regions.

Note that soil moisture DA employs the a priori

CDF-scaling approach, which rescales the observations

into the model’s climatology before assimilation. This

FIG. 7. Mean seasonal cycles of streamflow at the four major basin outlets listed: Missouri at Fort Peck, Gunnison, Green, and

Musselshell.
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ensures that the soil moisture climatology (relative to

the OL simulation) does not change in the DA in-

tegration and that the influence of data assimilation is

only to affect the temporal patterns of the anomalies.

As a result, the current assimilation strategy is unlikely

to show changes in drought estimates at long time

scales relative to the OL predictions and the influence

is likely to be more due to the soil moisture variations

at shorter time scales (as confirmed by the patterns in

Fig. 9).

Similar to Fig. 9, Fig. 10 presents the comparison of

weekly hydrological drought estimates computed based

on streamflow percentiles (instead of root-zone soil

moisture) against the USDM values. The patterns are

similar to those observed in Fig. 9, with improvements

due to soil moisture DA obtained most prominently in

categories D0–D2, indicating that soil moisture

DA generally helps in improving the detection of mod-

erate low-flow events. Quantitative statistics similar to

Table 5 were also obtained (not shown) for streamflow-

percentile-based drought area estimates. No significant

improvements in the streamflow-based drought percent

area estimates due to snow depth DA were obtained,

similar to the results shown in Table 5.

It is important to note that the drought percentage

area data from USDM for the D0–D4 designations do

not strictly map to a particular type of drought, though in

our comparisons we directly compare the root-zone soil

moisture– and streamflow-percentile-based drought

areas to this data. Soil moisture– and streamflow-based

percentiles alone are not necessarily equivalent to

USDM (though soil moisture is a good proxy in the

South region based on Fig. 9), which uses a blend of

indicators in addition to expert judgment. Though the

results in Fig. 10 are helpful for illustrating the impacts

of data assimilation, we cannot necessarily expect to

match the USDM data with the drought area estimates

based solely on streamflow.

A comparison of the spatial distribution of drought

intensities is presented in Fig. 11 for three cases in the

years 2006, 2008, and 2011. The figure shows the drought

percentiles from the OL and soil moisture DA in-

tegrations against the corresponding drought intensity

map obtained from the USDM archives. Maps generated

using both root-zone soil moisture– and streamflow-

based percentiles are shown in Fig. 11. These figures

illustrate the added impact of soil moisture DA for im-

proving drought estimates. For the 18–25 July 2006 case,

soil moisture assimilation provides a better estimate of

drought severity, especially for D1 and D0 categories

(over Texas, Nebraska, and North and South Dakota),

consistent with the USDM estimate. For the 2008 case,

the DA integration predicts more intense drought over

North Dakota and Montana, reduces the severity over

Nevada, and increases the spatial extent of drought

over Texas and New Mexico, all consistent with the

USDM map. Both the model-based estimates do not

capture very well the spatial pattern of the intense

drought for the 2011 case. Nevertheless, DA-based esti-

mates show increased severity of drought over Texas and

Oklahoma relative to the open loop. The streamflow-

based drought intensity maps also show similar trends. In

all three cases, the OL-based estimates show less severe

drought over Texas compared to the USDM, and DA

leads to an increase in the drought intensity estimates. In

the 2006 case, for example, the OL-based estimate shows

most of Texas not even in the D0 category, whereas DA-

based estimate indicates increased spatial extent of

drought. In these three cases, note that the differences in

the drought estimates between the soil moisture DA and

OL is higher over Mexico than that over the CONUS

(with DA-based estimates generally indicating more

FIG. 8. Six geographical regions of the CONUS defined in the USDM: West, High Plains,

Midwest, Northeast, South, and Southeast. Note that the area marked by the purple color is

included in both West and High Plains regions (defined by USDM).
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FIG. 9. Time series of the drought area percentage (based on root-zone soil moisture per-

centiles) from the OL, snow depth (DA-SNOW), and soil moisture (DA-SM) DA integrations

for the South region of theUnited States, andUSDM for a time period of 2000–12: (from top to

bottom) percentiles D0–D4.
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severe drought over Mexico for these three cases). The

precipitation data over Mexico in NLDAS-2 is likely to

be of lower quality (compared to that over the CONUS)

because of the reduced gauge coverage and the lack of

the spatial adjustment using PRISM climatology (Xia

et al. 2012a). It can be surmised that the corresponding

lower quality in the drought estimates is improved by soil

moisture DA, though a quantitative evaluation over

Mexico is not presented here.

5. Summary

This article examines the impact of incorporating re-

motely sensed soil moisture and snow depth retrievals

for improving land surface model estimates and their

subsequent contribution toward improved estimation of

agricultural and hydrological droughts. The study is

conducted over the CONUS using the NLDAS-2 domain

configuration and datasets, with the Noah land surface

model.Over a time period from 1979 to 2011, a number of

passive microwave–based soil moisture and snow depth

datasets is assimilated into the model, using a 1D en-

semble Kalman filter algorithm.

The model simulations and the added impact of data

assimilation on the land surface model estimates are

evaluated using a wide range of independent datasets.

Soil moisture estimates from the model integration

without data assimilation were found to have high skills

TABLE 5. Comparison of theR, RMSE (%), and bias (%) of the drought percentage area (based on root-zone soil moisture percentiles)

against the USDMestimates from theOL, soil moisture (DA-SM), and snow depth (DA-SNOW)DA integrations for the six U.S. regions

used in the USDM. Statistically significant improvements (degradations) relative to OL at the 5% level are shown in boldface (boldface

italic).

R RMSE Bias

OL DA-SM DA-SNOW OL DA-SM DA-SNOW OL DA-SM DA-SNOW

South

D0 0.91 0.90 0.91 15.7 12.8 15.0 11.2 5.0 10.1

D1 0.91 0.89 0.91 11.1 11.1 10.7 4.7 20.1 4.0

D2 0.89 0.89 0.89 9.9 9.2 9.7 3.8 1.2 3.3

D3 0.78 0.80 0.78 9.0 8.5 9.0 0.5 20.7 0.3

D4 0.73 0.73 0.73 6.7 6.7 6.7 20.4 20.8 20.5

Southeast

D0 0.83 0.85 0.83 22.6 20.9 22.3 12.9 11.2 12.7

D1 0.79 0.81 0.79 18.0 16.9 18.0 6.0 4.7 5.9

D2 0.74 0.76 0.75 14.2 13.6 14.1 4.8 3.9 4.8

D3 0.71 0.72 0.71 8.8 8.6 8.8 1.4 0.9 1.3

D4 0.70 0.72 0.70 4.4 4.4 4.4 20.4 20.6 20.4

Northeast

D0 0.77 0.77 0.77 17.0 17.0 17.5 26.4 26.5 27.5

D1 0.72 0.72 0.72 16.5 16.6 17.6 29.6 29.7 210.6

D2 0.62 0.63 0.65 12.0 12.0 12.6 25.7 25.8 26.3

D3 0.46 0.46 0.50 9.4 9.4 9.9 23.8 23.8 24.1

D4 0.06 0.06 0.07 5.7 5.8 6.0 21.8 21.8 22.0

Midwest

D0 0.84 0.82 0.83 10.6 11.5 11.3 0.2 22.7 22.0

D1 0.81 0.79 0.79 10.2 12.2 11.8 25.9 28.1 27.5

D2 0.74 0.71 0.72 7.6 9.1 8.8 24.7 25.9 25.5

D3 0.31 0.27 0.30 6.3 7.3 7.1 23.5 24.2 24.0

D4 0.16 0.14 0.16 3.3 3.7 3.6 21.8 22.0 22.0

High Plains

D0 0.66 0.66 0.64 32.1 27.6 32.3 25.3 19.3 24.9

D1 0.62 0.62 0.55 24.6 22.3 25.7 14.3 10.1 14.4

D2 0.61 0.57 0.52 19.8 18.9 20.7 11.0 8.8 11.2

D3 0.52 0.43 0.46 11.6 11.9 12.1 4.1 3.0 4.3

D4 0.55 0.40 0.54 2.7 3.2 2.6 20.5 20.9 20.4

West

D0 0.57 0.61 0.51 30.3 25.9 32.2 24.1 19.7 25.6

D1 0.54 0.57 0.49 25.3 23.1 26.7 15.7 12.4 16.7

D2 0.53 0.54 0.51 21.9 21.3 22.5 12.6 11.1 13.1

D3 0.51 0.47 0.51 11.9 12.1 12.0 4.0 3.4 4.3

D4 0.43 0.41 0.44 3.9 3.2 3.6 21.5 21.6 21.3
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when compared to the USDA ARS and SCAN in situ

soil moisture measurements. Data assimilation provides

marginal improvements to these already highly skilled

estimates of soil moisture. Snow depth DA integrations

were conducted by first augmenting the passive micro-

wave retrievals with available in situ measurements of

snow depth from GHCN data. This approach is consis-

tent with earlier studies and the strategy used in several

FIG. 10. As in Fig. 9, but for streamflow percentiles.
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operational agencies to improve the known poor skill of

the passivemicrowave snow depth estimates. To provide

an independent assessment of the snow depth fields,

analysis products from CMC and SNODAS were used.

These comparisons indicate that improvements in snow

depth estimates, consistent with CMC and SNODAS

products, were obtained from assimilation.

To provide an independent measure of the improve-

ments from data assimilation, we examined the impacts

on the routed streamflow estimates by comparing them to

the streamflowmeasurements from available unregulated

USGS stations. The improvements from both sets of as-

similation were minor across most basins, with soil mois-

ture DA providing more consistent improvements by

improving R, RMSE, and NSE metrics over the open

loop. The downstream impacts in streamflow due to snow

depth DA were mixed, with an overall degradation in

the RMSE and NSE skill metrics. Some of the significant

FIG. 11. Comparison of the drought percentile maps from OL and soil moisture DA integrations against the corresponding USDM

estimate for (from top to bottom) three representative cases. For each case, the top row represents the root-zone soil moisture–based

percentiles and the bottom row represents the streamflow-based percentiles. The colors used to represent theD0–D4 percentiles run from

white to brown.
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degradation in streamflow due to snow depth DA was

observed over the western United States, indicating that

additional enhancements (either gauge or ancillary data

based) to the snow depth retrievals and/or bias correction

methodologies may be required in those regions.

The influence of data assimilation on improving

drought estimates was examined using the root-zone soil

moisture– and streamflow-based percentiles. As the time

period of data (1979–2011) can be considered rather short

for the computation of percentiles, we employ a 5-day

movingwindowapproach to increase the sampling density

in these calculations. A quantitative evaluation of the

percentage area in drought for five drought severity cat-

egories was examined by comparing the model-based es-

timates against corresponding USDM archived data.

Over areas with warm climate and seasons (such as the

South region of the USDM), root-zone soil moisture–

based percentiles sufficiently capture the spatial distribu-

tion and intensities of drought, as evidenced from the high

skills of the OL integration. Soil moisture DA provided

added improvements to the percent area estimates with

smaller enhancements for more severe drought cate-

gories. Improvements in the representation of spatial

patterns of drought were also obtained from soil moisture

DA. The impact of snow depth DA, however, was small

and in many instances was found to cause degradations in

the estimates of drought area percentages.

In the drought evaluations, we directly compare the

root-zone soil moisture–based and streamflow-percentile-

based drought area to theUSDMdata. As the operational

USDM data are generated using a blend of different in-

dicators and subjective analysis, we do not expect our

single-variable-based drought estimates to match the

USDM perfectly. The results in Fig. 9, however, support

our basic methodology that soil moisture percentiles are

a primary indicator of drought in warm seasons and cli-

mates. In other regions, a blend of different indicesmay be

more appropriate if direct comparisons to the USDM are

employed, as done inmore recent studies, such asXia et al.

(2014).

Our results also indicate that the improvements in

drought estimation from soil moisture DA were largely

at short time scales. This was expected as the strategy of

scaling observations for a priori bias correction prevents

changes in the model climatology and assimilation im-

pacts at long time scales. Development and application

of DA techniques that include notions for handling

biases during data assimilation may be required if data

assimilation is employed for generating trends at longer

time scales.

The data assimilation experiments presented in this

article employed separate instances for soil moisture

and snow depth DA, which are helpful for isolating the

impact of each assimilation scenario in different seasons

and geographic regions. The present study is therefore

an important step toward the development of a system

that is capable of simultaneously assimilating both types

of data, which is left for future work.
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