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ABSTRACT

Observing system simulation experiments (OSSEs) are often conducted to evaluate the worth of existing data

and data yet to be collected from proposed new missions. As missions increasingly require a broader ‘‘Earth

systems’’ focus, it is important that the OSSEs capture the potential benefits of the observations on end-use

applications. Toward this end, the results from the OSSEs must also be evaluated with a suite of metrics that

capture the value, uncertainty, and information content of the observations while factoring in both science and

societal impacts. This article presents a soil moisture OSSE that employs simulated L-band measurements and

assesses its utility toward improving drought and flood risk estimates using theNASALand Information System

(LIS). A decision-theory-based analysis is conducted to assess the economic utility of the observations toward

improving these applications. The results suggest that the improvements in surface soil moisture, root-zone soil

moisture, and total runoff fields obtained through the assimilation of L-band measurements are effective in

providing improvements in the drought and flood risk assessments as well. The decision-theory analysis not only

demonstrates the economic utility of observations but also shows that the use of probabilistic information from

the model simulations is more beneficial compared to the use of corresponding deterministic estimates. The

experiment also demonstrates the value of a comprehensive modeling environment such as LIS for conducting

end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms, and end-use

application models in a single integrated framework.

1. Introduction

The need for accurate estimates of soil moisture con-

ditions is well established, as it is important for a variety

of science and applications. Soil moisture influences the

partitioning of heat andmoisture at the land–atmosphere

interface (Cohen and Entekhabi 1999; Koster et al. 2004;

Seneviratne et al. 2006) and in the redistribution of

rainfall into infiltration and runoff. Root-zone soil mois-

ture has been shown to influence subseasonal prediction

of precipitation because of its persistent memory over

longer time scales (Dirmeyer 2003). As a result, nu-

merical weather prediction (NWP) and seasonal climate

prediction models require accurate specification of soil

moisture conditions for forecast initialization. In addi-

tion, estimates of moisture conditions are also required

for supporting a variety of societal applications ranging

from water resources, agricultural, and natural hazards

management to military mobility and famine warning

assessments (Engman 1991; Norbiato et al. 1996; Beck
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et al. 2000; Sheffield et al. 2004; Bolten et al. 2010;

Entekhabi et al. 2010).

Because of the high spatial and temporal variability of

soil moisture, long-term, consistent measurements of soil

moisture are not typically available. Passive microwave

radiometry has been used to generate estimates of near-

surface soil moisture from a number of sensors in the past

30 years (Jackson 1993; Njoku and Entekhabi 1996), in-

cluding the Scanning Multichannel Microwave Radiom-

eter (SMMR; 1978–87), the Special Sensor Microwave

Imager (SSM/I; since 1987), the Tropical Rainfall Mea-

suring Mission (TRMM) Microwave Imager (TMI; since

1997), the Advanced Microwave Scanning Radiometer

for the Earth Observing System (AMSR-E; 2002–11),

scatterometer-based products from European Remote

Sensing Satellites 1 and 2 (ERS-1 and ERS-2; 1991–2006),

and the Advanced Scatterometer (ASCAT; since 2007).

These sensors provided estimates of soil moisture from

X-band (;10GHz) and C-band (;6GHz) microwave

radiometers. However, none of these sensors were spe-

cifically designed to measure soil moisture until the

launch of the Soil Moisture Ocean Salinity (SMOS; since

late 2009) from the European Space Agency (ESA),

which provides global observations for soil moisture and

salinity from an L-band radiometer. Compared to the X

and C bands, the L-band-based measurements have re-

duced attenuation of the signal under moderate vegeta-

tion conditions and increased penetration depth for

retrievals. The upcoming Soil Moisture Active Passive

(SMAP) mission (Entekhabi et al. 2010) follows a similar

approach by integrating an L-band radar and an L-band

radiometer as a single observation system by combining

the strengths of active and passive remote sensing. This

approach enables the accuracy of radiometer-only re-

trievals, at a higher resolution facilitated by the radar.

The SMAP L-band radiometers are expected to provide

data products with a 1–3-day global revisit time at spatial

resolutions of about 35 km.

A common approach used to objectively assess the

potential benefit of satellite observations is through

observing system simulation experiments (OSSEs).

Given the great resources required to implement

Earth Observing System (EOS) missions (NRC 2010),

the National Aeronautics and Space Administration

(NASA) and other agencies conduct OSSEs to esti-

mate the value of proposed missions (Arnold and Dey

1986), and such experiments have been reported in

preparation for SMAP (Crow et al. 2009; Konings 2009;

Piles et al. 2009). A typical OSSE includes the follow-

ing components: 1) a ‘‘nature’’ or a ‘‘truth’’ run, which

is a free-running simulation of the physical model with

high-quality inputs and without data assimilation;

2) simulated observations, which are generated from

the truth run after incorporating realistic errors and

limitations of the observing system; 3) an open-loop

(OL) simulation that employs a set of lower-quality

inputs with a different physical model and without data

assimilation; and 4) a data assimilation (DA) in-

tegration that assimilates the simulated observations in

the OL configuration. The DA and OL integrations are

then compared against the known truth from the first

component to evaluate the relative impact of simulated

observations. Though a number of studies have examined

the use of such ‘‘classic’’ OSSEs for assessing the worth

of soil moisture measurements (Crow et al. 2001, 2005;

Reichle et al. 2008; Kumar et al. 2009), they have focused

primarily on quantifying the improvements to state var-

iables such as root-zone soil moisture that are directly

connected to surface soil moisture measurements. Few

studies have focused on quantifying the downstream

improvements in fluxes, runoff, or streamflow, or on

coupled hydrometeorological prediction from soil mois-

ture measurements, and fewer still have attempted to

fully quantify economic benefit (Arnold and Dey 1986;

Fritz et al. 2008). Nevertheless, as the justification of

missions is often made based on broader societal appli-

cations, it is imperative that the OSSEs also capture the

potential benefits of observations on actual end-use ap-

plications. Here, the end-use applications considered are

droughts and floods.

The first contribution of this article is the development

of an L-band OSSE to measure improvement in the esti-

mation of the risk of drought and floods. Drought and

floods are arguably the two most societally important hy-

drologic applications, impacting famine conditions, water

availability, diseases, and wildfires, among others. Here,

the impact of simulated L-band radiometer brightness

temperature observations on drought and flood risk esti-

mation is quantified. This work builds off of previous work

making L-band OSSEs more meaningful to hydrology

and hydrology-related applications. As L-band measure-

ments are most sensitive to surface soil moisture, L-band

OSSEs (e.g., Crow et al. 2001, 2005) initially were

confined to surface soil moisture. With the assimilation

of L-band measurements into land surface models

(LSMs; e.g., Balsamo et al. 2006; Reichle et al. 2008),

OSSEs then were extended to root-zone soil moisture

that is of greater relevance to many applications. Here, we

extend L-band OSSEs further by translating improve-

ments obtained in soil moisture and runoff estimates to

improvements in drought and flood risk estimation.

The second contribution of the article is the application

and demonstration of decision-theory-based OSSE met-

rics that address weaknesses of convention metrics. The

commonly reported metrics, which include RMSE and

anomaly correlation, may not be suited for capturing
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impact to hydrological applications. For example, im-

plicit in the reporting of RMSE is an equal penalty for

overestimation and underestimation (Berger 1985). But

for floods (and likely droughts), the loss associated with

underestimating severity is not equivalent to that of

overestimation (Krzysztofowicz 1998, 2010). Moreover,

in applying RMSE, there is no tangible connection with

drought or flood decision-making that is easy to com-

municate with mission decision makers. To address this,

we demonstrate the application of a simple value-of-

information (VOI) metric that draws from statistical

decision theory. The VOI metric considers a range of

important (albeit simplified) information, including the

cost of actions to protect against drought and flood events,

losses should the events occur, and their probability of

occurrence. Here, a straightforward cost–loss model is

applied (Murphy 1977; Katz and Murphy 1997), which is

generic enough to use for a range of applications beyond

droughts and floods. The basic approach demonstrated

could also be tailored to more specific drought and flood

decision-making contexts (e.g., water transfers and reser-

voir management), as demonstrated by Thornes and

Stephenson (2001), Mullen and Buizza (2002), and Yuan

et al. (2005) for weather forecasting; Pagowski and Grell

(2006) for air quality forecasting; Roulin (2007) for flood

forecasting; and McCollor and Stull (2008) for reservoir

management. Such ‘‘decision theoretic’’ approaches have

been explored for water resources management applica-

tions (James and Freeze 1993; Hobbs 1997; Harrison 2007;

Wang and Harrison 2013).

The article is organized as follows. A brief description of

the modeling system, the drought and flood risk assess-

ment methodology, and the decision-theory-based eco-

nomic model is presented in section 2. This is followed by

a description of the experimental setup of the OSSE in

section 3. Section 4 presents the results, and the major

conclusions are presented in section 5.

2. Background

a. Land Information System

The OSSE is conducted using the capabilities of the

NASALand Information System (LIS), which is an earth

science observation-driven hydrological modeling and

data assimilation framework. LIS provides the modeling

and computational capabilities to merge observations

and model forecasts to generate spatially and temporally

coherent estimates of land surface conditions. A sche-

matic of the LIS framework is shown in Fig. 1, which

includes a comprehensive suite of subsystems to support

land data assimilation. The central part of the system is

the LIS-LSM subsystem that includes several community

LSMs and supports their application over user-specified

domains and resolutions supported by the background

data. The data assimilation (LIS-DA) subsystem sup-

ports multiple data assimilation algorithms that are

focused on generating improved estimates of hydro-

logic model states (Kumar et al. 2008). More recently,

the LIS-DA subsystem was enhanced through the

incorporation of a suite of radiative transfer models

(LIS-RTM) that enables the direct use of raw satellite

observations for data assimilation. The optimization

(LIS-OPT; Kumar et al. 2012) and uncertainty esti-

mation (LIS-UE; Harrison et al. 2012) subsystems help

in improving the representation of model parameters

and for quantifying uncertainty in model predictions.

Finally, during the period of LIS development, the ability

to directly couple LSMs to a number of end-use applica-

tion models has also been developed (LIS-APP) to enable

the estimation of landslide forecasts, food security, mo-

bility assessment, floods, and droughts, among others.

The integrated modeling, multiscale resolution, en-

semble capabilities, and algorithms for exploiting

space-based observations make LIS an ideal platform

for conducting OSSEs for hydrology missions. In this

article, we employ these capabilities toward an end-to-

end OSSE that connects the raw L-band soil moisture

observations to applications of droughts and floods

through various LIS subsystems (LIS-RTM, LIS-DA,

LIS-LSM, and LIS-APP).

b. Forward microwave emission modeling

The Community Microwave Emission Modeling plat-

form, version 3.0 (CMEM; http://old.ecmwf.int/research/

data_assimilation/land_surface/cmem/cmem_source.

html) (Holmes et al. 2008;Drusch et al. 2009) implemented

within the LIS-RTM subsystem, which includes a first-

order t–v forward microwave emission model, is used to

simulateL-band radiances. Thismodel generates estimates

of L-band brightness temperature Tb at the top of the at-

mosphere using inputs of soil moisture, soil temperature,

vegetation water content, and air temperature. The vari-

able Tb,p at the top of the atmosphere (where the subscript

p denotes either a horizontal or vertical polarization) is

generated as follows:

Tb,p5Ts(12rp)exp[2tp/cos(f)]1Tc(12vp)

3f12exp[2tp/cos(f)]gf11rp exp[2tp/cos(f)]g ,
(1)

whereTs is the surface soil temperature,Tc is the canopy

temperature, rp is the rough surface reflectivity, vp is the

scattering albedo, tp is the vegetation opacity, and f is

the incidence angle. The vegetation opacity is defined as
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a function of a vegetation structure parameter bp and the

total-column vegetation water content W:

tp 5 bpW . (2)

The rough surface reflectivity is derived from the

smooth surface reflectivity rs, as a function of the

roughness parameter h. Inputs of soil moisture, soil

temperature, vegetation water content, and air temper-

ature are provided from the LSM, and the default values

provided in CMEM are used for the RTM parameters.

As many RTM parameters in CMEM are defined as a

function of vegetation [using the University of Maryland

land cover map classification (Hansen et al. 2000)], we

use the same land cover map in the LSM simulations

to ensure consistency across the LSM and the RTM

simulations.

c. Assessment of droughts and flood risks

Droughts are typically quantified through normalized

indices that capture deficits of the water cycle variable of

interest (e.g., precipitation, soil moisture, and runoff)

from average conditions (Keyantash and Dracup 2002).

Root-zone soil moisture percentile–based drought in-

dices are often used to monitor agricultural drought

(Mo 2008), as done in the North American Land Data

Assimilation System (NLDAS) experimental drought

monitor (Xia et al. 2014; Sheffield et al. 2012). Though the

standard practice is to use such indices to measure

droughts, they can also be used to quantify wetter-than-

normal conditions (Seiler et al. 2002; Zhang et al. 2009)

that lead to flood situations. In this article, we use root-

zone soil moisture–based percentiles to quantify droughts

and total runoff–based percentiles to quantify flood risks

of varying severity.

There are numerous studies, using both synthetic

and real soil moisture retrievals, that have shown

benefits from soil moisture data assimilation (e.g.,

Drusch et al. 2005; Reichle et al. 2007; Kumar et al.

2008; Liu et al. 2011; Peters-Lidard et al. 2011; Draper

et al. 2012). These studies demonstrate improvements

not only in near-surface soil moisture fields, but also in

fields that are connected to the observations through

modeled processes, such as root-zone soil moisture

(Kumar et al. 2009). All these studies, however, are

focused on quantifying the improvements to the

mean soil moisture fields from DA. As drought and

flood risk assessments are derived based on the tails of

the soil moisture and runoff distribution, the contri-

bution of the soil moisture retrievals for improving the

extremes of the distribution must be explicitly quan-

tified, which is difficult to do in real DA systems be-

cause of the lack of sufficient, verifiable measurements

of drought and flood risk assessments. In a more recent

study, Kumar et al. (2014) examined the contribution

of passive microwave soil moisture assimilation for

improving drought estimation in the NLDAS system.

This study employed an indirect assessment of the

improvements in drought estimates from DA by

comparing them against drought-area estimates from

the U.S. Drought Monitor (USDM; Svoboda et al.

2002) and demonstrated that assimilation was effective

in providing improvements in drought estimation at

short time scales. The synthetic OSSE setup, on the

other hand, provides the opportunity for direct quan-

tification of the contribution of soil moisture retrievals

toward improving the extremes of the soil moisture

distribution. In the current study, we use the OSSE

framework to examine the improvements in drought and

flood risk assessments from the assimilation of L-band

measurements.

FIG. 1. Illustration of the key LIS subsystems that enable the OSSE. LIS-LSM represents the land surface modeling subsystem; LIS-

RTM represents the suite of radiative transfer models; LIS-DA represents the data assimilation infrastructure; LIS-OPT and LIS-UE

represent the optimization and uncertainty estimation subsystems, respectively; and LIS-APP represents the collection of end-use ap-

plication models.
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d. Decision-theory model for economic assessment

In this study, we use a simple decision-analytic cost–

loss-ratio model (Murphy 1977; Katz and Murphy 1997)

to quantify the economic benefit of L-band soil moisture

observations for improving drought and flood risk esti-

mations. As described in Richardson (2011), the cost–

loss model assumes that a decision maker has a number

of alternative courses of action from which to choose,

and the choice is influenced by the model forecast. Each

course of action has an associated cost that subsequently

leads to an economic benefit (if the model prediction

actually occurs) or loss (if the model prediction is in-

correct). The cost–loss model can be represented by a

2 3 2 contingency table as shown in Table 1. For ex-

ample, if an event occurs and action to mitigate it was

taken, then a cost of C is incurred. On the other hand, if

the event occurs and no action was taken, a loss of L

would be incurred. Note that if mitigation is done based

on themodel forecast, a cost ofCwill always be incurred,

irrespective of whether the event actually occurred or

not. For the case in which the model forecast correctly

did not indicate the occurrence of the event and no action

was taken (again correctly), no cost is incurred. The total

number of each event–action pair shown in the contin-

gency table is represented by NTP (number of true pos-

itives where themodel correctly forecasts the occurrence

of an event), NFP (number of false positives where the

model does not predict the occurrence of an event),NFN

(number of false negatives where the model incorrectly

predicts an event), and NTN (number of true negatives

where the model correctly predicts a nonevent). The

numbers NTP and NFP contribute to mitigation costs,

NFN contributes to losses, and NTN does not incur any

additional costs. The total cost associated with a partic-

ular model forecast is determined as

Cost5NTPC1NFPC1NFNL . (3)

Following Table 1, we determine the total cost in-

curred from both the OL and the DA integration on the

basis of howwell each integration captures each drought

and flood event indicated by the nature run. The VOI

from the L-band observations is then determined by

VOI5
CostOL2CostDA

CostOL

, (4)

where CostOL andCostDA are the total costs from theOL

and the DA integration, respectively. The two cost terms

are computed by accumulating the costs associated with

each drought and flood risk event during the 1980–2012

period. Note that in this simple formulation, we assume

that the costs and losses are spatially and temporally

homogeneous. The VOI metric thus provides a measure

of how much the observations contribute to reducing the

overall costs. If DA always provides a reduction in costs

over the OL, then we have VOI $ 0 (for VOI 5 0, DA

does not add any value to the assimilation product, and

negative values of VOI indicate degradations due to data

assimilation). A larger value of VOI indicates a greater

reduction in costs and therefore a greater value of the

information.

Decision-theoretic metrics do not suffer from the

weaknesses of conventional accuracy metrics that are

typically reported in OSSEs. RMSE, for example, im-

plicitly assumes a symmetric loss function (quadratic),

for which the losses of underestimation are the same as

those of overestimation (Berger 1985). However, in

hydrologic applications, the loss function is generally

believed to be asymmetric (Krzysztofowicz 2010), and

this is particularly true for extreme events such as

droughts and floods: viewing the events as binary in

nature, the cost of a false dismissal far exceeds that of

a false alarm. The application of the cost–loss model

captures this asymmetry. Though cost–loss models

have been applied in assessments of the value of

probabilistic hydrometeorological forecasts (McCollor

and Stull 2008; Palmer 2002; Richardson 2001), they

have not been incorporated into remote sensing OSSEs

to our knowledge.

The cost–loss model used here reflects the simplest of

decision models, representing the decision as binary—

mitigating against a protectable loss (or not) at a cost

C—and the event as binary; that is, the event occurs (or

not) at some probability p, incurring loss L (see Fig. 3).

The cost incurred for every event is either C or L de-

pending on whether the model integration correctly

predicted the event or not. The cost–loss model could be

applied in two different ways: 1) in a ‘‘deterministic’’

manner, where the ensemble-mean estimates from the

OL andDA integrations can be used in a binary decision

tree model (where p is always either 0 or 1), and 2) in

a ‘‘probabilistic’’ model, where the p is diagnosed from

theOL orDA ensemble. A separate estimate of drought

TABLE 1. A 23 2 contingency table used in the cost–loss model

where C and L represent the costs and losses for a single event for

different decisions. The number of events is given for TP (true

positives), FP (false positives), FN (false negatives), and TN (true

negatives).

Drought or

flood occurs

Yes No

Model forecast and

action taken

Yes NTP (C) NFP (C)

No NFN (L) NTN (0)
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and flood risk assessment is made based on each en-

semble member, and the probability of a drought or

flood-risk event is diagnosed by looking across the en-

semble. The incurred cost is computed as the minimum

of C and pL. In other words, the strategy will be to

mitigate (and incur the cost ofC) if p.C/L and to incur

the loss if p, C/L. The total costs (CostOL and CostDA)

are then computed by summing the incurred costs across

all drought or flood risk events, and the value of in-

formation metric is computed as in Eq. (4).

3. Experimental setup

In this study, the model simulations are conducted on

a domain over the continental United States (CONUS)

at 35-km spatial resolution, which is the approximate

resolution of the L-band observations from the SMAP

radiometer. The structure of the OSSE (shown in Fig. 2)

is as follows.

1) A soil moisture simulation is conducted with the

Mosaic LSM, using the NLDAS-2 forcing data (Xia

et al. 2012) as meteorological inputs to generate the

assumed ‘‘true’’ state of the land surface. The for-

ward t–vmodel described in section 2 is then used to

generate truth L-band Tb,p for p 5 [H, V] values.

2) L-band Tb,p observations are then generated from

this simulated truth by introducing realistic retrieval

errors.

3) OL and DA integrations are conducted using the

Noah LSM forced with Modern-Era Retrospective

Analysis for Research and Applications (MERRA)

land (Reichle et al. 2011) data over the same domain.

The MERRA-Land data were time shifted by 7 days

to purposely degrade the skill of the OL integration,

similar to the strategy used in Reichle et al. (2008). In

the DA integration, the Tb,p observations generated

in step 2 are assimilated into the Noah LSM, using

the OL configuration.

As OSSE may overestimate the benefit of observations

when the same physical model is used in the nature run

and in the data assimilation integration (Kumar et al.

2009), here we use a fraternal-twin setup, where two

different models (Mosaic and Noah) are used in the

experiments. The vertical soil structures of Noah and

Mosaic are different, with Noah using four soil layers of

increasing thicknesses of 10, 30, 60, and 100 cm and

Mosaic LSM using three soil layers with thicknesses of 2,

148, and 200 cm. All model and assimilation integrations

are conducted over a 33-yr period spanning 1 January

1980 to 31 December 2012, and the initial states for the

model simulation on 1 January 1980 are generated by

cycling the respective model two times through this

same 33-yr period.

The data assimilation integration employs a one-

dimensional ensemble Kalman filter (EnKF) algorithm,

which is a widely accepted technique for the sequential

assimilation of hydrologic variables (Reichle et al. 2002;

Reichle 2008) and has been used for the assimilation of soil

moisture, skin temperature, and snow observations (Crow

and Wood 2003; Reichle et al. 2007; Kumar et al. 2009;

FIG. 2. Flow diagram for the OSSE.
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Reichle et al. 2010; De Lannoy et al. 2012; Liu et al. 2013).

An ensemble size of 100 is used in the simulations, with

perturbations applied to both meteorological fields and

model prognostics fields to simulate uncertainty in the

model estimates. The parameters used for the perturba-

tions are listed in Table 2. Zero-mean, normally distrib-

uted additive perturbations are applied to the downward

longwave radiation forcing, and lognormal multiplicative

perturbations with a mean value of 1 are applied to the

precipitation and downward shortwave radiation fields.

The surface soil moisture layer in Noah is also perturbed

with additive noise, as shown in Table 2. Note that most

DA studies in literature use ensemble size on the order of

10–20 (Kumar et al. 2008), and here we use a larger en-

semble size to ensure adequate sampling density in the

probabilistic cost–loss model computations.

A set of preprocessing steps is applied to the synthetic

retrievals generated from the Mosaic LSM and t–v for-

ward model integration. To account for difficulties in re-

trieving soil moisture products from microwave sensors,

the synthetic observations aremasked out when the green

vegetation fraction values exceed 0.7 and when snow or

precipitation is present. Random Gaussian noise with an

error standard deviation of 1.3K is added to the Tb,p

values to mimic measurement uncertainties. This error

standard deviation is chosen as an estimate of the ex-

pected error level in the Tb retrievals from the upcoming

SMAP spaceborne L-band radiometer (Chan et al. 2012).

Data assimilation methods including EnKF are only

designed to correct random errors in the model back-

ground and assume that the model and observations are

climatologically unbiased relative to each other. A stan-

dard practice used in soil moisture data assimilation

studies is to scale the observations into the model cli-

matology prior to DA. Here we adopt the a priori scaling

method of Reichle and Koster (2004), where the obser-

vations are scaled to the model’s climatology so that the

cumulative distribution functions (CDFs) of the obser-

vations and the model match for each grid point. The

model CDF is generated from the simulated Tb values

from the t–v model based on the Noah OL integration.

The scaling is performed for the Tb values separately for

each polarization.

To generate drought and flood risk estimates,

percentile-based indices are generated using the root-

zone soil moisture and total runoff values from the

model integrations (Fig. 2). Root-zone soil moisture in

this article is defined as the soil moisture content in the

top 1m of the soil column, derived as a suitably weighted

vertical average over the model layers that are within

the top 1m of the soil column, and the total runoff is

defined as the sum of the surface and baseflow runoff

components. The percentiles are calculated as follows.

The climatology of the variable (root-zone soil moisture

or total runoff) for the calculation of percentiles is

generated first, for each grid point. For each calendar

day, the daily-averaged variable values across all 33

years are assembled. To improve the sampling density,

a moving window of 5 days is employed. For example,

3 January climatology is assembled by using all the

values from 1 to 5 January, across all years (leading to

5 3 33 5 165 values for each calendar day). Once the

climatology for each day is assembled, the daily per-

centile values are computed by ranking each day’s root-

zone soil moisture or total runoff estimate against the

corresponding climatology.

From the time series of percentiles, estimates of drought

and flood risk conditions of different intensities are gen-

erated, similar to the convention used by the National

Drought Mitigation Center (NDMC) to produce drought

estimates in the USDM (Svoboda et al. 2002). Drought

intensity in the USDM is classified into five categories: D0

(abnormally dry, root-zone soil moisture percentile #

30%), D1 (moderate drought, percentile #20%), D2

(severe drought, percentile#10%), D3 (extreme drought,

percentile#5%), andD4 (exceptional drought, percentile

#2%). In addition, we extend this definition to generate

a similar set of estimates for flood risk conditions of five

different intensities based on total runoff–based percentiles:

F0 (total runoff percentile $70%), F1 (percentile $80%),

F2 (percentile $90%), F3 (percentile $95%),

percentile and F4 (percentile $98%). The OL and DA

TABLE 2. Parameters for perturbations to meteorological forcings and model prognostic variables in the EnKF assimilation experiments.

Variable Perturbation type Std dev Cross correlations with perturbations in

Meteorological forcings SWY LWY PCP

Downward shortwave (SWY) Multiplicative 0.3 1.0 20.5 20.8

Downward longwave (LWY) Additive 50Wm22 20.5 1.0 0.5

Precipitation (PCP) Multiplicative 0.50 20.8 0.5 1.0

Noah LSM soil moisture states sm1

Total soil moisture: layer 1 (sm1) Additive 9.0 3 1023m3m23 1.0
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integration–based drought (D0–D4) and flood risk (F0–

F4) estimates are compared against those from the na-

ture run to quantify the impacts of L-band observations

toward drought and flood risk assessments.

Finally, the cost–loss model described in section 2 is

applied to compute the associated incurred costs from the

truth run and OL and DA integration (Fig. 2). The value

of information metric is then computed using Eq. (4),

using both deterministic and probabilistic approaches. In

the deterministic approach, the associated costs are

computed based on the drought and flood risk assess-

ments from the root-zone soil moisture percentiles gen-

erated from the ensemble-mean root soil moisture values

at each grid point. In the probabilistic approach, the

percentiles (and the drought and flood risk estimates) are

computed separately for each ensemble member within

a grid cell. The probability of drought or flood risk p is

then computed by comparing each ensemble member

within a grid cell to the corresponding truth estimate

(Fig. 3). The incurred costs are then computed as de-

scribed in section 2.

4. Results and discussion

The results presented in this section focus first on the

evaluation of the soilmoisture and runoff fields fromdata

assimilation. The comparison of the drought and flood

risk percentiles is presented next, followed by a discus-

sion of the value of information from L-band observa-

tions quantified through the cost–loss model.

a. Evaluation of soil moisture and runoff fields from
data assimilation

The improvements in the surface soil moisture (SFSM),

root-zone soil moisture (RZSM), and total runoff (TRF)

fields are evaluated by comparing them against the cor-

responding fields from the nature run generated using the

Mosaic LSM. Since the soil moisture and runoff clima-

tologies of the two models differ, the anomaly time series

correlation coefficient (instead of RMSE) is used to

quantify the skill of the estimates. The anomaly time se-

ries is generated (for each grid point) first by subtracting

the monthly-mean climatology of each dataset from the

corresponding daily-average data, so that the anomalies

represent the daily deviations from the mean seasonal

cycle. The anomaly time series correlation coefficient

(anomaly R) is then computed as the time series correla-

tion coefficient between the daily anomaly estimates and

the corresponding anomalies of the truth data.

Figure 4 presents the improvements in the SFSM,

RZSM, and TRF fields from data assimilation. The im-

provements are computed by subtracting the anomaly-R

values of the OL integration from the anomaly-R values

of the DA integration, at each grid point. Thus, positive

values of the anomaly-R differences indicate improve-

ments from DA and negative values indicate degrada-

tions. Note that no temporal data masking is applied in

the computation of the anomaly-R values. Figure 4 in-

dicates that there are consistent improvements in the

skill values SFSM, RZSM, and TRF fields with data

assimilation, with more prominent improvements ob-

tained in parts of the domain where sufficient retrievals

are available. Generally, the improvements are more

prominent in the soil moisture fields compared to those

obtained in the runoff estimates. For surface soil mois-

ture, the domain-averaged anomaly R for the OL in-

tegration is 0.42, and it improves to 0.51 with DA.

Similarly, the domain-averaged root-zone anomaly-R

values for the root-zone soil moisture improve from 0.50

in the OL integration to 0.56 in the DA integration. For

total runoff, the domain-averaged anomaly-R values

improve marginally to 0.110 (in the DA integration)

from 0.095 (in the OL integration). The improvements

in SFSM fields are generally higher than those ob-

tained in the RZSM and TRF fields, consistent with

the results in prior synthetic fraternal-twin experi-

ment studies (Kumar et al. 2009, 2012).

b. Evaluation of drought and flood risk estimates

The root-zone soil moisture– and total runoff–based

percentiles generated from the OL and DA integrations

are compared against the corresponding nature-run-

based percentiles, for the five different drought (D0–

D4) and flood risk (F0–F4) categories. Note that the

percentiles from the OL and DA integrations in these

comparisons are generated using the ensemble-mean

estimates. Figure 5 shows the domain-averaged RMSE,

bias, andR for theD0–D4 and F0–F4 categories from the

OL and DA integrations. The figure also shows the 95%

confidence interval for each metric. In all comparisons,

the DA-based estimates show systematic improvements

over the OL-based estimates. The improvements are

statistically significant in all cases, except in the R com-

parison for the D4, F2, F3, and F4 categories. The OL

simulation overestimates the drought risk percentiles and

FIG. 3. The decision tree used in the cost–loss model.
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underestimates the flood risk percentiles andDA reduces

the bias errors in both cases. The skills of the flood risk

assessments in terms of R are low compared to the cor-

responding drought assessments, presumably because we

limit the use of L-band observations in the data assimi-

lation system during large precipitation events. The skill

of themodel simulations (in terms ofR) reduces for more

severe drought and flood risk categories, but DA helps in

FIG. 4. Improvements in (top) SFSM, (middle) RZSM, and (bottom) TRF in terms of

anomaly time series correlation coefficients. The improvements are computed by subtracting

the anomaly-R values of the OL integration from that of the DA integration.
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improving the skills across all categories. The evaluation

shown in Fig. 4 shows the skill improvement due to DA

across the full dynamic range of modeled soil moisture

and runoff, whereas the comparison shown in Fig. 5 is

effectively an evaluation of the influence of DA toward

improving the tails of the soil moisture and runoff dis-

tributions. The results show that DA is effective in pro-

ducing improvements in the extremes of the soil moisture

and runoff distribution, which is important for applica-

tions such as drought and flood risk estimation.

Figure 6 provides an evaluation of the influence of ob-

servations toward improving the representation of drought

extent, duration, and onset over the modeling domain.

Figure 6 (top) shows the RMSE of the percentage area

under drought from the OL and DA against the truth run

for each drought category. The errors in percentage area

estimates are systematically reduced through data assimi-

lation, although the improvements also reduce for more

severe drought categories. The duration of a drought (in

terms of number of days) is calculated for drought events

that last for more than 1, 3, and 6 months in each drought

category. For each drought event, the fraction of the du-

ration that is correctly predicted in the OL and DA in-

tegrations is then computed. The average fraction of

correctly predicted duration is shown in Fig. 6 (middle).

The results show that DA contributes to systematically

improving the estimates of drought duration, both for

short-term and longer-term droughts. The improvements

once again reduce for more severe drought categories.

Finally, the improvements in estimating the onset of

drought is computed by estimating the number of times

the OL–DA integration is in agreement with the truth

estimate of drought onset, and the comparison is shown in

Fig. 6 (bottom). This metric essentially shows the proba-

bility of detection of drought onset from OL and DA in-

tegrations compared to the truth estimate. As the figure

shows, assimilation systematically improves the probabil-

ity of detection for the onset of drought, across the drought

categories, and for droughts of different durations.

A comparison of the spatial distribution of drought and

flood risk intensities is presented in Fig. 7 for three rep-

resentative cases in years 1989, 2003, and 2011. In the

August 1989 case, the OL-based estimate underestimates

the intensity of drought over areas of theMidwest whereas

DA improves these representations. In the July 2003 case,

however, the OL overestimates the severity of drought in

theHighPlains and the Southeast, andDAhelps to correct

these high biases. Similarly, in the May 2011 case, the low

biases in the OL drought estimates over Texas are im-

proved by DA. Similar patterns of improvements can also

be observed in the flood risk assessments, though they are

generally smaller compared to the patterns of

FIG. 5. Comparison of domain-averaged RMSE, bias, and R for the percentiles of (left) drought and (right) flood

risk from the OL and DA integrations for five different categories (D0–D4 and F0–F4, respectively). Error bars

indicate the 95% confidence intervals for each metric.
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improvements in the drought estimates. This is consistent

with the trends in Fig. 5, which show smaller improvements

fromDA over OL, as the flood risk assessments are based

on the total runoff, whereas the drought estimates are

based on root-zone soil moisture, a variable more directly

connected to the surface soil moisture measurements be-

ing assimilated. In the August 1989 comparisons, OL-

based flood risk assessments show underestimations over

the lower Mississippi basin, and DA helps to reduce these

errors. Generally, nomajor improvements in the flood risk

assessments in the East and Southeast are seen (July

2003, for example) as the retrievals are often excluded in

the data assimilation system over these areas. In all these

cases, outside CONUS, the representations of drought

and flood risks are improved over Mexico in the DA, but

no added impact is observed over Canada. These artifacts

are again directly related to the availability of L-band

observations over these areas (as evident from the pat-

terns of skill improvements seen in Fig. 4) and similar to

prior studies (Reichle et al. 2007; Kumar et al. 2009,

2012).

c. Analysis of the VOI of observation through the
cost–loss model

The VOI metric [Eq. (4)] is computed using both de-

terministic and probabilistic approaches for different

drought (D0–D4) and flood risk (F0–F4) categories. In

each computation, the cost–loss (C/L) ratios are varied

from 0.01 to 0.9 to determine the trade-off in VOI as

a function of C/L ratio. Figure 8 (top) shows VOI as

a function of C/L ratio from the deterministic cost–loss

model. The behavior of VOI is similar for both applica-

tions, with the added value of observations reducing with

increasing severity of drought (from D0 to D4) and flood

risks (from F0 to F4). For example, in the deterministic

drought example (Fig. 8, top left), DA leads to approxi-

mately 20% ‘‘cost savings’’ (VOI) for theD0 category for

a C/L ratio of 0.01. The VOI reduces to approximately

8% for a C/L ratio of 0.9. The flood risk example (Fig. 8,

top right) also shows a similar behavior, with the cost

savings varying from approximately 9% to 4%.

Note that in all four plots of Fig. 8, the VOI values are

always greater than 0, indicating that DA provides sys-

tematic improvements over OL in all drought and flood

risk cases. The sensitivity of VOI to the C/L ratio is

small, for any given drought or flood risk category, as

indicated by the relatively flat lines in Fig. 8 (top).

Generally, VOI reduces with increasing C/L ratio. Note

that in this deterministic case, the differences in accu-

mulated cost (for a particular drought or flood risk cat-

egory) for different C/L ratios are purely from the

reduction of NFN as a result of DA. Reduction of NFN

events have a greater effect in overall cost savings for the

lower C/L ratios since the losses are much higher than

mitigation costs (for low C/L values).

Figure 8 (bottom) shows a similar trade-off in VOI to

C/L ratio, but using the probabilistic model, where the

probability of drought or flood risk is assessed from the

FIG. 6. Comparison of the (top) drought extent (represented by

percentage area under drought), (middle) drought duration (rep-

resented by the fraction of ‘‘true’’ drought duration correctly sim-

ulated), and (bottom) drought onset (represented by the probability

of detection of drought onset).
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ensemble. Generally, the VOI estimates are larger than

those obtained from the deterministic model, indicating

that the use of the ensemble-mean estimates (used in the

deterministic model) leads to loss of valuable in-

formation that is especially important for capturing ex-

treme events such as droughts and floods. Compared to

the ensemble-mean-based VOI estimates, Fig. 8 (bot-

tom) indicates that there is a trade-off in VOI to C/L

ratio. The value of information is high for low values of

C/L ratio, whereas the value of information tends to be

low for the middle C/L ratio range. For the low C/L

values, there is a greater reduction in the total costs from

increasing NTP and reducing NFP through DA. For the

high C/L ratios, the primary contributions to the cost

savings are from reducing the number of NFN events

through DA. These artifacts cannot be represented in

the deterministic model where the NTP, NFP, and NFN

are constant for allC/L ratio values for a given category,

whereas the probabilistic model helps in improving this

binary representation. The VOI trade-off behavior is

similar for both applications, with the flood risk maps

showing slightly increased VOI for low C/L ratios

compared to the drought cases. These artifacts are again

related to how the DA helps in improving the respective

application (drought or flood risk) representation

through improving the probability of detection and re-

ducing the false alarms of various events.

5. Summary

OSSEs, typically conducted to assess the worth of

existing data and data yet to be collected from pro-

posed new missions, are often focused on quantifying

the impact of observations on model states alone. To

realize the significant real-world benefit and full po-

tential of the missions, it is important that the OSSEs

also capture the potential benefit of these observations

on end-use applications. In addition, the results from

the OSSEs must be evaluated with a variety of metrics

that capture the value, uncertainty, and cost benefit

of the observations while factoring in both science

and societal impacts. In this article, we present a

soil moisture OSSE that employs simulated L-band

brightness temperature measurements toward im-

proving drought and flood risk estimation. A decision-

theory-based analysis is used to provide an assessment

of the economic utility of the L-band observations to-

ward these applications.

TheOSSEpresented in thismanuscript uses a fraternal-

twin experiment setupwhere two different LSMs are used

FIG. 8. VOI for the (left) drought and (right) flood risk assessments as a function of theC/L ratio, computed using the

(top) ensemble mean and (bottom) full ensemble.
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to conduct the nature run (Mosaic LSM) and theOL and

DA experiments (Noah LSM). A first-order t–v for-

ward microwave emission model is used to simulate

L-band brightness temperature observations. These ob-

servations are assimilated into a Noah LSM configuration

using a 1D EnKF algorithm. The modeling domain

roughly covers the continental United States for the time

period of 1980–2012. Based on the simulated soil moisture

and runoff fields, estimates of drought and flood risk

conditions are generated using percentile-based indices.

The associated incurred costs for the OL and DA in-

tegrations for the drought and flood risk assessments are

then estimated using a cost–loss model, and a value of

information metric is computed that estimates the con-

tribution of L-band observations toward reducing the OL

costs.

The results clearly demonstrate that the assimilation of

L-band observations provides systematic improvements

in the surface soil moisture, root-zone soil moisture, and

total runoff estimates, though the improvements are

larger in the surface and root-zone soilmoisture estimates,

as these variables are more directly connected to the

surface soil moisture observations being assimilated. The

improvements in root-zone soil moisture and total runoff

also translate to systematic improvements in the drought

and flood risk assessments, which are derived using the

extremes of the root-zone soil moisture and total runoff

distribution, respectively. The skill of the simulations re-

duce for more severe drought and flood risk categories, as

their frequency is lower and timing more difficult to cap-

ture. Nevertheless, DA provides improvements in all

drought and flood risk categories.

An assessment of the trade-off in VOI for various

cost–loss ratios is estimated using deterministic and

probabilistic cost–loss models. In the deterministic

model, the ensemble-mean values based on the OL and

DA integrations are used to estimate the drought and

flood risk percentiles and to compute the associated in-

curred costs. In the probabilistic model, the full ensem-

ble information from these integrations is used to

estimate an ensemble of drought and flood risk assess-

ments. The cost–loss model then computes a probability

of drought or flood risk from this ensemble and uses it to

compute the associated costs. The results indicate that

the use of the ensemble mean (in the deterministic

model) leads to loss of valuable information and un-

derestimation of the contribution of observations. The

probabilistic model also helps in capturing the im-

provements obtained because of increased probability

of detection and reduced false alarms of drought and

flood events through DA, some of which cannot be

represented through the binary deterministic model.

Note that the cost–loss model used here is very simple,

with spatially and temporally homogeneous assump-

tions of cost and loss values. Given more knowledge of

the practices for particular applications, the model could

be improved.

Computer systems used for the development of

OSSEs are evolving into more formal OSSE computa-

tional environments. Such systems are in various stages

of development for atmospheric and oceanic OSSEs

(Lee et al. 2010; Tanelli et al. 2012; Halliwell et al. 2014).

Similarly the NASA LIS has evolved into a computa-

tional platform for terrestrial hydrology OSSEs. In ad-

dition to supporting the interoperable use of community

land surface models in high-performance-computing

environments, the more recent advancements in LIS

have added a wide range of data assimilation algorithms

(state, parameter, and Bayesian-based uncertainty esti-

mation), forward radiative transfer models, and coupling

to atmospheric and application models. The experiment

presented in this article demonstrates the end-to-end ca-

pability of the LIS OSSE environment, linking simulated

satellite observations to soil moisture–based drought and

flood risk estimates, and, further with a simple decision

model, to drought and flood risk decision-making under

uncertainty.
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