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ABSTRACT

This paper presents results and analyses of applying an international space data compression standard to

weather radarmeasurements that can easily span eight orders ofmagnitude and typically require a large storage

capacity as well as significant bandwidth for transmission. By varying the degree of the data compression, the

nonlinear response of models that relates measured radar reflectivity and/or Doppler spectra to the moments

and properties of the particle size distribution characterizing clouds and precipitationwas analyzed. Preliminary

results for the meteorologically important phenomena of clouds and light rain indicate that for a 60.5-dB

calibration uncertainty, typical for the ground-based pulsed-Doppler 94-GHz (or 3.2mm, W band) weather

radar used as a proxy for spaceborne radar in this study, a lossless compression ratio of only 1.2 is achievable.

However, further analyses of the nonlinear response of variousmodels of rainfall rate, liquid water content, and

median volume diameter show that a lossy data compression ratio exceeding 15 is realizable. The exploratory

analyses presented are relevant to future satellite missions, where the transmission bandwidth is premium and

storage requirements of vast volumes of data are potentially problematic.

1. Introduction

Observations of atmospheric processes for the purpose

of understanding, diagnosing, predicting, and projecting

weather and climate rely increasingly on the analysis of

data from a host of instruments that include surface-

based, suborbital, and spaceborne radars, lidars, and im-

aging spectrometers. Undoubtedly, employment of suites

of instruments on either space/airborne or ground plat-

forms will generate vast volumes of data that can quickly

overwhelm data storage and transmission bandwidths.

To alleviate data congestion, various approaches to data

processing, editing, and compression techniques have

been studied. However, the most relevant question is, If

and how does the processing technique affect the end

products used in understanding and predicting weather

and climate? To address this question, we will first in-

vestigate the effects of data compression using the Con-

sultative Committee for Space Data Systems’ (CCSDS

2005) image data compression standard on ground-based

(inherently noisy) weather radar signals. Studies con-

nected to the applications of this standard to spectro-

scopic observations (which span a much smaller dynamic

range) have been performed (e.g., Barrie et al. 2009;

García-Vílchez and Serra-Sagristà 2009). However, to the

best of the authors’ knowledge, studies characterizing

the effects of the CCSDS data compression algorithm to

radar data and its derived products have not been con-

ducted. As such, the results presented here are timely in

that they demonstrate the achievable onboard compres-

sion for selected applications while underscoring the

benefits of such analyses. Our characterization will pro-

vide crucial information for current (e.g., King 1999) and

future missions [e.g., Decadal Survey and Venture Class

missions in NASA (2011)].

The space data compression standard algorithm used

in this study was derived by the CCSDS (www.ccsds.org)
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body composed of major international space agencies

with the National Aeronautics and Space Administra-

tion (NASA) as a major partner. Commonly known

compression techniques generally fall into either the

fully lossless or the lossy categories (Sayood 2012). The

lossless technique preserves data fidelity with very lim-

ited data reduction performance, while the lossy techni-

ques with good performance require much sophisticated

computation as in JPEG2000 (Taubman et al. 2002). The

CCSDS standard addresses space implementation

constraints such as power, computation resources, and

a relatively high required throughput with excellent

performance. Additionally, it provides a user with a

precisely selectable data reduction ratio from highly lossy

to full lossless, that is, tunable. This feature allows flexi-

bility in spacecraft downlink rate allocation among mul-

tiple science instruments. The former guarantees the

restored data identical to the original; the latter generally

furnishes higher compression ratios but introduces some

level of distortion in the reconstructed data. This algo-

rithm allows a user to directly control the compressed data

volume or the fidelity with which the data can be re-

constructed. The higher fidelity required by lossless com-

pression results in a higher volume of compressed data for

a given source dataset. The compression ratio (CR) is

defined as the ratio of the number of bits per sample be-

fore compression to that of the encoded data. With larger

CR, the total data volume that needs to be transmitted is

much reduced. For example, at CR 5 24, the volume is

one-twelfth the volume obtained at CR5 2. A larger CR

not only requires less onboard storage (if needed), but it

is less demanding in terms of either narrower bandwidth

for transmission within a fixed time frame or a much re-

duced transmission time period given a fixed bandwidth.

However, increasing the CR introduces increasing re-

construction noise in the decompressed data.

While lossless compression is mandatory for many

types of data (e.g., complied computer codes), measure-

ments with inherent noise need not be kept perfectly in-

tact for transmission or storage provided the introduced

distortions are below the inherent noise levels. The

pressing needs for yielding higher compression ratios for

certain types of applications, formulated in terms of the

previously posed question, are the major drive for the

current study. We contend that onboard data compres-

sion of spaceborne radar, lidar, and spectroscopic obser-

vations of the earth–atmosphere system must advance in

lockstep and eventually unite in an indistinguishable

fashion. We envision a future in which archives of these

suites of instruments’ outputwill not bemonstrous dumps

of data, but rather the information mined from these

data, occupying a fraction of the volume and coded in

a format that is more useful to the scientific communities

and to policy makers. In the meantime, it is necessary to

evaluate the existing lossy compression algorithm de-

veloped for use in spaceborne platforms, applied here, to

radar observations.

Because W-band radars differ in several respects from

those operating at lower frequencies, we provide a brief

background on their salient characteristics that are

exploited in spaceborne observations of the earth’s at-

mosphere.W-band pulsed-Doppler radars are employed,

since they exhibit great sensitivity arising from the pro-

portionality of the backscattering cross section in the

Rayleigh regime (D� l) to 1/l4, where D is the particle

diameter and l is thewavelength. Such radars are capable

of detecting particles with diameters of tens of microns,

typically found in clouds and in light precipitation. In

addition, they can be configured to have excellent tem-

poral and spatial resolution and can operate with physi-

cally small antennas that have a very narrow beamwidth,

resulting in sampling volumes that are very small com-

pared with those of longer wavelength radars. This re-

duced sampling volume decreases the effects of the

Doppler spectrum broadening due to turbulence. These

features of W-band radars, compounded with their por-

tability and their ability to measure range-resolved ve-

locities of particles, make them powerful tools for

studying the macrophysics–microphysics of frequently

occurring boundary layer stratocumulus and widespread

high-altitude cirrus clouds.

According to Lhermitte (1988), the deep Mie back-

scattering oscillations occurring in the raindrop particle

size range make W-band radars an attractive choice for

vertical air motion and particle size distribution mea-

surements, particularly when used in conjunction with

an S-band (e.g., 2–4GHz) or anX-band (e.g., 8–12GHz)

radar. Furthermore, when W-band radars are used with

longer wavelength radars, estimation of cloud liquid/ice

water content in precipitating clouds is possible (e.g.,

Gaussiat et al. 2003). Already, some of the stated ad-

vantages of W-band radar are being realized by the

CloudSat mission (Stephens et al. 2002), even though in

the radar employed, velocity measurement capability by

the Doppler effect is absent. However, the spaceborne

W-band radar to be used in the upcoming European–

Japanese Earth Clouds, Aerosols and Radiation Ex-

plorer (EarthCARE) mission (Bézy et al. 2005) will in-
clude Doppler processing. For the reasons just discussed,

it is expected that future spaceborne observation plat-

forms will incorporate multifrequency radars (as well as

lidars and other passive instruments such as spectrome-

ters); hence, the critical need for advanced data com-

pression techniques. Before proceeding, we acknowledge

that there are significant differences between surface

and spaceborne radars. The latter move at a high velocity
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and consequently, smear the scene below. This work

addresses only the effects of data compression and not

effects attributed to motion of the radar platform. We

contend that as long as the complexity of the meteoro-

logical scenes is comparable, the results we obtain are

transferable.

To begin to address the crucial question posed ear-

lier, the paper is divided as follows: Section 2 describes

the methodology. Here, a description is provided of the

preparation of the data to be compressed using the

CCSDS standard. Also included is a brief overview of

the compression standard. Data products depending

nonlinearly on the radar reflectivity are taken from the

literature (e.g., the rainfall rate, liquid water concentra-

tion, and median volume diameter) and the procedure

used to evaluate the effect of the standard is given. At-

tenuation by gaseous absorption and precipitation, as

they impact the W-band radar, are discussed. Section 3

shows the effects of data compression on the aforemen-

tioned products. Concluding remarks and futurework are

given in section 4.

2. Methodology

a. Data source

Pulsed-Doppler W-band radar signals, provided by

the Surface-Based Mobile Atmospheric Research and

Testbed Laboratories’ (SMARTLabs) Aerosol–Cloud–

Humidity, Interactions Exploring and Validating En-

terprise (ACHIEVE) (http://smartlabs.gsfc.nasa.gov/)

mobile laboratory pictured inFig. 1a, were acquired using

a commercial receiver. The output from the receiver

front end (i.e., from the in-phase I and the quadrature Q

FIG. 1. (a) Instrumentation setup of SMARTLabs’ ACHIEVEmobile laboratory showing aW-band cloud (94GHz, pulsed) and X-band

rain [10GHz, frequency modulated, continuous wave (FMCW)] radar mounted on a heavy-duty pedestal, with a zenith-pointing K-band

drizzle (24GHz, FMCW) radar and supplementary measurements by a ceilometer (910nm, cloud base) mounted on the sidewall and an all-

sky imager (cloud coverage). (b) An example of time series ofW-band radar reflectivity collected on 8May 2012 at NASAGSFC, depicting

drizzle and light rain by a complex weather system passing overhead. (c) The corresponding linear depolarization ratio differentiating ice,

melting, and water cloud phases. (d) Mean fall velocity indicating the strongest rain occurred at ;7.5min elapsed time.
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components) was digitized using a pair of 16 bits per

sample analog-to-digital converters running at a data rate

of 503 106 samples per second and converted to double-

precision reflectivity data, whose minimum discernible

value is 255dBZ at 1 km. For this study, W-band radar

reflectivity measurements of a complex weather system

occurring over the Goddard Space Flight Center (GSFC)

on 8 May 2012 were used to demonstrate the perfor-

mance of lossless and lossy data compression. The test

bed data shown in Fig. 1b were obtained when the

W-band radar, running at a pulse repletion frequency

(PRF) of 5482Hz was zenith pointing with the vertical

resolution set to 24m in 524 range bins, for a maximum

range of 12.576km. The total observation time of 1800 s is

composed of 7709 dwell time intervals, each interval

spanning 0.233 s; hence, 4 039 516 points constitute the

reflectivity image. Furthermore, as depicted in Fig. 1b,

a large dynamic range of reflectivity measurements was

acquiredwithin the duration of 30min, starting at 1827:24

UTC. Retrieved cloud products (e.g., cloud-top temper-

ature, height, etc.) inferred from the overpass of Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

sensors onboard the Earth Observing System (EOS)/

Aqua at 1805 UTC indicated the presence of a large

multilayer, multiphase (ice/melting/liquid) cloud rain

system. The correspondingW-band linear depolarization

ratio (LDR) shown in Fig. 1c can differentiate ice

(;220dB), melting (;210 dB, ice coated with water,

peaking at ;3.5-km range in Fig. 1b), and water

(;230dB) cloud phases. Themean fall velocity shown in

Fig. 1d is also indicative of drizzle–rain reaching the radar

site, occurring within an elapsed time of ;7.5min.

Reflectivity is a measure of a radar target’s efficiency

in intercepting and returning radio frequency energy that

depends upon the size, shape, orientation, and dielectric

properties of the target. In the meteorological context,

reflectivity finds prolific use in inferring characteristics of

clouds and precipitation that are fundamental, such as the

particle size distribution of clouds, liquid–ice water con-

tent, and rainfall–snowfall rates. While this multiparam-

eter radar is capable of displaying LDRand hydrometeor

velocity profiles, attention here has been restricted to

reflectivity data only, since such data exhibits the greatest

dynamic range. It is expected that quantities character-

ized by a smaller dynamic range, such as those shown in

Figs. 1c and 1d, can be compressed using larger com-

pression ratios. Hence, the motivation of this study is to

understand how perturbations introduced by lossy data

compression affect derived products.

b. Compression technique

The CCSDS tunable image data compression standard

employs a 2D discrete wavelet transform (DWT) to de-

compose the input image into wavelet coefficients. These

coefficients are then selected according to their energy

levels through the use of a bit plane encoder (BPE), which

codes themat each bit plane.With this algorithm, users can

easily, after analyzing the raw image data, make decisions

on the desirable compression ratio for the image under

consideration. In fact, the reallocation of such a desirable

compression ratio can be applied after the image has been

compressed at a lower-than-desired compression ratio if

precompression data analysis is unsuitable (e.g., because of

unavailability of onboard processing power). The selected

final higher compression ratio can be applied by simply

truncating the previously compressed bit stream because

of the nature of the ‘‘embeddedbit stream’’ property of the

algorithm. Such property guarantees that the highly com-

pressed image information is located at the front part of

the coded bit stream, followed by the bit stream that im-

proves the fidelity of the compression but lowers the

compression ratio. Figure 2 describes how the compression

FIG. 2. Optimal application of theCCSDS image data compression standard onboard. The termCRcan bedetermined for instrument iwhen

compression is executedwith input frompath 1, or the final CR can be assigned after rate optimization is performed onmultiple instruments via

the path 2 input to the downlink processor (DLP). Onboard solid-state recorder (SSR) holds the coded bit stream until downlink is scheduled.

Readjusting CR at DLP is simply achieved by truncating the coded bit stream appropriately for each instrument.

2434 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 31



standard can be applied to facilitate optimal onboard re-

source utilization when data from multiple instruments

have to be adjusted for downlink rate allocation. For use in

the compression algorithm, the entire dataset was first

offset by 55dB, so that the smallest datum is 0dBZ. A

scaling factor k of 218 was chosen to reproduce the dy-

namic range spanned by the reflectivity. The choice of

the number of bits (here, 18) is determined by the in-

trinsic variance of the reflectivity. However, the latter is

difficult to compute because 1) the reflectivity is not

strictly a function of PRF, since the sample values from

pulse to pulse are not independent; 2) the variance of

the reflectivity is a complex function of the velocity

spectral width of the cloud; 3) the variance depends on

the PRF, the radar wavelength, the fast Fourier trans-

form (FFT) length, and the number of FFT’s averaged

to create the power spectrum; and 4) the variance also

depends on the moment estimation algorithm used to

extract the signal power from the noisy power spectrum.

In view of these difficulties, we have approached the

problem of estimating the number of bits heuristically,

using the expression in Bringi and Chandrasekar (2001)

to approximate the standard deviation of the mean power

(bP) of a sample of Np correlated pulses, s[bP(dB)] using

s½bP(dB)�5 103 log10

266411 1ffiffiffiffiffiffi
Np

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

(N
p
21)

j52(N
p
21)

 
12

jjj
Np

!
exp

�
2
16p2s2

y j
2T2

s

l2

�vuuut
3775 .

Here, Ts 5 PRF21 is the pulse repetition interval and sy

is the standard deviation of the velocity. For a dwell time

td5 0.233 s,Np5 td 3 PRF5 1280 samples. The result is

s[bP(dB)]; 0.12dB for l5 0.0032m and sy 562.5ms21.

The standard deviation of mean power (dB) is the same as

the reflectivity factor Ze (dBZ). To separate the effect of

compression noise from the quantization noise, we in-

troduced a noise threshold (Td) that was set to 1% of

s[bP(dB)], or Td 5 0.0012dB. Then, the number of bits is

givenbyb5 log2(DR/Td)5 17,where thedynamic rangeof

the radar DR 5 80dB and b has been rounded to the

nearest integer. We used 18 bits to guard against the pos-

sibility of clipping. Also, the resulting integer data are con-

sidered as representative of the raw, integer receiver counts.

There are two types of DWT fromwhich to choose: an

integer DWT and a floating point DWT, to be noted as

float DWT for brevity. Fully lossless compression can

only be achieved with the integer DWT, while the float

DWT generally provides higher performance in tunable

(i.e., lossy) applications. After applying a 2D wavelet

transform to the data, the bit plane encoder is employed

for accurate compression rate control in the lossy mode.

The CCSDS algorithm has demonstrated excellent

performance when applied to various types of images.

However, the performance of the algorithm would de-

grade in the presence of large amounts of random noise.

The CCSDS standard was chosen for evaluation for

several reasons: first, ground-based radars can be con-

sidered as proxies for those employed in spaceborne

observation platforms; second, the standard was created

to process space instrument data with onboard pro-

cessing constraints that include limited processing

power and memory, as well as other effects arising from

the data packetization scheme, etc. Furthermore,

radiation-tolerant hardware has already been developed

(e.g., Winterrowd et al. 2010) and integrated into NASA’s

mission, greatly reducing the risk and cost for future

applications involving radar instruments. The results of

this study therefore can serve as indicators of the ex-

pected levels of performance of data compression for

spaceborne radars attainable by this algorithm.

c. Data products

The SMARTLabs’ ACHIEVE radar provides mea-

surements of the horizontal and vertical components of

the reflectivity, moments of the hydrometeor velocity,

and the linear depolarization ratio from which various

meteorological products can be derived that charac-

terize clouds and precipitation. This study focuses on

the reflectivity field data product, since it exhibits the

largest variability and dynamic range, making it ide-

ally suited for evaluating the data compression algo-

rithm. The approach taken here is to use the

uncompressed and compressed reflectivity fields Z

(mm6m23) to derive the rainfall rate R (mmh21), the

liquid water contentW (gm23), and the median particle

size D0 (cm). By comparing the results, we can in-

vestigate how nonlinearities propagate error introduced

by the compression/decompression process and affect

the derived microphysical parameters in a way that is

more insightful than merely subtracting the compressed

and uncompressed reflectivity fields. To attain this ob-

jective, it is necessary to introduce a set of working as-

sumptions and to propose a model. Regarding the

former, the analysis will be based on an input–output

relationship Xk 5 Fk(Zfu,cg), where Xk is the derived
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field of interest (i.e., X 5 R, W, or D0); Fk is the non-

linear function that accepts the uncompressed or

compressed reflectivity Zu or Zc, respectively; and k is

a field-identifying index that can be assigned: R,W, orD.

Because interest is centered on investigating the effects of

nonlinearity, the functionFk can in principle be arbitrary.

However, such arbitrariness can easily either grossly

amplify the compression error or underrepresent its

effects, hence the need for a physically based model to

introduce constraints. To model the electromagnetic

scattering, we use the well-known fact that radar ech-

oes from hydrometeors depend on the moments of the

particle size distribution (PSD). Knowing that, the PSD

allows the derivation of other products from the same

PSD such as R, W, or D0. To this end, we referred to the

PSD in the seminal work ofUlbrich (1983) andRosenfeld

and Ulbrich (2003), who made significant progress in

addressing the longstanding question of the connections

between raindrop size distributions and radar reflectivity–

rainfall rate (Z–R) relationships.

The PSD we employed is the gamma distribution,

given as

N(D)5N0D
m exp(2LD) 0#D#Dmax , (1)

where D is the equivolume spherical diameter of the

particles andN0 is the number concentration (m23 cm21).

The slope parameter is designated by L (cm21), and the

shape parameter m (dimensionless) is an exponent that

can have positive or negative values. The diameter varies

from zero to a maximum of Dmax. This PSD has been

considered adequate (e.g., Ulbrich 1983; Rosenfeld and

Ulbrich 2003) in characterizing precipitation, since it

yields simple expressions for its moments in the limit of

Dmax / ‘. Table 1 illustrates how the rainfall rate (R) is

related to the median particle size (D0) and the liquid

water content (W) via the reflectivity (Z) as given by

Ulbrich (1983), derived from Eq. (1).

The values of the parametersN0, m, b, d, k,A, «, and z,

required by the formulas in Table 1, were compiled by

Ulbrich (1983), who references 23 investigations ex-

tending from 1953 to 2002 that characterize precipitation

ranging from stratiform to convective in the form of

power-law Z–R relationships. The aforementioned pa-

rameters were inferred from S-, C-, and X-band radar

measurements and whose values define the model pa-

rameter space used in our analyses. In this study,W-band

reflectivity data were used to calculate rainfall rate, liquid

water content, and median volume diameter fields. The

rainfall rate from eachmodelwas first computed and then

propagated to calculate the liquid water content and

median volume diameter, according to Table 1. These

fields were then compared to those calculated from the

uncompressed data. The microwave frequencies em-

ployed by the authors cited by Ulbrich (1983) differ from

the W band. However, the analyses presented are nev-

ertheless useful in evaluating the lossy compression al-

gorithm, considering the uncertainties introduced by the

nonuniqueness of the PSD and the largest measured

amplitude of the W-band reflectivity.

A search of the W-band data reveals the largest

reflectivity to be 0.678 dBZ, a value that suggests the

presence of light drizzle (,0.2mmh21), which is con-

sistent also with our visual observations of the event. In

the absence of rain or when light drizzle is present,

Rayleigh scattering by the cloud–water particles domi-

nates as it does at the longer wavelengths used by the

investigators referenced by Ulbrich (1983). The rela-

tively small reflectivity is significant because otherwise,

at the nominal frequency of 94GHz, heavy precipitation

characterized by large reflectivity would give rise to Mie

scattering and be strongly attenuating, further exacer-

bating uncertainties in the interpretation of the rainfall

rate. This contrasts with radars operating at longer

wavelengths (e.g., S, C, and X bands) where attenuation

by heavy precipitation is significantly reduced.

Finally, the W band is not an atmospheric clear win-

dow, since water vapor and oxygen are actively absorbing

gases in this region of the spectrum, the former domi-

nating the latter. Thus, the reflectivity must normally be

corrected for the two-way attenuation by the absorbing

gases and by cloud/precipitation particles. Using attenu-

ation models given by Liebe et al. (1993), the one-way

attenuation rate on the day of themeasurement, by water

vapor and drizzle, at the surface was calculated to be

1.5 dBkm21 and decreasing with increasing altitude. As

can be seen from Fig. 1b, light drizzle extends to ap-

proximately 1 km, thus eliminating the need for this

correction. The uncertainties just described are much

greater than those produced by compression noise, as will

be seen. To summarize, the purpose of these analyses

using 23 models of the PSD is to explore the impact of

data compression noise inherent in the decompressed

data on the meteorological fields previously discussed

and not in accurate retrievals of the parameters char-

acterizing an assumed PSD. To carry out this objective,

TABLE 1. Relationships between radar reflectivity and rainfall rate,

median particle diameter, and liquid water content.

Z 5 ARb A5
106G(71m)N22:33/(4:671m)

o

[33:31G(4:671 1)](71m)/(4:671m)
b5

71m

4:671m

Do 5 «Rd «5
3:671m

[33:31NoG(4:671 1)]1/(4:671m)
d5

1

4:671m

W 5 zRk z5
pG(41m)N0:67/(4:671m)

o

6[33:31G(4:671m)](41m)/(4:671m)
k5

41m

4:671m
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we employed mathematical models characterized by

frequently employed power-law nonlinearities (e.g.,

Lohmeier et al. 1997; Uijlenhoet 2001) over a broad

range of exponents, with particular interest in the am-

plification of error in R, W, and D0. The pervasiveness

of power-law relationships is evident in the literature;

these have even been developed to relate precipitation

in the form of snowfall rate to radar reflectivity at W

band (e.g., Matrosov et al. 2008).

3. Results

After applying various degrees of lossy compression

on the digital counts, the reconstructed reflectivity

values were first compared to the original values directly

from the radar. A root-mean-square error (RMSE) cri-

terion was employed to determine the maximum lossy

compression in terms of CR corresponding to 60.5 dB

uncertainty in the radar reflectivity as it is commensu-

rate with that introduced by the radar calibration pro-

cedure. This statistic measures the difference between

reflectivity values compressed–decompressed by the

CCSDS algorithm and the reflectivity values actually

observed. It can also be used as a measure of error in

products that are derived from the compressed re-

flectivities as described below. Figures 3a–d, computed

by subtracting the compressed reflectivities from the

uncompressed reflectivities, show the noise introduced

by float DWT and integer DWT modes of compression

for different values of CR. Such pixel differences are

aggregated by the RMSE into a single global measure of

error attributed to compression noise introduced by the

CCSDS algorithm. The RMSE of the compressed vari-

able ZCCSDS is defined as the square root of the mean

squared error, written as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

i51
�
N

j51

(Zobs
i,j 2ZCCSDS

i,j )2

NM

vuuuut
, (2)

where Zobs
i,j is the observed reflectivity, ZCCSDS

i,j is the

compressed reflectivity at the same pixel location (i, j)

in the profile, and NM is the number of pixel elements.

The calculated RMSE values conveniently have the

same units as the residuals. This error criterion, by

virtue of the squaring process, gives disproportionate

weight to large errors by comparison to either the mean

absolute error (MAE) or mean error (ME) that em-

ploys the size of the residual, not its square. The ME

statistic yields a signed measure of the error and is in-

dicative of positive–negative bias. The MAE criterion

yields results similar in magnitude but smaller than the

RMSE. The reason for employing the RMSE is that

because it is sensitive to outliers, it can be used as

a diagnostic to identify the location(s) in an image

FIG. 3. The distortion of radar reflectivity produced (a) using a CR value of 2 and float DWT compression mode.

(b) As in (a), but using integer DWT compression mode. (c),(d) As in (a),(b), but for CR 5 24, respectively.
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where the CCSDS introduces large compression noise

errors and thus gain some insight as to what properties

of the image cause undesirable algorithmic behavior.

We shall describe and illustrate a simple local measure

of bias later in this section, where it can be associated

with measurements taken at a particular time. We note

here that since the compression algorithm introduces

bias and variance, these components are combined in

the mean squared error.

From the RMSE curves shown in Fig. 4, it is seen that

for the radar reflectivity distortion range of 60.5 dB,

a data CR of 15 is achievable. As expected, the RMSE

increases monotonically with increasing CR and the

float DWT performs slightly better than the integer

DWT. The effects of the different compression ratios on

other radar data products are illustrated in Figs. 5a–c.

These figures were calculated using Eq. (2) but withZobs
i,j

andZCCSDS
i,j now replaced by the meteorological fields of

interest, derived from the unperturbed and perturbed

reflectivities, respectively. In particular, for every prod-

uct computed from the 23 different meteorological

models, the product with the largest RMSE—that is, the

worst compression result—was selected for presentation.

A second search was also performed to locate the mini-

mum RMSE. The RMSE for the different products are

not necessarily from the same models. In all cases, the

RMSE errors increase with increasing CR and the results

of using integer DWT are in excellent agreement with

those calculated using float DWT. Taking the logarithm

of the RMSE permits visualizing the maximum and

minimum curves on the same plot.

Figures 6a and 6b address the question of the distri-

bution of bias across the image at all acquisition times for

CR 5 15. To calculate this local bias, a series of linear,

least squares regressions was performed at the different

measurement times, between reflectivity values in the

original and compressed image. Thus, 7709 independent

regressions were calculated using 524 points per re-

gression. In the absence of compression noise, the re-

sulting line must have unity slope and zero intercept. The

latter is the desired measure of bias. However, as can be

seen in the histogram of Fig. 6a, the CCSDS algorithm

introduces a bias (for lossy compression), whose largest

value of 0.225 dB falls within the 60.5-dB imposed re-

quirement. Figure 6b illustrates the slope and intercept

at different measurement times. For all regressions, the

slope is nearly unity, suggesting that the CCSDS algo-

rithm does not introduce nonlinearities, further attested

by the fact that the minimum correlation coefficient

found is 0.995 and by the observation that variances of the

uncompressed and compressed reflectivities at all mea-

surement times lie on a 458 line as shown in Fig. 6c.

FIG. 4. The RMSE as a function of CR under both float and integer

DWT compression modes.

FIG. 5. Response of (a) rainfall, (b) liquid water content, and (c) median volume diameter models to data compression noise produced

by integer DWT and float DWT, illustrating theminimum andmaximumRMSEs. Both the upper and lower pairs of curves are practically

indistinguishable; this shows that these derived products are insensitive to the chosen mode of data compression. These errors are not

necessarily computed from the same model. See text for details.
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Analyses of the spread of points about this line, depicted

by Fig. 6d, indicate that the largest difference in the

standard deviations between the compressed and un-

compressed reflectivities is 0.44dB,which also falls within

the 60.5-dB uncertainty in calibration. The calculations

used to produce Fig. 6d account for the correlations be-

tween the compressed and uncompressed reflectivities at

all sampling times.

The methods just described only produce convenient

two-point summary statistics and cannot provide in-

formation about the shape of the error distribution.

Shape information can be obtained from the error his-

togram, but plotting such figures for reflectivities at all

observation times and for all derived products is im-

practical. However, global plots of errors are feasible as

shown in Figs. 7a–d. The figures display histograms of

the differences in Z, R, W, and D0 between uncom-

pressed and compressed data over the image, for the

model that exhibits the largest RMSE in these fields at

a CR value of 15 using float DWT. Biases are indicated

by symmetric histograms not centered at the origin or by

highly asymmetric histograms that include the origin.

For example, it is seen that the reflectivity exhibits

a small bias, considering that out of a total of 4 039 516

points, about 600 000 are without error and that the er-

ror mass pedestal is nearly symmetric. The bias is

located slightly to the left of the origin and the dynamic

range of uncertainty at the base of the histogram extends

from 21 to 11dBZ. It is also seen that R and W are rel-

atively insensitive to compression noise in the reflectivity

and do not exhibit undesirable bias, since the error dis-

tribution is essentially symmetrical, centered about the

origin. In lossless compression, all the plots would be delta

functions centered at the origin. Finally, the error distri-

bution in the median volume diameterD0 exhibits a small

asymmetry, with amean of223 1025mm and a standard

deviation of 2.97 3 1024mm, suggesting that it is more

sensitive to compression noise than R or W.

4. Concluding remarks and future work

From this preliminary study, it can be seen that a lossy

compression ratio of at least 15 can be achieved

(depending on the meteorological situation) with an

acceptable radar reflectivity noise margin of 60.5 dB.

For this value of the compression ratio, the derived

products incur insignificant error. When rain rate, liquid

water content, and median volume diameter fields are

computed from the reflectivity data using 23 different

models, the worst RMSE is below 1023 over the full

range of tested compression ratios from 2 to 24. This is

significant in that for a fully lossless compression, on the

FIG. 6. (a) Histogram of bias variations in the radar reflectivity image for CR5 15. (b) Scatterplot of their slopes at

all observation times, calculated from a linear regression model for CR 5 15 and float DWT. (c) Plot of variance

comparisons computed for compressed and uncompressed reflectivities at corresponding columns of the reflectivity

images. (d) Plots of variance differences computed from the compressed and uncompressed reflectivity images at

corresponding column locations and accounting for correlations.
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contrary, a compression ratio of 1.2 is observed instead.

The implication is that no appreciable data reduction

can be achieved if a fully lossless compression technique

is employed, and such low compression is attributed to

the inherent noisy characteristics of radar signals. As

long as the compression technique introduces noise in

the reflectivity that is below the noise margin set by the

calibration, derived products dependent on the re-

flectivity will be negligibly perturbed. Furthermore, the

analyses presented have tacitly assumed that the radar

calibration does not change during the observation pe-

riod(s). Our study was performed on one set of data

acquired in light drizzle and rain. To fully characterize

the effects of compression on weather radar signals,

extensive tests will be needed for data acquired under

different weather conditions. The analyses of this data-

set are not limited to reflectivity but can include polar-

imetric variables such as the linear depolarization ratio

and the differential reflectivity. To further probe the

effects of compression on meteorological products,

tests will be conducted using a numerical retrieval

technique to infer profiles of parameters that define the

PSD in clouds and precipitation. The analyses presented

have focused on a complex cloud system from which

a compression ratio (i.e., 15) was derived. In the future,

more comprehensive analyses will be performed for

nominal terrestrial cloud systems; in turn, higher

compression ratios can be expected. We note in closing

that lossy data compression has not yet been fully

adopted by the remote sensing community. The current

perception is that employing compressed images (or

data) may ultimately affect the results of posterior

processing (e.g., image classification and retrieved

products), potentially hindering the attainment of science

goals. However, future satellite missions will certainly

require the use of a suite of passive and active instruments,

raising the specter of bandwidth limitations and storage of

unprecedented volumes of data. Thus, lossy compression

may provide an effective means to mitigate these diffi-

culties. Our approach to evaluating the effects of such

compression, though preliminary, is insightful, providing

a rational basis of addressing these issues.
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