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ABSTRACT

Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their
formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal the transits of one
or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth.
For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the
cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case.
GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric
monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect
any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for
current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object.
Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
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1. Introduction

One of the most significant goals of modern astronomy is the
detection and characterization of planets similar to our Earth:
a terrestrial planet lying in the habitable zone (HZ; e.g., Kasting
et al. 1993) of its host star. That will place our Earth into context,
as just the closest member of the habitable telluric planet class,
and will possibly establish whether life exists elsewhere in the
Universe. While direct detection of habitable terrestrial planets
around solar-type stars are envisioned with future ambitious mis-
sions like Terrestrial Planet Finder (e.g., Traub et al. 2007) and
Darwin (e.g., Cockell et al. 2008), technological developments
are still needed to make these missions successful, and none of
them is fully funded. In this context, the indirect detection of
terrestrial planets transiting nearby M dwarfs represent a promis-
ing shortcut (e.g., Charbonneau 2009). Indeed, the planet-to-star
contrast for an Earth-size planet orbiting in the HZ of an M dwarf
is much more favorable than for the Earth-Sun system, permit-
ting the detection of atmospheric biosignatures by eclipse spec-
troscopy with the planned James Webb Space Telescope (JWST,
e.g., Seager et al. 2009; Kaltenegger & Traub 2009) without the
challenging need to separate the light of the planet from that of
its host star.

Two different approaches are presently used to detect low-
mass planets transiting nearby M dwarfs.

1. Doppler surveys targeting nearby M dwarfs have detected
several low-mass planets, including a few “hot Neptunes”
and “super-Earths”1. The subsequent search for the transits
of these planets revealed the transiting nature of GJ 436b
(Gillon et al. 2007b), the first transiting planet significantly
smaller than Jupiter. A growing number of habitable super-
Earths are expected in the near future and, clearly, this effort
should be pursued and intensified, because only a substantial
increase of these detections (∼× 50−100) will reveal transit-
ing habitable super-Earths.

2. Most of the known transiting planets have been detected by
dedicated photometric surveys monitoring thousands of stars
in fairly large fields of view. Nevertheless, nearby M dwarfs
are spread all over the sky, so most transit surveys do not
probe enough of them to make a transit detection likely. An
alternative approach is used by the MEarth Project (Nutzman
& Charbonneau 2008). This survey individually monitors
nearby M dwarfs with eight 40 cm telescopes located at Mt.

1 A super-Earth is loosely defined as a planet between 1 and 10 Earth
masses.
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Hopkins, Arizona. Thanks to the small size of its targets,
MEarth is sensitive to transiting planets down to a few R⊕,
as demonstrated by its recent detection of a 2.68 R⊕ super-
Earth transiting GJ 1214 (Charbonneau et al. 2009; here-
after C09). After CoRoT-7b (Léger et al. 2009; Queloz et al.
2009), GJ 1214b is the second super-Earth caught in transit.
Unlike CoRoT-7b, GJ 1214b is a good target for an atmo-
spheric characterization with, e.g., the future JWST, thanks
to the small size and infrared brightness of its host star.
Nevertheless, the approach used by MEarth is young and its
effectiveness to detect habitable planets is difficult to assess.

We outline here the potential of a third approach to discover
habitable planets transiting nearby M dwarfs. Its main princi-
ple is simple: planets form within disks, therefore a planet or-
biting in the HZ of a given star should have a higher a priori
transit probability if its star harbors a known transiting planet.
This assumption is supported by the small scatter of the or-
bital inclinations of the eight planets of the solar system (rms =
2.2 deg) and of the regular satellites of Jupiter (rms = 0.35 deg)
and Saturn (rms = 2.8 deg). For dynamical stability reasons, the
fact that low-mass planets systems (e.g., GJ 581, HD 40307)
detected by Doppler surveys tend to be “packed” also favors a
small scatter of the orbital inclinations. Recent Kepler results
also support this assumption (Steffen et al. 2010; Holman et al.
2010). Depending on the orbital inclination of the known tran-
siting planet, on the assumed distribution of the orbital inclina-
tions of the planetary system, on the size of the star, and on its
physical distance to its HZ, significantly enhanced transit proba-
bilities can be expected for habitable planets. A dedicated high-
precision photometric monitoring of M dwarfs known to harbor
close-in transiting planets could thus be an efficient way to de-
tect transiting habitable planets in the near future. The aim of
this Research Note is to assess the potential of this approach for
the only M dwarf presently known to host a transiting super-
Earth, GJ 1214. Section 2 presents our computational method.
Our results are given in Sect. 3 and are discussed in Sect. 4.

2. Transit probabilities for additional planets

To account for the uncertainty of the measured orbital inclina-
tion for the known planet and to include the possibility that the
searched planet does not share the exact same inclinations, we
compute the transit probability with Monte-Carlo simulations.

We define a “terrestrial” region extending from twice the pe-
riod of the transiting planet to the ice line defined as (Ogihara &
Ida 2009)

rice = 2.7

(
L∗
L�

)2

AU, (1)

where L∗ and L� are the luminosity of the star and the Sun. For
GJ 1214, we take L∗ = 0.00328 L� for GJ 1214 (C09). This lumi-
nosity translates into rice = 0.155 AU. Using M∗ = 0.157 M� for
GJ 1214 (C09), the corresponding orbital period is only 56 days.

We assume circular orbits for all planets. We divide the de-
duced terrestrial region into 1000 equal steps in semi-major axis.
For each semi-major axis ai (i = 1:1000), 10 000 orbital inclina-
tions ik (k = 1:10 000) are drawn via

ik ∼ N
(
itp, σ

2
tp + σ

2
disk

)
, (2)

where N(m, n2) represents the normal distribution of mean m
and variance n2, itp and σtp are the orbital inclination of the

known transiting planet and its 1-σ error, and σdisk is the as-
sumed standard deviation of the orbital inclinations in the plan-
etary systems. We adopt itp = 88.62 ± 0.35 deg (C09), and
σdisk = 2.2 deg, the corresponding value for the eight planets
of the solar system (Murray & Dermott 2000). We also test val-
ues twice smaller and larger for σdisk, i.e. 1.1 and 4.4 deg, and
the unrealistic value σdisk = 0 deg to illustrate the influence of
the inclination scatter in the planetary systems.

For each orbital inclination ik drawn via Eq. (2), a transit
impact parameter bk is computed via

bk =
ai

R∗
cos ik. (3)

We use R∗ = 0.211 R� (C09). If the absolute value of bk is lower
than 1, a transit is recognized. If so, the transit duration Dk is
computed via

Dk =
PiR∗
πa

√
1 − b2

k, (4)

where Pi is the orbital period. Equation (4) assumes that the
planet has a negligible size compared to the star (e.g., Seager
& Mallén-Ornelas 2003).

For each step in semi-major axis, the transit probability is
computed as the fraction of the 10 000 drawn inclinations lead-
ing to a transit. We also compute for each step the geomet-
ric transit probability Ptr, neglecting the transiting nature of the
known planet, using

Ptr =
R∗
a
· (5)

Following Kasting et al. (1993), we define the inner edge HZin
and outer edge HZout of the habitable zone as

HZin = 0.95

(
L∗
L�

)2

AU, (6)

HZout = 1.37

(
L∗
L�

)2

AU. (7)

From these formula, the HZ of GJ 1214 extends from 0.054 to
0.078 AU. These edges correspond to orbital periods of 11.6
and 20.1 days. We finally average the transit probabilities and
durations for the whole HZ to obtain a representative value for
GJ 1214.

3. Application

Neglecting the transiting nature of GJ 1214b, a planet in the
HZ of GJ 1214 would have a mean transit probability of only
1.5%. Taking into account the transits of GJ 1214b and assum-
ing σdisk = 2.2 deg leads to a much higher transit probability
of 25.1% (Fig. 1), the mean expected duration of a transit be-
ing 1.4 h. A scatter twice larger for the orbital inclinations in the
GJ 1214 planetary system would lead to a reduced transit prob-
ability of 14.8%, which is still ten times higher than the proba-
bility expected if we do not consider that GJ 1214b does transit.
For σdisk = 1.1 deg, the probability goes up to 30.1%, while it
goes down to 7.7% for fully coplanar orbits. The difference be-
tween these latter two values well illustrates the advantage given
by the fact that planets of the same system are probably not per-
fectly coplanar.

Assuming σdisk = 2.2 deg and that a terrestrial planet orbits
in the HZ of GJ 1214, a constant photometric monitoring of the
star during 20.1 days would therefore have a ∼25% probability
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Fig. 1. Top: transit probability for a planet in a circular orbit around
GJ 1214 as a function of the orbital period, assuming σdisk = 0 (black),
1.1 (green), 2.2 (red) and 4.4 deg (blue), and neglecting the transiting
nature of the known planet (dashed line). Middle: transit depth of a
planet orbiting around GJ 1214 as a function of the planetary radius.
Bottom: RV semi-amplitude above which a planet could be detected in
the HARPS data. See text for details.

to catch at least one of its transits, if a sufficiently high photo-
metric precision is reached. Two main options can be considered
to perform this photometric search: a multi-site ground-based

survey using several telescopes spread in longitude or a space-
based monitoring using an instrument able to stare at GJ 1214
for three weeks.

Ground-based photometric time series reaching the sub-
mmag precision level for a time sampling better than one minute
have been obtained in the optical for several transiting planets
(e.g., Gillon et al. 2009; Johnson et al. 2009; Winn et al. 2009).
Our own analysis of most of these data makes us conclude that
a transit with a depth as low as one mmag could be firmly de-
tected with a such a photometric precision. Shallower occulta-
tions of short period transiting planets could be detected from
the ground (e.g., Sing & López-Morales 2009), but only because
the expected timing and shape of the occultations are known
via the analysis of the transits and radial velocities (RV). For
a transit that could happen anytime during a run of two months,
a detection limit better than one mmag seems unrealistic with
current instruments and techniques. Furthermore, the most pre-
cise ground-based differential light curves were obtained during
nights with excellent atmospheric conditions and at low airmass,
far from the average observation conditions of a multi-site sur-
vey observing the same star during three weeks. For these rea-
sons, the actual detection limit for such a program would proba-
bly be closer to two than one mmag.

Figure 1 (middle panel) shows that with this photometric pre-
cision, a ground-based monitoring campaign of GJ 1214 would
be sensitive to very small planets. Planets as small as the Earth
or even smaller could be detected. It is worth noticing here that
the detection limit achievable from the ground is mostly limited
by the atmosphere and the photometric correlated noises that it
creates.

The detection limit could be much better for a space-
based telescope. For instance, the Spitzer telescope has pro-
duced several high-precision photometric time-series for another
M-dwarf, GJ 436 (e.g., Gillon et al. 2007a; Deming et al. 2007).
Spitzer’s cryogen is now depleted, but the telescope is still ac-
tive (under the name “Warm Spitzer”) and keeps its full potential
in the two bluest channels (3.6 and 4.5 μm) of its IRAC camera
(Stauffer et al. 2007). Our analysis of the occultation photometry
obtained for GJ 436b at 3.6 μm (Lanotte et al., in prep.) allows us
to conclude that an eclipse of 200 ppm would be firmly detected
for GJ 436 within the 3.6 μm channel of Spitzer. At 3.6 μm,
GJ 1214 is 2.7 mag fainter than GJ 436. Considering a complete
noise model and Spitzer instrumental throughput corrections2,
we obtain a SNR of ∼990 for a 12 s exposure at 3.6 μm. This
translates into a theoretical error of 450 ppm per minute, and
59 ppm per hour. Considering only white noise, we would there-
fore conclude that a transit of 240 ppm and lasting one hour
could consequently be detected at 4-σ. Still, fluxes measured
with the InSb detectors of IRAC show a strong correlation with
the changing position of the star on the array (e.g., Knutson et al.
2008). This purely spatial “pixel-phase” effect is due to the com-
bination of the undersampling of the stellar image, the intra-pixel
sensitivity, and the jitter of the telescope. It can be well modeled
by an analytic function of the x and y coordinates of the stel-
lar image center, but the inaccuracy of this model and the finite
precision on the measured stellar positions result in a residual
photometric correlated noise with a timescale similar to that of a
typical transit. From our experience with GJ 436 (Lanotte et al.,
in prep.) and CoRoT-2 (Gillon et al. 2010), the impact of the
“pixel-phase” effect on the final photometric precision is SNR-
dependent, at least in the high SNR regime. Basically, it leads
to errors on the fitted parameters (including the eclipse depth)

2 http://ssc.spitzer.caltech.edu/documents/som/
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Fig. 2. Mass-radius curves for exoplanets. The horizontal lines show
planets of a fixed radius. An upper mass limit comes from the pure
iron planet case. A lower mass limit comes from theoretical arguments,
namely the inability of a small and low-mass planet to retain H and
He. Further arguments about water loss may be used to argue that a
planet cannot have a significant interior water fraction. The solid lines
are homogeneous planets. From top to bottom the homogeneous planets
are made of water ice (blue solid line); silicate (MgSiO3 perovskite;
red solid line); and iron (Fe ε; green solid line). The non-solid lines are
differentiated planets. The red dashed line is for silicate planets with
32.5% by mass iron cores and 67.5% silicate mantles (similar to Earth)
and the red dotted line is for silicate planets with 70% by mass iron core
and 30% silicate mantles (similar to Mercury). The blue dashed line is
for water planets with 75% water ice, a 22% silicate shell and a 3% iron
core; the blue dot-dashed line is for water planets with 45% water ice,
a 48.5% silicate shell and a 6.5% iron core (similar to Ganymede); the
blue dotted line is for water planets with 25% water ice, a 52.5% silicate
shell and a 22.5% iron core. Curves taken from Seager et al. (2007).

∼twice larger than expected when considering only white noise.
In the case of GJ 1214, a transit lasting one hour would thus need
a depth of ∼450 ppm to be detected at 4-σ. This limit is shown
in Fig. 2. It corresponds to a planet size of 0.49 R⊕, i.e. smaller
than Mars (0.53 R⊕).

Alternatively, one may await the RV detection of any addi-
tional planet before undertaking the photometric search for its
transit. Not only would the presence of the planet be known with
certainty, but the observational window would also be narrowed
with an a priori ephemeris. To estimate the observational effort
required for a RV detection for GJ 1214 (V = 15), we com-
pute the detection limit (Zechmeister & Kürster 2009) imposed
by the 28 HARPS RVs reported in the detection paper (C09).
Figure 1 (bottom panel) shows the semi-amplitude above which
a planet would have been detected, with a 99% confidence level
(for all of our 12 trial phases). The plot shows fluctuations be-
cause we have too few data points for a clean sampling, but more
data will smooth the curve and it will eventually be indepen-
dent of the period. More data will scale down the detection limit
and, anticipating a better sampling from these additional points,
a K ∼ 10 m.s−1 limit (indicated by a dashed line) seems a better
estimate for the velocity amplitude we aim to scale. To detect an
Earth-mass planet orbiting at 0.066 AU – or K ∼ 0.88 m.s−1 – we

will need 130 times more data points (>2000 h). A true Earth-
mass planet (or lower mass) requires therefore unrealistic ob-
serving time with current velocimeters.

4. Discussion

GJ 1214 appears to be a promising target for the approach de-
scribed here. Because of its small size and luminosity, the tran-
sit probability in its HZ is fairly large, and very small planets
could be detected transiting this star. Another major advantage
of GJ 1214 is the proximity of its HZ. To probe its HZ, a constant
monitoring of the star during only three weeks would be needed.
For planets orbiting in the inner part of the HZ, two transits could
be observed during such a run of three weeks, leading to an im-
proved sensitivity to very small planets.

For the area interior to the HZ, the transit probability goes up
to a mean value of 44% for GJ 1214 (asssumingσdisk = 2.2 deg).
Because of the larger number of transits observed for shorter
periods, the sensitivity to smaller planets would be better than
for the HZ. For instance, Warm Spitzer could then detect a planet
as small as Mercury (0.38 R⊕).

Discovery of a transiting habitable-zone planet as small as
Mars would create a very challenging mass measurement for
the RV method. Mars is nearly ten times less massive that the
Earth, and the mean semi-amplitude of the RV wobble due to
a Mars-mass planet orbiting in the HZ of GJ 1214 would be
only 9.4 cm s−1, while we have seen in Sect. 3 that an Earth-
mass planet producing a RV signal ten times larger would be out
of reach for current spectrographs. Of course, with the a priori
knowledge of the phase and period, one would need to sample
the RV orbit at its extrema only, facilitating the mass measure-
ment of an Earth-mass planet. Still, the measure seems difficult
and for sure, measuring the mass for a Mars-mass planet would
remain out of reach for current instruments. To measure the mass
of Earth and sub-Earth mass planets, one would have to rely on
future facilities such as Espresso/VLT (Pasquini et al. 2009) or
Codex/ELT (Liske et al. 2009).

We argue, however, that if the main goal is to find target
planets for follow-up atmosphere observations for habitability,
a planet mass is not completely necessary. This statement holds
as long as the planet radius detection has a high SNR and as
long as the planet is small enough. A high SNR transit detection
for a small planet is sufficient to confirm planet candidacy for a
transiting planet discovered from a targeted search. In contrast,
a planet mass has traditionally been required for exoplanets dis-
covered by planet transit surveys. Because transit surveys that si-
multaneously monitor tens of thousands of stars are fraught with
false positives, a planet mass is the surest way to confirm the
planetary nature of a transit signature. The argument here is that
false positives are not a problem for transit signatures detected
around a star with another known transiting planet, as long as the
radius measurement is very robust.

For planets with small radii in the habitable zones of their
host stars, we can derive an upper mass limit, assuming that the
most massive a planet can be is one of pure iron (Fig. 2). We
can argue for a lower mass limit, using theory and models, that
a small planet in the stars HZ will not have an H/He envelope.
Note that an H/He envelope is usually considered bad for hab-
itability because it traps heat making the planet surface too hot
for complex molecules to form. Arguments about the loss of a
planets interior water reservoir (Kuchner et al. 2003; Léger et al.
2004) due to either stellar irradiation or from energy from tidal
friction (e.g. Io) could be used to further theoretically constrain
the planet mass.
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If biosignatures or habitability features are detected, then
mass estimates using future facilities are warranted, despite the
huge amounts of telescope time needed.

Our results for GJ 1214 outline the scientific interest of the
approach used by the MEarth Project. Not only has the MEarth
survey demonstrated its capacity to detect super-Earths transit-
ing nearby M dwarfs, but it also traces the shortest path to the
detection of habitable planets as small, or even smaller, than the
Earth and for which the detection of biosignatures could be pos-
sible in the near future. In this context, we advocate the develop-
ment of the approach used by MEarth (other facilites spread in
longitude, a similar survey observing from Southern hemisphere,
larger telescopes and IR cameras to monitor cooler M dwarfs),
but also an intense and high-precision photometric monitoring of
GJ 1214 and of the other transiting systems that MEarth (or simi-
lar projects) will detect. This two-step approach targeting nearby
M dwarfs permits the detection in the near-future of transiting
habitable planets much smaller than our Earth, which would be
out of reach for existing Doppler and transit surveys.
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