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ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) near-

real-time (RT) data are considered less accurate than the TMPA research quality (RP) data because of the

simplified data processing algorithm and the lack of gauge adjustments. However, for near-real-time hy-

drological applications, such as drought nowcasting, the RT data must play a key role given latency consid-

erations and consistency is essential with products like RP, which have a long-term climatology. The authors

used a bivariate test to examine the consistency between the monthly RT and RP precipitation estimates for

12 yr (2000–12) and found that, for over 75% of land cells globally, RT and RP were statistically consistent at

0.05 significance level. The inconsistent grid cells are spatially clustered in western North America, northern

SouthAmerica, central Africa, andmost of Australia. The authors also show that RT generally increases with

time relative to RP in northern South America and western Australia, while in western North America and

eastern Australia, RT decreases relative to RP. In other areas such as the eastern part of North America,

Eurasia, and southern part of the SouthAmerica, the RT data are statistically consistent with the RP data and

are appropriate for global- or macroscale hydrological applications.

1. Introduction

Precipitation is a key component of the water cycle

and is the most important determinant of land surface

hydrologic extremes (e.g., droughts), which result in

billions of dollars of economic losses (Smith and Katz

2013) and human suffering each year.However, especially

in the developing world, ground-based precipitation

records are insufficient to support modern hydrologic

prediction methods (Su et al. 2008; Yong et al. 2010;

Bitew and Gebremichael 2011). Satellite-based remote

sensing of precipitation offers an alternative source of

precipitation information for hydrologic prediction that

can resolve the space–time resolution deficiencies of in

situ networks (Sapiano and Arkin 2009). The Tropical

Rainfall Measuring Mission (TRMM) Multi-satellite

Precipitation Analysis (TMPA) provides 3-hourly, 0.258
3 0.258, near-global precipitation estimates (508N–508S)
based on data from multiple passive microwave and

infrared satellite sensors. The TMPA real-time product

(RT) is available within about 9 h after the time of ob-

servation. There is also a post-real-time research-quality

TMPA product (RP), available about 2 months follow-

ing the month of the observation, which includes an

adjustment to available in situ gauges and certain other

corrections (Huffman et al. 2007).

Although the RT data are considered less accurate

than the RP data (a result of the gauge adjustment in RP

and simplified data processing in RT), the RT data are

most appropriate for real-time hydrological applica-

tions, such as drought monitoring (e.g., Nijssen et al.

2014) and flood prediction (e.g., Wu et al. 2012), because

of data latency considerations. The latest version of

TMPA is version 7 (V7),which has recently been updated
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and reprocessed back to March 2000 (Huffman and

Bolvin 2013). This period of consistently processed pre-

cipitation record is a potential basis for estimation of the

empirical precipitation distributions that are now com-

monly used in drought characterizations (e.g., Sheffield

et al. 2004; Andreadis et al. 2005).

In this paper, we evaluate the TMPA V7 RT dataset

for (statistical) consistency in accumulated precipitation

amounts with the RP product over the period 2000–12

for the entire global (land) domain. We use the RP

product as the benchmark for our comparisons because,

on a monthly basis, the RP data essentially reproduce

the characteristics of the gridded station data used in the

adjustment process (Huffman et al. 2007). In the RP

product, the satellite precipitation estimates (processed

similar to the RT) are used only to partition the monthly

totals to 3-hourly values. Insofar as we focus here only

on the statistical stationarity of RT relative to RP at

a monthly time scale, our results are of particular in-

terest for applications that are sensitive to accumulated

precipitation amounts, such as large-scale drought

monitoring systems. For flood analysis and prediction,

statistical properties of the short-term (3 hourly) data

are more important than for drought, and our discussion

here is not aimed at such applications.

2. Data and methods

The V7 RT and RP 3-hourly products were extracted

for the period from 1 March 2000 (the earliest available

V7 RT) to 29 February 2012 (144 months) from the Na-

tional Aeronautics and Space Administration (NASA)

Goddard Earth Sciences (GES) Data and Information

Services Center (DISC) FTP sites. Both products have

a spatial resolution of 0.258, and we aggregated them to

monthly totals.

We applied the Maronna and Yohai (1978) bivariate

test as adapted by Potter (1981) for hydrological use. It

has been adopted by the hydrology community to detect

the statistical homogeneity of meteorological and hy-

drological time series (e.g., Lettenmaier et al. 1994;

Plummer et al. 1995; �St�ep�anek et al. 2009; Jones 2012). It

essentially provides a statistical hypothesis test frame-

work for double mass curve analysis, which is used in

hydrology and applied climatology (e.g., Dingman 2008)

to detect systematic drifts of one time series relative to

another. A constant slope of the double mass curve in-

dicates consistency between two datasets, while changes

in the slope indicate the departure of one dataset from

the other. The departure could be caused by changes in

data collection methods or the algorithms used in data

processing (Searcy and Hardison 1960). An underlying

assumption of the bivariate test is that the two time series

to be compared are each temporally independent (but

may be, and usually are, cross correlated) with a bivariate

normal distribution. The test arguably is appropriate to

long-termmonthly precipitation time series, which either

are or can be transformed to be approximately normally

distributed (Lettenmaier et al. 1994) and usually are only

modestly serially correlated (Yevjevich 1967).

The null hypothesis for the test is that the two time

series fxig and fyig come from the same bivariate nor-

mal distribution. The test statistic T0 is described as
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For each time step i (i 5 1, 2, . . . , n, where n 5 144),

Ti is calculated, which represents the adjusted cumula-

tive departure from one time series to the other. The test

statistic T0 is then determined as the maximum value of

Ti over n time steps. The time i0 corresponds to the time

step when Ti equals T0 and is an estimate of the time at

which one time series begins to shift relative to the other.

Critical values of the test statistic Tc for given signifi-

cance levels a can be computed via Monte Carlo simu-

lation for n 5 144. We determined that Tc is 9.6 at a 5
0.05 and 12.8 at a 5 0.01. We also further examined the

slope breaks of the double mass curves in those grid cells

for which rejections of the null hypothesis occurred. This

analysis identified grid cells where RT increased or de-

creased relative to RP.

3. Results

Figures 1a and 1b show results of the bivariate test

applied to the V7 RT and RP products. The null
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hypothesis, that there is no systematic difference, was

rejected for about 24% of the grid cells at the 0.05 sig-

nificance level (Fig. 1a). The figure also shows the gen-

eral trend of the double mass curve, with areas in which

RT increases relative to RP shown in blue and areas in

which RT decreases relative to RP in red. In general,

Eurasia, northern Africa, most of North America, and

the eastern and southern part of South America show

a high degree of consistency between RT and RP. Spa-

tially coherent areas of inconsistency include the

northwestern part of the contiguous United States, the

northern part of South America, central Africa, and

most of Australia. There are also inconsistent grid cells

in southern Africa and eastern Europe, but they are less

spatially coherent than those noted above. In addition,

the values of the test statistic T0 (maximum value of Ti)

are quite close to the 0.05 critical level in these areas.

Therefore, it is useful to focus on the areas in which the

null hypothesis was rejected at a higher significance

level. Figure 1b shows the areas where the null hy-

pothesis was rejected at a 5 0.01 (about 11% of grid

cells).

The percentage of rejected cells changes in different

climate regions. Figure 1c shows the cells rejected at

a 5 0.01 in five K€oppen climate regions. The tropical

rain forest region has the highest rejection percentage

FIG. 1. Areas that are rejected by the bivariate test at (a) a 5 0.05 and (b) a 5 0.01. Blue

indicates RT increases relative to RP, and red indicates RT decreases relative to RP.

(c) Percentages of rejected grid cells in five K€oppen climate regions. (d) The i0 (time of the

max test statistic in the bivariate test) distribution for rejections at a 5 0.05. Six rectangular

regions selected for additional analyses are shown (see Fig. 2). They are identified (from west

to east) as: the northwestern United States – a, northern South America – b, eastern Europe –

c, central Africa – d, western Australia – e, and southeastern Australia – f (see Table 1).
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(21%), almost twice the global average, and 6% of grid

cells were rejected in polar regions, which is the lowest

rejection rate globally. The other three regions (arid,

warm, and continental) have about 11% rejection, which

is the same as the global average.

We then examined i0, the time when a change or in-

consistency began to develop between RT and RP.

Figure 1d shows i0 for all cells in which T0 exceeds the

a 5 0.05 threshold. It is clear that i0 has a strong spatial

coherence in these rejected areas, indicating that RT

and RP have experienced a relative shift at about the

same time (and hence, there may be a common cause

within the spatially coherent areas).

To analyze the relationship between the test statistics

and the RT and RP time series, we examined six rect-

angular areas in which most of the cells (over 70%) were

rejected in the bivariate test at a5 0.05 (Fig. 1d; Table 1).

For each of these areas, we show the area-averaged RT

TABLE 1. Summary of six selected rectangular areas. See Fig. 1d for area locations.

Northwestern

United States (a)

Northern South

America (b)

Eastern

Europe (c)

Central

Africa (d)

Western

Australia (e)

Southeastern

Australia (f)

Lat 408–468N 58S–08 408–458N 08–58N 308–208S 388–328S
Lon 1208–1108W 788–708W 208–258E 308–368E 1148–1208E 1418–1508E
Pixels rejected at a 5 0.05 (%) 72 94 75 87 82 78

Pixels rejected at a 5 0.01 (%) 53 83 52 72 77 62

Coordinates of the pixel with max T0 43.58N, 1198W 48S, 73.58W 44.58N, 238E 0.58N, 32.58E 248S, 1158E 36.58S, 148.58E
T0 of area mean bivariate test 15.62 34.93 18.39 46.02 53.56 22.13

Year of i0 in area mean bivariate test 2003 2009 2002 2009 2000 2010

FIG. 2. Time series of the test statistic Ti (cumulative departure between RT and RP) and area-averaged RT and RP

estimates for regions a, b, c, d, e, and f in Fig. 1d.
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and RP time series as well as the bivariate test results for

the two area-averaged time series (Fig. 2). For the

northwestern United States (Fig. 2a), Ti exceeds the Tc

threshold (a 5 0.01) in 2003 and 2004. The nature of the

inconsistency is clear from the time series, with cumula-

tive RT decreasing relative to RP over the period of

analysis. Note that the test does not evaluate the bias of

RT relative to RP, but merely whether there is a change

in this bias over time. We note that this is a mostly

mountainous region, so one is tempted to conclude that

the divergence of RT relative to RP is related to terrain

and/or mountain surface processes (such as snow).

However, there are many other areas of the globe with

topographically complex terrain where no such di-

vergence is apparent, and the reasons for the divergence

remain elusive. In northern South America (Fig. 2b), Ti

reaches a peak in 2009. Time series plots indicate that the

cumulative RT and RP series remain consistent until

2007, when RT increases relative to RP. In eastern

Europe (Fig. 2c), theTi pattern is similar to that in Fig. 2a,

with a maximum around 2002 and relatively low values

afterward. However, unlike the northwestern United

States, there is no obvious increase of the RT time series

relative to RP. Instead, RT and RP agree for most of the

period except for a few extremes in RT series that oc-

curred in 2002 and 2003. In central Africa (Fig. 2d), Ti

exceeds the 0.01 critical value through 2002–11 with the

peak at 2008. The continued exceeding of the Tc thresh-

old indicates that the bias of RT relative to RP changes

throughout this period. The time series suggests that the

RT values are generally a little lower than RP from 2000

to 2008 and then become close thereafter. In western

Australia (Fig. 2e),Ti only exceeded the 0.01 critical value

in the first year and remains lower than the critical value

afterward. The time series indicates that RP had a very

large peak value during the first month compared to RT,

after which the two records were similar. In southeastern

Australia (Fig. 2f), the maximum Ti occurred in 2010,

exceeding the 0.01 significance level. Even though the

change in bias is difficult to detect visually, RT is smaller

thanRP for several events from 2008 to 2011, which is the

apparent cause of the null hypothesis being rejected.

FIG. 3. Areas that are rejected in the bivariate test between TMPA V6 RT and RP for

a 5 0.01. Blue indicates that RT increases relative to RP; red indicates that RT decreases

relative to RP.

FIG. 4. Bivariate test from 2001 to 2010 between Sheffield et al. (2006) data and TMPA V7

(a) RP and (b) RT.
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4. Discussion

Although a thorough analysis of the causes of the il-

lustrated inconsistencies is not the focus of this paper,

we conducted a series of diagnostic analyses to explore

possible reasons for the observed inconsistencies. First,

we applied the bivariate test to the TMPA V6 RT and

RP data (V6 is the predecessor to V7) from 2004 to 2010.

We found that even though the V6 test period (7 years)

is 40% shorter than the V7 test period (12 years) and

hence the test is considerably less powerful, the in-

consistent area between V6 RT and RP at a 5 0.01

(22%) is about double that between V7 RT and RP

(11%; Fig. 3). This suggests that inconsistencies also

exist in the previous version of TMPAproducts, which is

expected given the inhomogeneous V6 RT processing

and the shift in V6 RP gauge source in May 2005

(Huffman et al. 2010). Our tests also suggest that the

data consistency has been improved in V7.

Second, we applied the bivariate test to the TMPA

products and a 1/48 global gauge-based precipitation da-

taset (Sheffield et al. 2006) from 2001 to 2010 (note that

the dataset has been extended by the authors subsequent

to the original paper) to determine whether the bench-

mark dataset (RP) itself might be responsible for the

observed differences. The test results (Fig. 4) show that

only 7.3%of the grid cells were inconsistent between the

Sheffield et al. data and RP at a 5 0.01. However, more

than twice as many grid cells (15%) were rejected in the

Sheffield et al. versus RT test, indicating that the RP

dataset is much more consistent with the gauge obser-

vations than is RT.

We further investigated the western United States

(258–508N, west of 1008W) by applying the bivariate test

to a 1/48 gauge-based gridded precipitation dataset [ag-

gregated from the 1/168 dataset for the conterminous

United States of Livneh et al. (2013)] and the TMPART

and RP datasets from 2001 to 2011. This region is one of

the largest contiguous, inconsistent areas in our test and

generally has higher-quality gauge-based observations

than outside the United States. We found that the per-

centage of the westernUnited States for which the Livneh

et al. data and RP are inconsistent at a 5 0.01 was only

about 2%, much smaller than for RT versus RP over this

region (about 10%; Fig. 5). Both the global and western

U.S. tests suggest that the inconsistencies betweenRTand

RP are real and are not an artifact of drift in RP, which

effectively serves as a benchmark in our analyses.

Third, we examined the consistency between RT

and RP for different seasons. RT and RP estimates in

summer [June–September (JJAS) in the Northern

Hemisphere and December–March (DJFM) in the

Southern Hemisphere] and in winter (DJFM in the

FIG. 5. Bivariate test in the western United States (from 1008W)

from 2001 to 2011 between TMPA V7 (a) RT and RP, (b) Livneh

et al. (2013) and TMPA V7 RP, and (c) Livneh et al. (2013) and

TMPA V7 RT.
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Northern Hemisphere and JJAS in the Southern Hemi-

sphere) were selected for two additional bivariate tests.

Although the sample size for each test (4 months 3
12 years 5 48) was relatively small in a statistical sense,

and hence the test power is lower than for the entire se-

ries, the results do give some hint of the effects of sea-

sonality on data consistency. The results (Fig. 6) indicate

that the total number of inconsistent grid cells in sum-

mer and winter are similar—about 16% in summer and

14% in winter at a 5 0.05. However, the spatial distri-

bution of the rejected grid cells is very different. In

Southern Hemisphere summer, the largest inconsistent

area is concentrated in Australia, but in winter most of

the inconsistent areas are located in mid- and southern

Africa. These findings imply that the consistency be-

tween RT and RP has strongly seasonal variations in

different locations.

Fourth, we examined the relationship between the

number of precipitation gauges used in RP and the

consistency between RT and RP. The gauge observa-

tions used in the RP product come from the Global

Precipitation Climatology Centre (GPCC; Huffman

et al. 2010). For the period 1998–2010, RP used the

GPCC Full Data Reanalysis (V6) product at 18 spatial
resolution, which superimposes the observed monthly

anomalies on the month’s climatology from the period

1951–2000 (Becker et al. 2013; Huffman et al. 2010).

After 2010, RP used the GPCC Monitoring Product

(V4), which is processed in a manner consistent with the

GPCC Full analysis but generally has fewer observa-

tions (Adler et al. 2003). Furthermore, the number of

gauges included in the GPCC V6 product decreased

frommore than 30 000 to less than 10 000 over the period

2001–10. To investigate the effect of changes in the

number of gauges included in RP, we selected two

months (May 2001 and December 2010) that have the

largest (32 018) and smallest (9493) gauge numbers in

the underlying GPCC V6 product. The number of

GPCC gauges used in RP in these twomonths was noted

for each 3 3 3 gridcell window in the domain, centered

on the grid cell of interest. The consistency for each grid

cell was represented by T0 calculated from the bivariate

test. The percentiles of T0 are plotted in Fig. 7 as a func-

tion of the numbers of gauges. Figure 7 suggests that there

is essentially no relationship between (the median of) T0

and the number of gauges. Generally, declining values of

the 100th percentile with increasing number of stations

are a reflection of the larger range ofT0 for small numbers

of stations and appear to be related to occasionally

anomalous behavior of RP when the number of stations

in the constraining GPCC product is small.

Further examination of the shape of the Ti distribu-

tion as well as the RT and RP time series in the in-

consistent grid cells allows us to group the inconsistencies

qualitatively into two categories: 1) those largely caused

by under- or overestimation of several peak values, with

minimal change between RT and RP most of the time

(type I, e.g., areas c, e, and f), and 2) those largely caused

by systematic drift, with the difference between RT and

RP changing over the test period (type II, e.g., areas a, b,

and d). To differentiate the two types of inconsistencies,

we simply eliminated the k pairs of data that had the

largest absolute differences between RT and RP in each

rejected grid cell and then performed the bivariate test

FIG. 6. Distribution of the time of the max test statistic (i0) for grid cells rejected at a5 0.05

in (a) summer (JJAS for the NorthernHemisphere, DJFM for the Southern Hemisphere) and

(b) winter (DJFM for the Northern Hemisphere, JJAS for the Southern Hemisphere).
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again on the reduced dataset (k 5 15 in this case, or

about 10% of the sample size). Grid cells that passed the

second round of testing were considered to have type I

inconsistencies, while the others were considered to

have type II inconsistencies (Fig. 8). Overall, we found

on this basis that at a 5 0.05, about 40% of the rejected

grid cells had type I inconsistencies and the remaining

60% had type II inconsistencies.

Type I inconsistencies may be associated with the

poor quality of measurements and estimates during ex-

treme precipitation events, documented, for example,

by Katsanos et al. (2004) in the eastern Mediterranean

and Su et al. (2008) in central South America. Both

studies found that previous versions of TMPA RT

products tended to overestimate precipitation for large

precipitation thresholds. Another reason for the first

type inconsistency could be calibration issues in the

TMPA-RT algorithm at and past the edge of the TRMM

satellite coverage, as suggested by Villarini (2010) in

Rome, Italy [for a previous version (V6) of RP data].

Type II inconsistencies may be induced by changes to

the mix of satellite instruments that are used in the

construction of the precipitation products as well as

changes in the gauge datasets used for calibration in the

construction of the RP product. These include satellite

additions or termination during the test period, shifts in

the timing of the satellite observations during the day,

algorithmic changes in the weighting of the contribution

of particular satellites, and changes in RT calibration

performance in regions with strong gradients. One ex-

ample of a change to the gauge dataset is a shift in De-

cember 2010 from the GPCC Full analysis to the GPCC

Monitoring analysis, as noted above. These changes di-

rectly impact the RP product because the GPCC analysis

has a dominant role at the monthly scale if ‘‘sufficient’’

gauge observations are available. In real-time hydrologi-

cal applications, the first type of inconsistency may induce

under- or overestimation of extreme events, while the

second type of inconsistency can introduce systematic bias

in hydrologic predictions.

FIG. 7. Percentile of T0 (higher means more inconsistent) against the number of gauges within

3 3 3 18 cell window for (a) May 2001 and (b) December 2010.
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In summary, the inconsistencies between TMPA V7

RT and RP appear to result from multiple causes. Al-

though the specific causes for inconsistencies in various

regions remain unclear, the bivariate test provides a

powerful tool to examine algorithm deficiencies and

identify inconsistent regions where satellite and/or gauge

data availability changes.

5. Conclusions

Our analysis of the recently released TMPA V7 RT

andRP datasets from 2001 to 2012 shows that there is no

shift in the mean between the two datasets for over 75%

of the global land area from 508N to 508S at a signifi-

cance level of 0.05 and for nearly 90% at a significance

level of 0.01. Our analysis also shows that cumulativeRT

increases relative to RP in northern South America and

western Australia over time, while in western North

America and eastern Australia, RT decreases relative to

RP. In other areas such as easternNorthAmerica, Eurasia,

and southern South America, the RT data are statistically

consistentwith theRPdata and arguably can be considered

to be a reliable precipitation input for global-scale or

macroscale hydrological applications. In these areas, any

existing bias is constant with time. Remarkable spatial

coherence was observed in the date(s) at which the test

statistic Ti reached its maximum value. Further explora-

tions and analyses will be required to understand the un-

derlying causes of the inconsistency between RT and RP.
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