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ABSTRACT

This study analyzed uncertainties and correlations over the United States among four ensemble-mean North

American Land Data Assimilation System (NLDAS) percentile-based drought indices derived from monthly

mean evapotranspiration ET, total runoff Q, top 1-m soil moisture SM1, and total column soil moisture SMT.

The results show that the uncertainty is smallest for SM1, largest for SMT, and moderate for ET and Q. The

strongest correlation is between SM1 and SMT, and the weakest correlation is between ET and Q. The cor-

relation between ET and SM1 (SMT) is strongest in arid–semiarid regions, and the correlation betweenQ and

SM1 (SMT) is strongest in more humid regions in the Pacific Northwest and the Southeast. Drought frequency

analysis shows that SM1 has the most frequent drought occurrence, followed by SMT, Q, and ET. The study

compared the NLDAS drought indices (a research product) with the U.S. Drought Monitor (USDM; an op-

erational product) in terms of drought area percentage derived from each product. It proposes an optimal blend

ofNLDAS drought indices by searching for weights for each index that minimizes the RMSE betweenNLDAS

andUSDMdrought area percentage for a 10-yr period (2000–09)with a cross validation. It reconstructed a 30-yr

(1980–2009) Objective Blended NLDAS Drought Index (OBNDI) and monthly drought percentage. Overall,

the OBNDI performs the best with the smallest RMSE, followed by SM1 and SMT. It should be noted that the

contribution to OBNDI from different variables varies with region. So a single formula is probably not the best

representation of a blended index. The representation of a blended index using the multiple formulas will be

addressed in a future study.

1. Introduction

The North American Land Data Assimilation System

(NLDAS) runs four land surface models (LSMs) over

the NLDAS domain covering southern Canada, the con-

tiguous United States (CONUS), and northern Mexico in

support of improved weather prediction and land data as-

similation. The NLDAS was initiated in 1999 via the col-

laboration among the National Oceanic and Atmospheric

Administration (NOAA), the National Aeronautics and

Space Administration (NASA), and several universities

as a tool for improving the land initial conditions for

numerical weather predictions. Since then, the system has

expanded its scope to include model intercomparison

studies (Xia et al. 2012a,b), evaluation ofNLDASproducts

(Peters-Lidard et al. 2011; Xia et al. 2012c), and de-

velopment of a near-real-time NLDAS drought monitor-

ing system (Ek et al. 2011; Sheffield et al. 2012; Xia et al.

2013). The drought monitoring system provides a range of

drought indices, including daily, weekly, and monthly

anomalies and percentiles of hydrologic fields (soil mois-

ture, snow water equivalent, total runoff, streamflow,

evaporation, and precipitation) output from the four land

surface models [Noah, Mosaic, Sacramento (SAC), and

Variable Infiltration Capacity (VIC)] on a common 1/88
grid using common hourly meteorological forcing (see the

drought tab on the NLDASwebsite, www.emc.ncep.noaa.

gov/mmb/nldas). The climatology of each hydrologic field
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was calculated as the average of 28yr (1980–2007) of sim-

ulated or observed (i.e., precipitation) data. The clima-

tology was used to generate NLDAS drought monitor

(NLDASDM) products to provide to the U.S. Drought

Monitor (USDM) author group. To keep the consistency

of these operational products, we still use the 28-yr cli-

matology without including recent extreme events. How-

ever, a sensitivity test shows small effects on CONUS

calibration, although it may have a significant effect on

a given specific region (e.g., Texas or the Great Plains).

Updating the NLDAS, phase 2 (NLDAS-2), climatology

(from 28 to 33yr) is an ongoing project.

The uncertainty across models of the monthly mean

total column soil moisture percentile has been assessed

by Sheffield et al. (2012). The results show encouraging

consistency in the depiction of large-scale drought events,

although the development of drought at smaller scales

appears to differ considerably across models, despite the

commonality of meteorological forcings and underlying

landscape parameters. Mo et al. (2011) evaluated soil

moisture and water and energy fluxes from different sys-

tems, that is, the ensemble-mean of the NLDAS models

(Xia et al. 2012b), theNational Centers for Environmental

Prediction (NCEP) Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010), and the North American Re-

gional Reanalysis (NARR; Mesinger et al. 2006), using

in situ observations. The results showed that the NLDAS

ensemble-mean was the closest to the observations when

compared with the other two systems. Mo et al. (2012)

further analyzed the uncertainty of theNLDAS ensemble-

mean total column soil moisture percentile using a ratio

method and found that its uncertainty was small over

the entire CONUS, although there were larger uncer-

tainties in the northeast and western mountainous re-

gions. This result is consistent with that derived from

Sheffield et al. (2012).

To support U.S. operational drought monitor activity,

the NCEP/Environmental Modeling Center (EMC)

NLDAS team currently uses a daily archive to provide

ensemble-mean total runoff, top 1-m soil moisture, and

total column soil moisture percentiles at three time scales

(i.e., daily, past week, and pastmonth) to theU.S.Drought

Monitor author group. These NLDAS products, particu-

larly the top 1-mand total column soilmoisture percentiles

at the three time scales, are heavily usedwithin theUSDM

(E. Luebuhusen 2011, personal communication). In addi-

tion, the NCEP/EMC NLDAS drought monitor also pro-

vides ensemble evapotranspiration ET percentiles to the

public (see www.emc.ncep.noaa.gov/mmb/nldas/). How-

ever, except for monthly total column soil moisture

percentile, the other drought indices have not been

comprehensively analyzed and compared yet, although

these indices have been widely used in U.S. drought

monitoring and analysis (Andreadis et al. 2005; Wang

et al. 2009). This study focuses on investigating uncer-

tainties and correlations of monthly drought indices

(percentiles) and using this information to establish an

Objective BlendedNLDASDrought Index (OBNDI)—

a unified index. The reason is that both USDM (http://

droughtmonitor.unl.edu/) and NCEP Climate Prediction

Center (CPC) experimental objective blends of drought

indicators (www.cpc.ncep.noaa.gov/products/predictions/

tools/edb/droughtblends.php) used one unified index cri-

terion as their operational products. These two opera-

tional products have been widely used and accepted by

governmental agencies and other stakeholders because

of their simplicity. Therefore, one blended index can be

more easily used than multiple drought indices for the

public users. The blending method in this study utilizes an

optimization approach called very fast simulated anneal-

ing (VFSA) as used in Xia (2007) to minimize the root-

mean-square error (RMSE) between CONUS drought

area percentage simulated from NLDAS blended indices

and that derived from the USDM for a 10-yr period

(2000–09). We first establish a link between the NLDAS

drought monitor and the USDM. We use a ‘‘jackknife’’

method (Harnack and Lanzante 1985; Xia et al. 1999) to

validate the OBNDI and reconstruct a 30-yr CONUS

drought percentage area. It should be noted that a single

formula is probably not the best representation of a

blended index, as the contribution to OBNDI from dif-

ferent variables varies with region (Xia et al. 2013, 2014).

The paper is organized as follows. Section 2 describes the

NLDAS drought monitor and drought indices and in-

vestigates the uncertainties of these drought indices and

correlations among them. Section 3 describes the opti-

mization approach for developing the NLDAS blended

drought index. Section 4 presents the reconstruction of the

30-yr OBNDI and demonstrates its capacity to capture

CONUS drought areas and the spatial distribution of

drought by comparing withUSDM results. Section 5 gives

the summary and discussion.

2. NLDAS drought monitor, drought indices, their
uncertainties, and correlations

To support the National Integrated Drought In-

formation System (NIDIS), the NLDAS team estab-

lished the real-time NLDAS drought monitor (www.

emc.ncep.noaa.gov/mmb/nldas/drought/). As full terres-

trial water and energy cycles are represented in NLDAS,

we depict drought in terms of any one or a combination

of components, such as precipitation, ET, snow water

equivalent SWE, streamflow, and soil moisture. The

NLDAS-2 real-time monitor provides a range of drought

indices, including daily, weekly, and monthly anomalies
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and percentiles of hydrologic fields (soil moisture,

SWE, total runoff Q, streamflow, evaporation, and

precipitation) output from the four LSMs on a com-

mon 1/88 grid. It therefore provides a multimodel es-

timate of current drought conditions across the United

States. For soil moisture, the percentile climatology file

contains 140 soil moisture values (five for each of the

28 yr) for each grid box. Percentiles are based upon a 5-

day moving window of soil moisture values. This acts to

smooth out the soil moisture record. Monthly analyses

for each grid box are also computed by comparing the

past 30 days to the corresponding period in the percen-

tile climatology. Taking day 1 of the month as an ex-

ample, hourly soil moisture values from this day are

averaged together to form a single value. This value is

then ranked against the soil moisture values from each

day of the 5-day window surrounding day 1 of the cor-

responding month in the percentile climatology. This

same process is then repeated for days 2–30 of the

month, with each day of the month contributing equally

to the overall ranking value. For the other variables

such as SWE, Q, and ET, the same processes can be

used to calculate monthly percentiles relative to their

own climatologies. We used the same definition for the

drought category classification as used by the USDM

author group: D0 (abnormally dry, percentile #30%),

D1 (moderate drought, percentile #20%), D2 (severe

drought, percentile #10%), D3 (extreme drought,

percentile #5%), and D4 (exceptional drought,

percentile #2%).

A four-model ensemble mean is calculated for daily,

weekly, and monthly top 1-m soil moisture SM1, total

column soil moisture SMT, and total runoff and is di-

rectly provided to the USDM author group as a data

source to generate the USDM. For this study, we focus

on ensemble-mean drought indices at a monthly time

scale. Figure 1 shows the uncertainty of four ensemble-

mean drought indices: monthly percentile for ET (Fig.

1a), Q (Fig. 1b), SM1 (Fig. 1c), and SMT (Fig. 1d). The

uncertainty is defined as the averaged variance:

Varx,y,t 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

m51

1

M
(Sx,y,t,m 2 Sx,y,t)

2

s
if Sx,y,t # 30%

(1a)

VAx,y5
1

T
�
T

t51

Varx,y,t , (1b)

FIG. 1. Variance of ensemble-mean monthly (a) ET, (b) Q, (c) SM1, and (d) SMT percentile for a 30-yr (1980–

2009) period. The variance is calculated only when the ensemble-mean percentile is,30% (when the abnormally dry

case appears).
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where Sx,y,t,m is the monthly percentile of each index for

yth latitude, xth longitude, tth month, and mth model.

The quantity Sx,y,t is the four-model ensemble mean,T is

the total number of months with drought severity of D0

or above (#30%) for a 30-yr (1980–2009) period, and

VAx,y is the uncertainty.

It should be noted that this uncertainty is simply

a measure of the variance across the models rather than

a measure of the true uncertainty of the drought esti-

mate. The true uncertainty in the drought estimate is

much larger, since many sources of uncertainty are not

accounted for here (i.e., forcing errors, etc.). The results

(Fig. 1) show that there is the smallest uncertainty for

SM1, the largest uncertainty for SMT and Q, and un-

certainty for ET is in between. The smallest uncertainty

for ET appears in arid and semiarid interior regions

because of the larger evapotranspiration efficiency

(evapotranspiration divided by total precipitation), and

the largest uncertainty appears in the northwest of the

NLDAS domain because of the smaller evapotranspi-

ration efficiency. In contrast, small uncertainty for Q

appears in wetter regions in the west and east because of

the larger runoff ratio (total runoff/precipitation), and

large uncertainty forQ appears in arid–semiarid interior

regions because of the smaller runoff ratio. These results

are consistent with previous NLDAS-2 data analyses

(Xia et al. 2012b). Except for southern Canada and some

parts of the northeastern and northwestern CONUS,

most of the NLDAS domain has small uncertainty for

SM1. Relatively large uncertainty in southern Canada

northeastern and northwestern United States is snow

related. The spatial distribution characteristics for SMT

are similar to those for ET.

Figure 2 shows the statistically significant correlation

(at the 95% confidence level) between different

NLDAS indices. First, we select all available months

that have a drought occurrence (D0 or above) for both

indices (the contours in Fig. 2 show the number of

months with simultaneous drought occurrence). The

results show that there is less correlation (lower corre-

lation) between ET and Q for all regions except for

some parts of northern Mexico (Fig. 2a). There are

some correlations between ET and SM1 (SMT) in arid/

semiarid regions (Fig. 2b and Fig. 2c). There are stronger

correlations between Q and SM1 (SMT) in wet regions

(Fig. 2d and Fig. 2e). There is the strongest correla-

tion between SM1 and SMT for most regions of the

NLDAS domain, which is expected given that SMT

includes SM1.

Figure 3 shows the conditional frequency of a variable

being in a certain percentile range given a certain

drought status (e.g., D2–D4) during a 30-yr period

(1980–2009). The conditional frequency is represented

as the percentage for a given pixel in a certain drought

status and is calculated by counting the number of times

that a variable is below a certain percentile threshold,

dividing by the number of total months, and multiplying

by 100%. For severe drought and above cases (from D2

to D4), ET and Q have the conditional frequencies

smaller than 1% in the southwest and southeast of the

NLDAS domain, respectively. SM1 has the largest

conditional frequency for almost all regions of the

NLDAS domain. SMT has an in-between conditional

frequency. If moderate drought and abnormal drought

are included, conditional frequency increases, as shown

in Fig. 3. There are higher conditional frequencies of ET

in arid–semiarid regions when compared to those in wet

regions, andQ has higher conditional frequencies in wet

regions when compared to those in arid–semiarid re-

gions, which is consistent with the uncertainty and cor-

relation analysis. Higher conditional frequencies also

appear in arid–semiarid regions for SM1 and SMT.

Overall, SM1 has the highest conditional frequencies

because of the higher variability in near-surface soil

moisture when compared to SMT. It should be noted

that ET has small conditional frequencies (,0.1%) for

D2–D4 drought status (severe drought or above) in the

Great Plains, as shown in Fig. 3. Possible reasons for this

depend upon the precipitation. In the no-precipitation

case, available soil moisture is very limited for severe

drought, and this may result in larger ET values due to

high air temperature and dry air humidity until soil

reaches its wilting point, when transpiration will stop

and ET will become very low. In the case including

precipitation, almost all precipitation is evaporated and

little precipitation goes into the soil; hence, the soil is

still dry, yet ET is large. Both cases may have large ET

values. In addition, besides soil moisture availability,

other factors such as stomatal resistance, plant co-

efficient related to vegetation species, and root distri-

bution seasonal factor related to root zone soil

temperature (Wei et al. 2013) may also affect ET vari-

ation (e.g., conditional frequencies for D2–D4 drought

status). Therefore, dry soil moisture does not necessitate

having low ET values.

3. OBNDI and its validation

In section 2, we showed that the differences between

the NLDAS drought indices vary by region. Therefore,

in order to combine the advantages of different indices,

we propose a blended drought index for the NLDAS

drought monitor:

BD5 �
N

i51

WiPCi , (2)
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where BD is a blended drought index, Wi is the weight

coefficient for ith drought index PCi, and N is the

number of drought indices. Selection of these weights

is a challenging issue. The CPC experimental objec-

tive blended drought monitor (CPC OBDM) (www.

cpc.ncep.noaa.gov/products/predictions/tools/edb/

Docs/Product_Description_Drought_Blends.html)

has suggested empirical weights for a short-term

blended index. However, these weights cannot be used

for NLDAS drought indices as they are different from

those used for CPC’s blend. Therefore, we decided to

use an optimization approach to select the optimal

weight coefficients for the blended NLDAS drought

index.

FIG. 2. Correlation between different ensemble-mean monthly percentiles: (a) ET andQ, (b) ET and SM1, (c) ET

and SMT, (d) Q and SM1, (e) Q and SMT, and (f) SM1 and SMT. Contours represent the number of months when

two indices simultaneously have at least D0 or above drought occurrence, and the shaded area represents the regions

with significant correlation at the 95% confidence level.
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a. Optimization approach

The optimization approach used in this study is

VFSA. Details of VFSA have been described and used

bymany scientists (Sen and Stoffa 1996; Xia 2007). Here

only a brief description is given. One may use the

‘‘temperature’’ parameter constructed within the Me-

tropolis algorithm (Metropolis et al. 1953) to locate the

global minimum of an error function as defined in the

following section by very slowly lowering the tempera-

ture parameter within

P5 exp

�
2DE

T

�
, (3)

where P is the probability of acceptance of a new pa-

rameter set with positive change of error function

values, DE is the change in the value of error functions

calculated by new and previous parameter sets (see

section 3b), and T is a control parameter analogous to

temperature. As used in a previous study (Xia 2007),T is

set equal to 3.0. If the change is negative, this new pa-

rameter set is accepted. If the change is positive, and if

and only if P is less than a randomly generated number

between 0 and 1, the new parameter set is rejected. This

iterative process is analogous to the annealing process

within a physical system where the lowest energy state

between atoms or molecules is reached by the gradual

cooling of the substance within a heat bath. Because of

this physical analogy, the algorithm is called ‘‘simulated

annealing.’’ To enhance the ability of simulated an-

nealing to converge to the global minimum of the error

function, Ingber (1989) introduced a new procedure for

selecting parameter sets according to a temperature-

dependent Cauchy distribution. Thismodified simulated

annealing algorithm is called VFSA. This modified al-

gorithm is described as follows.

Let us assume that model parameter mi at kth itera-

tion is represented by mk
i , such that

mmin
i #mk

i #mmax
i , (4)

where mmin
i and mmax

i are the minimum and maximum

values of the model parameter mi. This model parame-

ter value is perturbed at iteration k 1 1 using

mk11
i 5mk

i 1 zi(m
max
i 2mmin

i ), mmin
i #mk11

i #mmax
i ,

(5)

FIG. 3. The conditional frequency of a variable being in a certain percentile range given a certain drought status during a 30-yr period

(1980–2009). The conditional frequency is calculated as 1003 (number of months in a given drought category)/(number of total months).

(from top to bottom) D2–D4, D1–D4, and D0–D4 and (from left to right) ET, Q, SM1, and SMT.
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where zi 2 [21, 1]. The variable zi is generated from the

distribution

gT(z)5
aNM

i51

1

2(jzij1Ti) ln 11
1

Ti

� � (6)

and has a cumulative probability

GT
i
5

1

2
1

sgn(zi)

2

ln 11
jzij
Ti

� �

ln 11
1

Ti

� � , (7)

where NM is the number of model parameter sets.

Ingber (1989) showed that for such a distribution, the

global minimum can be statistically obtained by using

the cooling schedule

Ti(k)5T0i exp(2cik
1/NM), (8)

where T0i is the initial temperature for model parameter

i and ci is a parameter to be used to control the tem-

perature. The acceptance rule of the VFSA algorithm is

the same as that used in the Metropolis rule. However,

the VSFA is more computationally efficient when com-

pared with the simulated annealing algorithm.

b. Experiment design

In general, the error function is defined as the RMSE

between the observed and simulated data. However,

observed drought data do not exist. The USDM

(Svoboda et al. 2002) is a state-of-the-art drought

monitoring tool in the United States that uses objective

datasets as input to a subjective drought analysis. The

USDM authors use six key indices [i.e., Palmer drought

severity index, CPC soil moisture percentile derived

from leaky bucketmodel, U.S. Geological Survey (USGS)

daily and weekly streamflow percentile, percent of

normal precipitation, standard precipitation index,

and objective blends of drought indicators for long- and

short-term drought] and many other indicators (ap-

proximately 30–50 in any given week) to quantify

drought across the United States to manually produce

a first draft of the map each week. The use of feedback

from local experts, as well as information on impacts

related to droughts, helps to clarify the drought severity

for any particular region. These experts provide the

USDM authors with their impacts, data, products, in-

terpretations of several indicators for their local area, and

comments on the current drought status and the daftmap.

This process ensures that USDM is close to the real U.S.

drought situation for any given week. We downloaded

12yr (2000–11) of the weekly drought percentage area

over the CONUS from theUSDMarchives website (http://

droughtmonitor.unl.edu/MapsAndData/DataTables.aspx)

for five categories (D0–D4, D1–D4, D2–D4, D3–D4,

and D4). We then calculated a monthly CONUS

drought percentage using the number of days as

weights to average the weekly values. At the same time,

we calculated a monthly CONUS drought area per-

centage from each of the four NLDAS drought indices

using the same categories and the same period as used

in the USDM. We used 10-yr monthly drought

area percentages to construct our error function (the

last 2 yr were excluded as the USDM authors have ref-

erenced NLDAS products since 1 January 2010). The

RMSE E can be defined as

E5
1

MT
�
MT

t51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C
�
C

c51

(At,c 2Ot,c)
2

s
, (9)

where MT is total number of months (120 in this study);

C is the number of drought categories as described in

section 3b (five in this study); and At,c and Ot,c are the

CONUS drought percentage area from the OBNDI and

the USDM, respectively. The ranges of all four weights

are selected to be from 0 to 1. By this optimization process,

VFSA automatically searches for optimal weights to min-

imize the error function E. The OBNDI is expressed as

OBNDI5 0:6253SM11 0:0253SMT1 0:0033ET

1 0:000 01Q . (10)

Analysis of the OBNDI shows that SM1 plays a domi-

nant role with a 95.6%weight, SMT plays amodification

role with a 3.9% weight, and ET andQ play a negligible

role with a less than 0.5% weight. Therefore, SM1 is the

most important NLDAS drought index and plays a

dominant role in Eq. (7). In addition, we performed

many sensitivity tests such as choice of error function

(e.g., bias, Nash–Sutcliffe coefficient, and absolute er-

ror) and use of individual drought area percentage (e.g.,

D0–D4, D1–D4, D2–D4, D3–D4, D0, D1, D2, D3, D4)

and use of their combinations. The results confirmed

(not shown) that the RMSE used in Eq. (7) is the most

appropriate error function because it generates the

smallest errors and largest correlation for all five drought

categories.

It should be noted that top 1-m soil moisture is used

twice in the OBNDI, as total column soil moisture in-

cludes top 1-m soil moisture. The reason is that these

two products have been heavily used in the USDM since

January 2010. The experience from USDM authors

(e.g., E. Lubuehusen 2011, personal communication)
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FIG. 4. Comparison of drought area percentage (%) over CONUS between NLDAS SM1 and USDM for

a 10-yr period from 2000 to 2009 for drought categories: (a) D0–D4, (b) D1–D4, (c) D2–D4, (d) D3–D4, and

(e) D4. The numbers are: total months, bias, standard deviation (Sigma), root-mean-square deviation

(RMSD), and correlation coefficient (R). The black solid line is the 1-to-1 line.
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FIG. 5. As in Fig. 4, but for OBNDI and USDM.
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demonstrated that SM1 and SMT are two important

indicators for USDM. In addition, other drought mon-

itor tools such as the U.S. Drought Monitor (http://

droughtmonitor.unl.edu/) and experimental objective

blends of drought indicators (www.cpc.ncep.noaa.gov/

products/predictions/tools/edb/droughtblends.php) also

redundantly use some key indicators such as pre-

cipitation and soil moisture in a similar way.

c. Analysis and validation of the OBNDI

As discussed in section 2, SM1 has the smallest un-

certainty and the largest drought occurrence frequency.

We first compare the CONUS drought area percentage

derived from SM1 with that derived from the USDM

(Fig. 4). There are significant correlations at the 5%

significance level (Student’s t test) for all categories ex-

cept for D4. For all five categories, SM1 underestimates

the USDM drought percentage area and has a large

RMSE. SMT has larger bias and RMSEwhen compared

to SM1. The bias (RMSE) is 227.0 (28.9), 219.4 (22.2),

214.1 (16.7), 25.8 (8.4), 20.7 (1.4) for D0–D4, D1–D4,

D2–D4, D3–D4, and D4, respectively. The quantities

ET and Q have an even much larger bias and RMSE

than SMT. This means that the single NLDAS drought

index alone cannot depict the USDM drought percent-

age area well. Figure 5 shows the comparison between

drought percentage area derived from the OBNDI and

USDM. The OBNDI significantly reduces biases and

RMSEs for all five categories compared to SM1 (Fig. 4),

although the OBNDI still underestimates the drought

percentage area for D2–D4, D3–D4, and D4 categories.

For D0–D4, the bias is reduced from 218.7 to 0.08 and

RMSE is reduced from 21.6 to 12.4; for D1–D4, the bias

is reduced from 212.8 to 20.3 and RMSE is reduced

from 16.9 to 12.7; and for D2–D4, bias is reduced from

210.5 to 25.3 and RMSE is reduced from 13.8 to 11.0.

For extreme drought cases, although bias and RMSE is

reduced, the improvement is small (see Figs. 4, 5). Some

disagreement between the OBNDI and USDM is to be

expected, given that the USDM is a subjective analysis

with many different inputs.

We evaluate the robustness of the results in Fig. 5

using a jackknife method (Harnack and Lanzante 1985).

Nine years of data from 10-yr USDM drought area

percentage are used to calibrate weight coefficients and

generate cost value. This process was then repeated

10 times (each year of USDM data is left out one time)

to calculate RMSE between drought area percentage of

USDM and NLDAS blend for five categories (Table 1).

The results show a small change when compared with

the result in Fig. 5 (relative bias is smaller than 10%).

This suggests that theweight coefficients calibrated from

10-yr USDM drought area percentage are robust.

d. Impact of SPI3, SPI6, and SWE monthly
percentiles

As 3- and 6-month standard precipitation index (SPI3

and SPI6) have been widely used for meteorological

drought monitoring (Heim 2002; Mo 2008; Hayes et al.

2011; Anderson et al. 2013), SPI3 and SPI6 are added to

the objective blend framework and some sensitivity tests

are performed. To capture impact of winter season

processes on ONBDI, monthly SWE percentile derived

from the NLDAS-2 VIC model is also added to the

objective blend framework, as SWE has shown to have

a significant impact on drought severity in western

Washington State (Nijssen et al. 2013, manuscript sub-

mitted to J. Hydrometeor.). The VIC model is selected

here as its SWE simulation is closest to the observations

validated in NLDAS-1 (Pan et al. 2003; Sheffield et al.

2003) and NLDAS-2 (Xia et al. 2012b). For the other

variables, such as soil moisture, ET and total runoff,

ensemble-mean is used to the objective blend frame-

work as it has the best performance when compared to

any individual models (Xia et al. 2012a,b). Table 2 gives

optimally blended equations and their cost values when

TABLE 1. Optimal weight coefficients and error function values

calculated by Eq. (9) using 9-yr data for 10 leave-one-out experi-

ments from 2000 to 2009.

Leave one year

out from 10 yr

(9-yr data are used) Error function value

2000 0.0856

2001 0.0894

2002 0.0886

2003 0.0841

2004 0.0863

2005 0.0893

2006 0.0898

2007 0.0895

2008 0.0923

2009 0.0900

TABLE 2. Optimally blended equations and their cost values

when monthly percentiles for monthly SWE, SPI3, SPI6, and both

SPI3 and SPI6 are incorporated into a drought blended equation

(original blended equation is indicated with an asterisk).

Equation (calibration for CONUS and all months) Cost

0.6253SM1 1 0.0253SMT 1 0.0033ET 1 0.00001Q 0.0882*

0.4616SM1 1 0.1682SMT 10.0001ET 1 0.00003SWE 0.0891

0.2983SM1 1 0.1735SMT 10.0062ET 1 0.0014SPI3 0.0945

0.0826SM1 1 0.0415SMT 10.0049ET 1 0.0053SPI6 0.0879

0.1530SM1 1 0.4038SMT 10.0002SPI3 1 0.0001SPI6 0.0889

Equation [calibration for USDM West region and

winter months (Dec–Mar)]

Cost

0.0956SM1 1 0.0744SMT 10.0171ET 1 0.4583SWE 0.1771
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SPI3, SPI6, and SWE are considered. For CONUS cali-

bration, cost value is comparable with that from ONBDI.

SPI3, SPI6, andSWEhave smallweight (,5%totalweight)

when compared to soil moisture. However, for winter

months (December–March) in USDM West regions (Ari-

zona, California, Colorado, Idaho, Montana, New Mexico,

Nevada, Oregon, Utah, Washington, and Wyoming; see

http://droughtmonitor.unl.edu/MapsAndData/DataTables.

aspx), SWE plays a dominant role (71% of total weight),

soil moisture plays an important role (27% of total

weight), and ET plays a small role (2% of total weight).

As indicated by Anderson et al. (2013), NLDAS-2 soil

moisture percentile has larger correlation with USDM

than SPI3, ET, and Q, indicating the interpretation

value from the land surface models. It should be noted

that SPI3, SPI6, SWE, ET, and Q have small roles only

when calibrating a drought area over CONUS. For

a specific region or a specific season, these other variables/

indices may play a dominant or an important role in an

objective blend. The impact of SWE on the objective

blend framework in winter months over the USDMWest

region has demonstrated this point. Work is ongoing to

expand the spatial scale from CONUS to 6-USDM

regions/48 states and to make cold and warm season tests.

4. Reconstruction and analysis of 30-yr OBNDI

Following the generation of the OBNDI using a 10-yr

monthly drought area percentage dataset and its evalua-

tion using a jackknife method, we now use the OBNDI to

FIG. 6. Reconstructed 30-yr (January 1980 to 2010) CONUS drought area percentage for dif-

ferent drought categories using the OBNDI.

TABLE 3. Billion U.S. dollar drought disasters 1980–2009 [obtained fromNational Climatic Data Center, Asheville, North Carolina (http://

www.ncdc.noaa.gov/billions/); Texas (TX), Oklahoma (OK), Kansas (KS), California (CA), New Mexico (NM), and Arizona (AZ)].

Year Season Region Damage (billion) Deaths

1980 Jun–Sep Central and eastern United States $20.0 10 000

1986 Summer Southeastern United States $1.0 100

1988 Summer Central and eastern United States $40.0 7–500

1989 Aug Northern Plains $1.0 0

1993 Summer Southeastern United States $1.0 16

1996 Summer Southern Plains $5.0 0

1998 Summer TX/OK $7.5 200

1999 Summer Eastern United States $1.0 502

2000 Spring–summer South-central and eastern United States $4.0 140

2002 Spring–summer Widespread United States $10.0 0

2005 Spring–summer Midwest $1.0 0

2006 Spring–summer Widespread United States $6.0 0

2007 Summer–fall Widespread United States $5.0 16

2008 Summer Widespread United States $27.0 112

2009 Summer TX, OK, KS, CA, NM, AZ $5.0 0
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reconstruct a 30-yr (1980–2009) monthly drought area

percentage (Fig. 6) for all five categories. The results

show that the OBNDI reasonably captures the droughts

summarized by NCDC website for a number of notable

drought years (Table 3). The strongest drought for the

CONUS occurred within the 2000–04 period. Figure 7

shows the monthly variation of drought area percentage

for four different regions: West, Midwest, South, and

Southeast. The four regions are defined as follows: West

is 258–508N, 1258–1048W; Midwest is 388–508N, 1048–
818W; South is 258–388N, 1048–898W; and Southeast is

258–388N, 898–678W . The results show that the strongest

drought occurred in 2002 for the West region (Fig. 7a),

in 1998 for the Midwest region (Fig. 7b), in 2000 and

2006 for the South region (Fig. 7c), and in 2000 and 2007

for the Southeast region (Fig. 7d). We also analyzed the

drought spatial distribution for 2000, 2002, 2006, 2007,

2009, and 2011. As one typical example, the spatial

distribution of drought for the five categories for 2002 is

shown in Fig. 8. From top to bottom, this represents

SM1, SMT, OBNDI, and USDM, respectively. From

left to right, this represents June, July, and August.

For the USDM, we use the week in the middle of the

month. The OBNDI outperforms SM1 and SMT rela-

tive to theUSDM.As indicated by the previous analysis,

SM1 has better performance than SMT. This result

further suggests that SM1 is the most useful NLDAS

drought index to monitor CONUS drought besides the

OBNDI.

5. Summary and discussion

In this study, we investigate the uncertainty of four

NLDAS drought indices (ET, Q, SM1, and SMT). The

results show that the SM1 has the smallest uncertainty,

SMT and Q have the largest uncertainty, and ET’s un-

certainty is in between in terms of intermodel variance.

The correlations between ET, Q, SM1, and SMT show

FIG. 7. Monthly variation of drought area percentage derived fromOBNDI for (a)West, (b)Midwest, (c) South, and (d) Southeast region

for a 30-yr period covering January–1980 to 2010.
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that there is the strongest correlation between SM1 and

SMT, the weakest correlation between ET and Q,

and there is in-between correlation between ET (Q) and

SM1 (SMT). For ET and SM1 (SMT), the strongest

correlationmainly appears in arid–semiarid regions. For

Q and SM1 (SMT), the contrary result is found. A

drought frequency analysis shows that SM1 has the

highest occurrence of drought and ET, Q shows the

least, and the SMT result is moderate.

We used the VFSA optimization approach to estab-

lish an OBNDI by minimizing the RMSE between the

CONUS drought area percentage derived from blended

NLDAS drought index and the USDM. Analysis of the

optimal weights shows that the weight for SM1 plays

a dominant role with 95.6% of the total weight, SMT

plays a small role with 3.6% of the total weight, and ET

and Q play negligible roles with less than 0.5% of the

total weight. The ensemble-mean SM1 and SMT un-

derestimate the CONUS drought area percentage for all

years (2000–09). This may be because 1) the USDM

drought area percentage was calculated from weekly

values and may be larger than ‘‘actual’’ monthly values

FIG. 8. Comparison of (from left to right) 2002 summer (June–August) drought conditions from (a)–(c) SM1, (d)–(f) SMT, (g)–(i)

OBNDI, and (j)–(l) USDM. The first three products are on a monthly time scale and USDM is for a weekly time scale. The week in the

middle of each month from USDM is used as a proxy to represent the monthly result.
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and 2) the simple ensemble-mean of percentiles without

any adjustment diminishes the drought intensity, but we

can recalculate the percentiles of the ensemble mean to

reduce this problem in the future.

A jackknife method is used to do a cross-validation

analysis. The results show that the OBNDI is stable and

the overall performance of OBNDI is the best, followed

by SM1 and SMT. We used the optimal weights to re-

construct a 30-yr (1980–2009) CONUS drought area

percentage and OBNDI. The results are very encour-

aging when compared with those from the National

Climatic Data Center (NCDC) website and USDM.

This work is novel as it establishes the linkage be-

tween the hydrometeorological products simulated

from the NLDAS models (a research product) and the

USDM (an operational product). However, this work

still has room for improvement. One possible direction

is to use this approach for each of the six regions (High

Plains,Midwest, Northeast, South, Southeast, andWest)

as shown in the USDM archive (http://droughtmonitor.

unl.edu/MapsAndData/DataTables.aspx), each state of

the 48 states over CONUS (i.e., optimal weights are used

as a function of state), or each division of 342 climate

divisions used in the Climate Prediction Center, which

is ongoing work by the NCEP/EMC NLDAS team,

NASA’s Hydrological Science Laboratory, and Princeton

University. Furthermore, this approach can be explored

for each county over the CONUS (optimal weights vary

from county to county) if long-term fine-resolution

(,4 km) hydrometeorological products are available, as

the USDM website provides drought area percentage

for each state and each county. This is possible as the

EMC land-hydrology group is extending its current

NLDAS system to a high-spatial-resolution (4 km)

NLDAS system. This may bring some discontinuity of

products between state–county boundaries, but this

can be overcome using spatial smoothing. We also

realize that only NLDAS products cannot totally

capture variability and magnitude of USDM drought

percentage area. To enhance the ability of this blend,

we need to add independent drought indicators from

observations (e.g., USGS streamflow percentile) and

from remote sensing data [e.g., Gravity Recovery and

Climate Experiment (GRACE)-based groundwater

storage percentile, Vegetation Drought Response Index

(VegDRI), evaporative stress index (ESI)] and opera-

tional drought indicators used in CPC objective blends

[e.g., Palmer Z Index, Palmer Hydrologic Index, Palmer

(Modified) Drought Index, and 1-month precipitation]

into this blend. In addition, our NLDAS team is collab-

orating with CPC scientists to apply the approach de-

veloped in this study to the CPC Experimental Objective

Blends of Drought Indices for short-term and long-term

drought analysis and monitoring (www.cpc.ncep.noaa.

gov/products/predictions/tools/edb/droughtblends.php).

Some results extending the calibration region from

CONUS to six USDM regions and 48 states have been

addressed in our recent works (Xia et al. 2013, 2014).

The results for that study will be reported in the future.

It should be noted that in its current form, OBNDI is

not truly a blend, but a bias correction to SM1.However,

for winter months over the USDM West region, when

SWE is considered, and some cases when SPI3 and SPI6

are considered, the truly objective blend drought indices

are selected by the optimization approach. Therefore,

generally speaking, the objective blend framework de-

veloped in this study is feasible for the objective blend

purpose of different drought indicators.
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