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ABSTRACT

Long-term, global offline (land only) simulations with a dynamic vegetation phenology model are used to

examine the control of hydroclimate over vegetation-related quantities. First, with a control simulation, the

model is shown to capture successfully (though with some bias) key observed relationships between hydro-

climate and the spatial and temporal variations of phenological expression. In subsequent simulations, the

model shows that (i) the global spatial variation of seasonal phenological maxima is controlled mostly by

hydroclimate, irrespective of distributions in vegetation type; (ii) the occurrence of high interannualmoisture-

related phenological variability in grassland areas is determined by hydroclimate rather than by the specific

properties of grassland; and (iii) hydroclimatic means and variability have a corresponding impact on the

spatial and temporal distributions of gross primary productivity (GPP).

1. Introduction

Recognition that the earth’s energy and water cycles

are intrinsically entwined is longstanding (e.g., Budyko

1974). The land surface energy and water balances both

feature evapotranspiration as a dominant term, and the

generation of rainfall (a key component of the water cycle)

has a profoundeffect on the heat budget of the atmosphere.

The inseparability of the energy and water cycles underlies

their joint treatment in numerous analyses (e.g., Trenberth

et al. 2011) and the formation of international research

projects addressing their linkage, such as the Global

Energy and Water Cycle Experiment [GEWEX, part of

the World Climate Research Programme (WCRP)].

The earth’s carbon cycle is in turn intrinsically en-

twined with the energy and water cycles. Vegetation

health (and associated carbon uptake) is affected by

water availability; deserts, for example, tend not to be

carbon sinks. Conversely, carbon affects the water and

energy cycles; the transpiration of water from vegetation

and the associated cooling of the land surface are in

large part controlled by the efficiency of the vegetation’s

uptake of carbon dioxide (e.g., Berry et al. 2010), and the

buildup of vegetation through carbon uptake has a di-

rect impact on land surface albedo—how much of the

sun’s radiation is absorbed by the surface. Carbon di-

oxide is, of course, also a greenhouse gas. The basic

connection between the surface fluxes of water, energy,

and carbon is appropriately recognized in numerous
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studies (e.g., Leuning et al. 2004; Bowling et al. 2010),

and it is a motivation for international research projects

such as the Integrated Land Ecosystem–Atmosphere Pro-

cesses Study (ILEAPS, another component of WCRP).

In this paper, we focus in particular on the carbon–water

linkage at the land surface.Anumber of relevant studies in

the literature have shared this focus. Using data collected

at a number of flux tower sites in North America, Knapp

and Smith (2001) provided a powerful, geographically di-

verse analysis of the connections between the surface

water and carbon cycles—specifically, of the controls of

precipitation means and variability on above-ground net

primary production (ANPP). Their results show that car-

bon uptake by the land surface is indeed strongly regulated

by precipitation characteristics, with maximum uptake

related strongly to precipitation amount and with the in-

terannual variability of the uptake maximized in grassland

areas, where both precipitation variability and vegetation

cover are adequately high. Remotely sensed measure-

ments of vegetation properties allow for an even more

comprehensive and large-scale analysis of connections

between carbon and climatic variables, including pre-

cipitation (e.g., Fang et al. 2005; Ichii et at. 2002; Jahan and

Gan 2011). In a recent global analysis, Zeng et al. (2013)

uncovered strong relationships between the interannual

variations contained in a multidecadal normalized differ-

ence vegetation index (NDVI) dataset (an indicator of

green leaf area) and antecedent precipitation levels, par-

ticularly in temperate and tropical grasslands.

Amodeling framework is a natural venue for studying

the connections between carbon and water. Wang

and Eltahir (2000), using a simple coupled biosphere–

atmospheremodel, showed how the interaction between

vegetation and precipitation can lead to multiple equi-

libria for vegetation state. Zeng et al. (1999) showed,

again with a simple coupled model, how vegetation–

climate interactions may affect the nature of precipi-

tation variability in the Sahel. Puma et al. (2013) used

a modeling framework to compare the impacts of me-

teorological variability and phenological variability on

the simulation of surface moisture and carbon fluxes.

Complex and relatively complete models of vegetation

behavior, models that indeed tie together explicitly the

interactions between carbon, energy, and water fluxes at

the land surface and accordingly allow the prediction of

vegetation state, are arguably the new state of the art in

numerical climate modeling. Sellers et al. (1997) pointed

to the explicit treatment of carbon as a logical step in the

evolution of land surface treatments in Earth System

models; dynamic vegetationmodels (DVMs) following this

evolutionary path are already being used at major climate

modeling centers (e.g., Lawrence et al. 2011; Krinner et al.

2005; Boussetta et al. 2013; Dunne et al. 2013).

An advantage of using a modeling framework for

carbon–water studies is the potential for doing unique

analyses that isolate and illustrate the mechanisms that

control the transfers of water and carbon across the land

surface. Carefully formulated modifications of a physi-

cal process treatment or of a variable that forces it can be

imposed, and the resulting impacts on surface fluxes can

be quantified and analyzed, thereby elucidating the role

of the process examined. A second important advantage

of such models is their ability to provide data fields that

are otherwise unattainable, at least not directly. Gross

primary productivity (GPP), for example, can only be

measured directly at a limited number of flux tower sites,

and satellite-based estimates of GPP are at best indirect,

relying on their own model assumptions. A DVM, if

driven with observations-based meteorological forcing,

can potentially produce estimates of GPP at high spatial

and temporal resolution across the globe. Such estimates

would be biased relative to nature, of course, owing to

deficiencies in model formulation and forcing data; still,

if care is given to their interpretation, the estimates do

have scientific value.

Both of these advantages come into play in the pres-

ent paper, in which we use the dynamic phenology

component of an established DVM together with the

water and energy balance framework of a hydrology-

focused land surface model (LSM) to characterize, on

a global scale, the controls of precipitation means and

variability on GPP: both on its spatial distribution and

on its temporal variability across the globe. The mod-

eling system used (described in section 2) is, indeed,

found to be effective in capturing the key hydroclimatic

controls on phenology that operate in nature (as dem-

onstrated in section 3). The simulated GPP distributions

from the thus-validated system are analyzed jointly with

global precipitation data in section 4. The model ex-

periments provide new insights into the relative impacts

of precipitation means, precipitation variability, and

vegetation type in determining GPP distributions.

2. Dynamic phenology model

The dynamic phenology model used in this study is

in essence a merger of the carbon (i.e., prognostic

biogeochemistry) physics of the National Center for

Atmospheric Research (NCAR)–U.S. Department of

Energy (DOE) Community Land Model, version 4

(CLM4) dynamic vegetation model (Oleson et al. 2010)

with the energy and water balance formulations of the

National Aeronautics and SpaceAdministration (NASA)

Global Modeling and Assimilation Office (GMAO)

catchment LSM (Koster et al. 2000). We provide here

a brief description of these two components and the
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technique used to merge them into a new model: the

catchment LSM with carbon and nitrogen physics

(Catchment-CN LSM).

The NCAR–DOE CLM4 represents prognostic cou-

pled energy, water, carbon, and nitrogen cycles in a

framework that permits global-scale as well as regional

and site-level simulation. The global-scale parameteri-

zation used here includes specification of subgrid het-

erogeneity in plant functional type (PFT) distributions,

with multiple PFTs assigned fractional area coverage

within each grid cell, where they compete with one an-

other for available soil moisture and mineral nitrogen

resources. In this prescribed biogeography mode, the

fractional areas occupied by individual PFTs do not

change, but vegetation growth, soil heterotrophic activ-

ity, carbon stocks, and other ecosystem states (e.g., leaf

area index) do vary prognostically (Thornton et al. 2009).

The GMAO catchment land surface model is a state-

of-the-art surface energy and water budget model

designed for use with global Earth System models. As

with most other LSMs, the catchment LSM employs

complex treatments of land surface flux generation, ty-

ing the efficiency of evaporation and runoff generation

to the moisture and temperature states of the land sur-

face, and it includes parameterizations of vegetation

impacts on transpiration, canopy interception, albedo,

and surface roughness. Relatively unique to the catch-

ment LSM is its treatment of the subgrid variability of

soil moisture and temperature, which is explicitly tied to

a description of the topographic variability in the region

modeled: in the catchment LSM, valley bottoms within

a given grid element are explicitly modeled as being

wetter and the hilltops are explicitly modeled as being

drier. Runoff and evaporation are calculated indepen-

dently in the different hydrological regimes, using regime-

specific physics.

In essence, in merging the two models, we retain the

catchment LSM’s energy and water balance calculation

framework while using the NCAR–DOE CLM4 carbon

balance calculations. The approach is illustrated in

Fig. 1. In the original catchment LSM (Fig. 1a), the

model uses forcing from the atmosphere along with

FIG. 1. Schematic of flux computations in (a) the original catchment LSM and (b) the merged

model, Catchment-CN.
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prescribed vegetation phenology [leaf area index (LAI)

and greenness fraction] and the current values of LSM

temperature and moisture prognostic variables to com-

pute the canopy conductance, the parameter describing

the ease with which the plants transpire water. The

canopy conductance, computed separately for each

hydrological regime, is then used in each regime’s en-

ergy balance and water balance calculations, which

in turn provide the fluxes of heat and moisture to the

atmosphere.

Figure 1b shows the approach used by the merged

system, the Catchment-CN LSM. The atmospheric in-

puts are now fed first into the components of the

NCAR–DOE model that update the carbon states and

compute, as a matter of course, canopy conductances

that reflect an explicit treatment of photosynthesis

physics. These canopy conductances, along with the leaf

area indices diagnosed from the new carbon prognostic

variables, are fed into the energy and water balance

calculations of the original catchment LSM. The output

fluxes with the merged system include a net carbon flux.

The merger of the two models allows the Catchment-

CN LSM to follow 19 distinct vegetation types, a signif-

icant increase from the 6 independent types followed

with the original catchment LSM. Furthermore, the

unique character of the original catchment LSM allows

for the independent monitoring of carbon variables in

the different topographically defined hydrological re-

gimes. Figure 2 describes our methodology. Each land

surface element is subdivided into three static vegetation

(carbon) zones defined by topography, through analysis

of the distribution of the compound topographic index

(Moore et al. 1993). The first zone, covering a fixed 10%

of the area, represents the valley bottoms; this zone

tends to be generally wet. The second and third zones

represent the lower (drier) hill slopes and upper (even

drier) hill slopes, respectively. Through areal weighting,

soil moisture and temperature information from the

dynamically varying hydrological zones are combined

for use by the carbon physics in the fixed vegetation

zones, as indicated in the figure. Separate sets of carbon

prognostic variables (associated with up to two coex-

isting PFTs) are followed in each vegetation zone, and

thus each vegetation zone generates its own manifesta-

tion of phenology.

The fractions for the three static vegetation zones

(10%, 45%, and 45%) are arbitrarily chosen nominal

values. Note that in comparatively flat areas, the hy-

drological states of the three vegetation zones will be

similar, and thus the phenology generated in each zone

will be about the same. Hydrological distinctions be-

tween the vegetation zones and thus phenological dis-

tinctions between the zones will necessarily be larger in

areas with greater topographic variation. When examin-

ing the model results, we indeed find that in mountainous

areas, green vegetation tends to be significantly denser in

the valley bottoms.

Some additional modifications to the NCAR–DOE

vegetation model were needed to optimize its perfor-

mance in theGMAO system. To prevent some occasional

FIG. 2. Schematic of independent vegetation (carbon) treatments in topographically defined

vegetation zones. Three static vegetation zones are defined, with independent carbon prog-

nostic variables in each. The W1, W2, and W3 are soil moisture states in the three dynamically

varying hydrological zones (with time-varying areas AR1, AR2, and AR3); weighted averages

of these states (e.g.,WV2, as shown in the figure) and corresponding weighed temperature states

are passed down to the carbon physics calculations for the different vegetation zones.Weighted

averages of vegetation zone quantities (e.g., canopy conductance) are similarly passed back to

the hydrological zones.
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singular behavior—namely, the catastrophic shutdown

of vegetation during cold spells and a resulting over-

growth of the vegetation during the subsequent growing

season—we replaced a particular set of vegetation types

(crop and temperate shrubs/grass) that feature a strong

response to temperature stress by a mix of two different

types: one that is seasonally deciduous and one that is

not. Neither of the replacement types employs the

temperature stress shutdown, though both respond to

moisture stress. The proportion of the mix applied

is defined by latitude, and the replacement is indeed

limited to the latitude band 328–428 in both hemispheres;

outside of this latitudinal band, the number of coex-

isting PFTs in each static carbon zone remains limited

to two. Note that this replacement in vegetation type

mimics a simple removal of the temperature stress

function from the original types, as the other physical

aspects of the original and replacement types are es-

sentially the same.

Also, we modified the NCAR–DOE vegetation

physics to allow half of the new carbon assimilated by

deciduous types to be displayed during the current year

rather than in the following year, which brings certain

measures of our interannually varying phenology (in

particular, the correlation between FPAR and ante-

cedent precipitation) more in line with observations.

The literature indeed supports the idea that for some

vegetation types, assimilated carbon is displayed during

the current year rather than stored for display in the

following year (e.g., Kobe 1997). Finally, whereas the

NCAR–DOE vegetation model uses the previous year’s

annual mean temperature to determine certain onset

triggers, we use the more stable climatological mean

temperature. This choice is more in line with the original

intent of the NCAR–DOE model’s phenology scheme,

a scheme that originally used a multiyear average

(White et al. 1997). The NCAR–DOE model switched

to a single-year average for logistical rather than scien-

tific reasons.

In our main (‘‘control’’) application of the model, the

prescribed distributions of vegetation type follow those

used by the default 0.58 3 0.58 version of CLM4 (Oleson

et al. 2010). Vegetation phenology and carbon states,

however, evolve freely. The model is run globally offline

(i.e., disconnected from an atmospheric model) on high-

resolution catchments (roughly 20–30 km in size) over

the period 1948–2008, using the observations-based

meteorological forcing of Sheffield et al. (2006). The

simulation first loops over this period 57 times to spin

up the carbon storage reservoirs, resulting in 3477 years

of spinup—on the order needed to bring about the

equilibration of certain biome types (Shi et al. 2013).

(Note that we also utilized the CLM4 ‘‘accelerated

decomposition’’ option for the first 600 years, which

reduces somewhat the required spinup time.) The 58th

cycle of 61 yr is analyzed here.

Our focus in this paper is on the connections between

hydroclimate and vegetation. Given that the historical

precipitation record should be more accurate at coarser

spatial scales, the output data examined (phenological

variables, carbon fluxes, etc.) are aggregated to 28 3 2.58
for processing.

3. Evaluation against observations

To test the realism of the model’s connections be-

tween hydroclimate and vegetation variables, we focus

on two distinct aspects of global phenological expres-

sion: the global spatial pattern of long-term phenologi-

cal means and the interannual variability of phenology

at a given location. These are discussed in turn following

a brief description of the observations.

a. Observations used

We examine satellite-based products of the normal-

ized difference vegetation index (NDVI) and fraction of

absorbed photosynthetically active radiation (FPAR),

both of which increase with green vegetation cover. The

NDVI data are a subset of the latest version of theGlobal

Inventory Modeling and Mapping Studies (GIMMS)

data (Tucker et al. 2005). The data’s native resolution is

semiweekly at 8 km and span the period July 1981–

present. For our analyses, we aggregate these data to

a 2.58 3 2.58 monthly resolution for the period 1982–

2010. The data are derived from the Advanced Very

High Resolution Radiometer (AVHRR) instrument with

known limitations compared to the more advanced Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

instrument (Kaufman et al. 1998). However, the longer

temporal coverage of GIMMS relative to MODIS (29

versus 11 yr) and the good correspondence between

theirmeasurements (Tucker et al. 2005; Beck et al. 2011)

makes it well suited to the analysis presented here.

The FPAR data are derived directly from the NDVI

data using the method of Los et al. (2000). The method

combines the NDVI-based FPAR estimation technique

of Sellers et al. (1996) with that of Choudhury (1987) and

Goward and Huemmrich (1992); the combination pro-

vides estimates that are well behaved relative to avail-

able in situ observations. The relationship between

NDVI and FPAR underlying this combined approach is

monotonic but nonlinear. Note that it is also somewhat

vegetation dependent, so the conversion of global

NDVI data to global FPAR data requires a global field

of vegetation types. Thirteen years of FPAR data are

available, spanning the period 1997–2009.
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As will be seen below, the sensitivities of the NDVI

and FPAR data to hydroclimatic variation are similar in

many ways. Both are worth illustrating here. The NDVI

values are constructed directly from spectral reflectance

measurements and thus represent a raw form of the

observations. While the construction of the FPAR

values requires some additional assumptions regarding

vegetation behavior, FPAR has the distinct advantage

of representing a physically meaningful phenological

variable, one that can be compared directly to output

from the Catchment-CN model.

The global precipitation data used here consist of

monthly precipitation totals for 1979–present at 2.58 3
2.58 resolution, produced by the Global Precipitation

Climatology Project as part of their version 2 satellite-

gauge dataset (Adler et al. 2003; see also ftp://precip.gsfc.

nasa.gov/pub/gpcp-v2.2/doc/V2.2_doc.pdf). Satellite-based

data contributing to the product, in varying capacities

and over various periods and regions, include Special

Sensor Microwave Imager (SSM/I) passive microwave

estimates, Television Infrared Observation Satellite

(TIROS) Operational Vertical Sounder (TOVS) esti-

mates, and the adjusted Geostationary Operational

Environmental Satellite (GOES) precipitation index

(Adler et al. 1994). A wealth of surface rain gauges is

used to adjust the multisensor precipitation estimates

over land. Hall et al. (2006) provide background on the

accuracy of the GPCP product; of note is the higher

uncertainty of the product over mountains, deserts, high

latitudes, and undeveloped areas due in large part to

a lower density of rain gauges.

b. Impact of hydrological variations on the mean
spatial distributions of phenological variables

To deal with the fact that NDVI shows significant

seasonal variability, with different regions having dif-

ferent peakmonths for the index, we examine a quantity

we will call NDVImax. We compute, at each 2.58 3 2.58
grid cell, the average seasonal cycle of NDVI from the

GIMMS data and then identify the month for which the

average NDVI is highest. NDVImax is set to the average

value for the 3-month period centered on this peak

month. (Note that, under this definition, the values for

NDVImax in adjacent grid cells may be taken from dif-

ferent 3-month periods.) Figure 3a shows the global

distribution of NDVImax as derived from the spatially

aggregated GIMMS data. The distribution mirrors

known vegetation distributions, with large values in

tropical, deciduous, and boreal forests; intermediate

values in grassland and shrubland areas; and small

values in the deserts.

We can use statistical analysis to relate the spatial

distribution of NDVI to that of various meteorological

quantities in order to determine which quantities are

related to (and thus may help determine) the NDVI

distribution. The first five bars in Fig. 4a show the square

of the spatial correlation (r2, across land surface grid

cells) of NDVImax in Fig. 3a with annual mean pre-

cipitation, the standard deviation (across years) of an-

nual precipitation totals, annual mean air temperature,

absolute value of the warm-season temperature devi-

ation from an assumed optimal value, and annual mean

net radiation. The base-10 logarithms of the precipi-

tation quantities are in fact used here. Temperature and

net radiation information are derived from the full pe-

riod of the Sheffield et al. (2006) dataset. The outgoing

longwave component of the net radiation is estimated

using the surface air temperature in that dataset. The

temperature deviation is computed as jTw2Toptj, where
Tw is the average monthly temperature of the climato-

logically warmest month of the grid cell being processed

andTopt is equal to 292K, the temperature that (through

testing) provides the highest possible value for the

fourth bar in Fig. 4.

The salient result from the figure is the dominance of

the two precipitation quantities in determining the

spatial structure of NDVI. While the deviation of tem-

perature from the fitted optimal value of 292K is also

apparently important, together the two precipitation

quantities are seen to explain most of the variance in

NDVImax: results of multiple regression analysis of

NDVImax on combinations of variables show that the

mean and standard deviation of precipitation together

produce an r2 of about 0.55 (sixth bar), whereas the r2

obtained when all variables, including the temperature

deviations, are considered is about 0.65 (seventh bar).

(Note that there is apparently some redundant infor-

mation in the precipitation and jTw 2 Toptj fields.) The
relative heights of the sixth and seventh bars in Fig. 4a

underline the importance of hydroclimate in determining

the spatial distribution of phenological maxima.

Figure 5a shows more directly how NDVImax is re-

lated to precipitation means and variability. Each dot in

Fig. 5a corresponds to a 2.58 3 2.58 land grid cell. The

size and color of the dot is determined by the local value

of NDVImax, as indicated by the legend. The dot’s ab-

scissa is determined by the mean annual precipitation at

that grid cell, and its ordinate refers to the interannual

variability of precipitation there (note the logarithmic

scales). The precipitation and NDVI quantities are

computed over consistent time periods; for example, if

a grid cell’s peak NDVI, as computed from the GIMMS

data for 1982–2010, occurs in July, then precipitation

means and variances are computed from 19 September–

August yearly totals starting with the total for the period

September 1981–August 1982.
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Two features of the scatterplot stand out. The first

reflects an expected result: a minimum average pre-

cipitation must be achieved to attain moderately high

NDVImax levels. The plot shows this minimum value to

be roughly 1mmday21; the dots to the left of this

threshold (which include, of course, all desert points)

show low values of NDVImax. The second, and more

intriguing, feature of the scatterplot is the tendency for

NDVImax to decrease as the standard deviation of pre-

cipitation increases. This feature is illustrated more

clearly in Fig. 5b, which shows a binned version of the

scatterplot data; to generate this plot, an array of boxes

is overlain on Fig. 5a, and the NDVImax values for the

points within each box are averaged. For a given value

of the mean precipitation, especially for values above

1mmday21, NDVImax clearly tends to decrease with

increasing sP. This presumably reflects the reduced

ability of vegetation to flourish when the year-to-year

supply of water is less stable.

We also examine in this context the analogous vari-

able FPARmax, the average value of a grid cell’s FPAR

for the 3-month period centered on the peak FPAR

month, as determined from the local climatological cycle.

Figure 3b shows the distribution of FPARmax as com-

puted from the GIMMS data. As might be expected,

given that FPAR in GIMMS is derived from NDVI, the

spatial distributions in Figs. 3a,b are very similar, as are

the spatial correlations with the meteorological forcing

variables (Fig. 4b). Figures 5c,d show the precipitation-

based scatterplots for the FPARmax values. Average wa-

ter supply (mean precipitation) and water supply stability

(sP) are seen to impose dual control over FPARmax as

well. The sensitivity of FPAR to hydroclimate is, indeed,

very similar to that of NDVI—again not an unexpected

result, given the dependence of the FPARdata onNDVI.

How well does the Catchment-CN model perform?

The model produces diagnostics for both the incident

and absorbed photosynthetically active radiation; we

take the ratio of these quantities to produce the model’s

FPAR values. Figure 3c shows the global distribution

of simulated FPAR in the peak 3-month period; note

that for a given location this peak periodmay differ from

FIG. 3. (a) Distribution of average NDVI in peak NDVI season (the month for which the mean seasonal cycle of NDVI is maximized

along with the preceding and following months), from GIMMS observations. The peak season varies with grid cell; see text for details.

(b) As in (a), but for average FPAR in peak FPAR season, fromGIMMSobservations. (c) As in (a), but for average FPAR in peak FPAR

season, from model simulation. (d) Difference between (c) and (b).
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that for the observations. Two features of the simulated

FPAR distribution stand out. First, the simulated spatial

patterns in Fig. 3c agree well with the observed patterns

in Fig. 3b; the model properly captures, at least to first

order, the global spatial distribution of FPAR. Second,

there are, nonetheless, apparent biases in the simulated

FPAR values, with the highest simulated values being

too large and the lowest being too small. These biases

are shown clearly in the difference map in Fig. 3d. Such

biases presumably reflect deficiencies in the model,

though they may also stem partially from limitations in

the forcing data or in the observational FPAR values

themselves: consider, for example, the observations-based

FPAR values of about 0.1 in the Sahara and Gobi des-

erts, which are probably too large.

Additional evaluation of the model’s simulation of

FPAR, particularly of its seasonal cycle, is provided in

Fig. 6. Mean seasonal cycles of FPAR were computed

at each location from the observations-based GIMMS

estimates and from the model simulations. For the

purposes of the plot, the month in the cycle for which

the FPAR value is first considered ‘‘large’’ (i.e., is in

the upper half of the full range) in the climb toward the

peak FPAR month is loosely defined as the leaf onset

month of the cycle. Note that the FPAR observations

have monthly resolution, prohibiting a more precise

characterization of the onset date. Overall, the simu-

lated onset months (Fig. 6b) agree reasonably well

with the observed values (Fig. 6a), though some mis-

matches do appear (e.g., in southern Australia and

Southeast Asia). The ‘‘season length’’—that is, the

number of months in the mean seasonal cycle for

which FPAR lies in the upper half of its range—is

plotted for the observations in Fig. 6c and for the

model results in Fig. 6d. Here the model is seen to

overestimate the season length, often by a month or

two. We note that the date of leaf fall in the model is

assumed to be controlled by solar declination and is

thus effectively prescribed; the prescribed leaf-fall

dates could potentially be modified in future studies

based on the GIMMS data.

As discussed in section 2, the carbon physics of the

model used here, the Catchment-CN model, are es-

sentially the same as those in the NCAR–DOE CLM4

prognostic biogeochemistry model. These carbon

physics were, in fact, tested extensively against ob-

servations (Randerson et al. 2009) as part of the

Carbon-Land Model Intercomparison Project (C-

LAMP). In one C-LAMP analysis, for example, the

modeled carbon physics were found to produce a late

(;2 month) maximum in LAI relative to LAIs in-

ferred from MODIS; as expected, a similar analysis

with the Catchment-CN results (not shown here)

shows much the same late bias. It is reasonable to

expect that, in general, the biases identified by

Randerson et al. (2009) also apply here and that,

while some biases may relate to limitations in the ob-

servations, most probably originate from model de-

ficiencies. The presence of bias, generally inescapable

in modeling studies, must be kept in mind throughout

our analysis.

Turning now to the simulated response of FPAR to

hydroclimatic variation in the Catchment-CN model,

we show in Fig. 4c the square of the spatial correlation

of simulated FPAR with meteorological forcing vari-

ables. The values found for the model agree well with

FIG. 4. (a) Square of the spatial correlation coefficient (over land

grid cells) between observed NDVI and land surface forcing vari-

ables: the logarithm of the mean annual precipitation (P), the

logarithm of the standard deviation of annual precipitation

(sP), mean annual air temperature (T), the deviation of average

warmest month temperature from an assumed optimum (see text),

and mean annual net radiation (Rnet). The final two bars show the

square of the correlation coefficient obtained from the multiple

regression of NDVI against (i) precipitation mean and standard

deviation and (ii) all five quantities. As in (a), but (b) for observed

FPAR and (c) for modeled FPAR.
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the corresponding values found for observed FPAR

(Fig. 4b). The simulated r2 values with the temperature

and net radiation variables are slightly higher, but these

values are still small compared to that for the combined

effect of the precipitation variables. Figure 4c shows

that, in strong agreement with the observations, varia-

tions in hydroclimate explain most of the FPAR vari-

ability seen in the model.

FIG. 5. (a) Average GIMMS NDVI in peak NDVI season as a function of the mean annual

precipitation (x coordinate) and the standard deviation of annual precipitation (y coordinate).

Each dot represents a single land grid cell. (b) As in (a), but with the individual values in the

scatterplot averaged over bins. At least five dots must lie within a bin for the binned value to be

plotted. (c),(d) As in (a),(b), but for GIMMS FPAR data. (e),(f) As in (a),(b), but for model-

simulated FPAR data.
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The agreement in spatial pattern with a presence of

bias also manifests itself in the precipitation-based

scatterplot in Fig. 5e and the corresponding binned

version of the plot in Fig. 5f. In agreement with the

observations, the model clearly shows an increase in

FPARwith increasing precipitation and with decreasing

precipitation variability. Overall, the model, though bi-

ased, does appear to simulate realistic controls of hy-

droclimatic variation over phenological means.

c. Impact of hydrological variations on the
interannual variability of phenological variables

As a second and somewhat independent test of the

ability of the Catchment-CN model to capture ob-

served links between carbon and water variables, we

examine the interannual variability of vegetation phe-

nology. Rather than examining the total variance of

a variable such as summertime NDVI, we focus instead

on a modified quantity, one that captures the carbon–

water connection,

Var(NDVI)*5Var(NDVI)Corr2 (NDVI,P) , (1)

where Var(NDVI) is the interannual variance of

3-month NDVI averages (again centered on the peak

NDVI month, based on the climatological seasonal cy-

cle), Corr2(NDVI, P) is the correlation between these

individual NDVI averages and the corresponding yearly

precipitation totals (with the end of the precipitation

averaging period corresponding to the end of the

3-month NDVI averaging period), and Var(NDVI)* is

interpreted as the portion of the NDVI variance asso-

ciated with variations in moisture availability. That is,

we are employing here the standard interpretation of

Corr2(NDVI, P) as the fraction of the variance of NDVI

explained by variations in P. Equation (1) allows us to

isolate this part of NDVI variability from that associated

with other sources, such as variations in radiation, nu-

trients, and temperature, as well as interference from

clouds, water vapor, and aerosols (Los et al. 2000). [Note

that Var(NDVI)* can also be expressed as the square of

FIG. 6. (a) Onset month of the leafing-up cycle, loosely defined here as the first month of the mean seasonal FPAR cycle (from the

observations-basedGIMMSdata) for which FPAR is in the upper half of the full annual range, on its climb to its maximumvalue. (b)As in

(a), but for the simulation results. (c) FPAR season length, defined as the number of months for which the FPAR (from the observations-

based GIMMS data) is in the upper half of its full annual range. (d) As in (c), but for the simulation results.
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the covariance between P and NDVI divided by the

precipitation variance.]

A few notes are required regarding the estimation of

Var(NDVI)*. First, by using the annual totals for pre-

cipitation, we are assuming that a given year’s pre-

cipitation represents the water available that year for

growth. Of course, other averaging periods for the pre-

cipitation could have been employed (e.g., Zeng et al.

2013). The patterns in Corr2(NDVI, P) obtained with

these other averaging periods, however, turn out to be

the same, to first order; correlation maps generated us-

ing 6- or 9-month precipitation averages (not shown) are

very similar to those generated with the annual pre-

cipitation. Note that using the annual precipitation

rather than the contemporaneous 3-month precipitation

has an important advantage: it reflects that antecedent

precipitation can provide water to vegetation growth

through storage in ground reservoirs and snowpack

(Milly 1994).

Second, the observations are known to be subject to

significant contamination from clouds in high latitudes

and from pollution (from biomass and fossil fuel burn-

ing) in Southeast Asia (Fensholt and Proud 2012): the

upshot being that small and artifactual negative corre-

lations between NDVI and precipitation are often seen

in these regions. These negative correlations are prob-

lematic for our analysis. We zero them out before

computing Corr2(NDVI, P), making the explicit as-

sumption that any such negative correlations represent

noise. Note that, even on the off chance that the negative

correlations are real, they would not represent the

physical relationship that we are after in this paper:

namely, the ability of water limitations to limit vegeta-

tion growth.

Figure 7a shows the distribution of Var(NDVI)*, as

computed with Eq. (1). The patterns are quite in-

teresting: the regions for which moisture-related NDVI

variability is high tend to coincide with the earth’s

grassland regimes—in the U.S. Great Plains, the Nor-

deste region of Brazil, the African Sahel, the Asian

steppes, and eastern and northern Australia (see Fig. 8).

The Var(NDVI)* patterns do miss grassland areas in

India and China but, as shown in Fig. 8, these areas are

subject to extensive irrigation (Siebert et al. 2005), a sup-

ply of water not accounted for in the Corr2(NDVI, P)

diagnostic. Figure 7 demonstrates that, aside from such

irrigated areas, the locations of the earth’s grassland

areas can be identified reasonably well from the joint

analysis of NDVI and precipitation data. The same

patterns and thus the same connections to grassland

regimes are seen for Var(FPAR)*, the portion of the

interannual variance in 3-month FPAR averages related

to moisture variations.

The results obtained with the dynamic phenology

model show very similar patterns. A comparison of

Figs. 7b,c shows that the model captures very well

the observed spatial pattern of Var(FPAR)*, though

again with a bias, as indicated by the different scaling

factors used for the plotting. Overall, the model suc-

cessfully captures the role of hydroclimate in deter-

mining the spatial distribution of interannual variability

in phenology.

4. Model experiments

Having demonstrated the Catchment-CN model’s

ability to capture the basic hydroclimatic controls on

phenology seen in the observations, we now use model

experiments to address key questions regarding the

connections between hydroclimate and vegetation.

a. Influence of vegetation type on phenological
variability

Clouding the interpretation of the Catchment-CN

model’s performance relative to observations in section 3

above is the possibility that its use of prescribed vege-

tation types is somehow guaranteeing correct model

behavior. Given, for example, that the observed distri-

bution of Var(FPAR)* in Fig. 7b captures well the lo-

cations of the world’s grasslands (Fig. 8), we must

consider the possibility that high values of Var(FPAR)*

are encouraged by the unique properties of grassland

and discouraged by the properties of forests and shrubs

so that, by imposing the observed vegetation distribu-

tions in the model, we artificially guarantee high simu-

lated values of Var(FPAR)* in the correct areas (Fig.

7c). The more intriguing possibility to consider, however,

is that a specific hydroclimatic regime is responsible for

high Var(FPAR)* values, a regime for which only grass-

lands happen to survive. With this second possibility, the

vegetation type does not cause the Var(FPAR)* value;

rather, the vegetation type and the Var(FPAR)* value

are together controlled by something else, namely, the

local moments of precipitation.

To examine this issue, we performed a repeat of the

simulation described above but with a twist: grassland

vegetation was imposed on all land surfaces, and no

other vegetation types were allowed to exist. Thus, in

this experiment, vegetation type could not affect in any

way the simulated spatial and temporal distributions of

FPAR. Note that, in this experiment, grassland is placed

even in the driest deserts and in the wettest tropical

areas; if the local climate is not conducive to grassland’s

survival, the grass is accordingly allowed to die out.

Initial conditions for the all-grassland simulation were

set everywhere to equilibrated states at a representative
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midlatitude grassland location, as extracted from the

control simulation; the all-grassland simulation was then

spun up for thirty-six 61-yr cycles prior to producing

a final 61-yr cycle for analysis.

Figure 9c shows the spatial distribution of Var(FPAR)*

for the all-grassland simulation. The plot captures, to first

order, the features seen in the original model plot,

supporting the second possibility noted above. (Note

that differences between the control simulation and the

all-grassland simulation in areas that are largely grass-

land in the control stem from details in the design of the

all-grassland experiment, e.g., the use of the same ni-

trogen deposition rate across the globe.) That is, the

presence of grassland does not lead to highVar(FPAR)*

FIG. 7. (a) Product of the interannual variance of GIMMS NDVI data averaged over the

maximum NDVI season and the square of the correlation between NDVI and annual pre-

cipitation, multiplied by 1000. (b) As in (a), but for GIMMS FPAR data. (c) As in (a), but for

model-generated FPAR data and with the scaling factor changed to 500.
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values; the high values are, instead, indicative of a hy-

droclimatic regime that also happens to support grass-

land best. Similarly, the all-grassland simulation shows

a relationship between FPAR maxima, mean precipi-

tation, and precipitation variability (Fig. 9a) that agrees

to first order with that seen in the original model simu-

lation (Fig. 5f). That FPAR tends to be highest in very

wet conditions, for example, is not simply the result of

the presence of dense forests in wet areas; the wet con-

ditions themselves encourage the high FPAR values,

and wet areas also tend to be where dense forests tend

to flourish.

We repeated the simulation still again, this time after

prescribing a deciduous forest vegetation type every-

where (and spinning up the model for thirty-four 61-yr

cycles). The results, shown in Figs. 9b,d, are essentially

the same: the patterns, for example, in Var(FPAR)* for

the all-grassland and all-trees cases are essentially

identical. [There are, however, some intriguing differ-

ences between these simulations in the strength of the

Var(FPAR)* field, with higher values for grassland in

temperate regions and higher values for trees in tropical

and subtropical regions.] Hydroclimatic variability,

more than vegetation type, appears to dominate the

spatial patterns of phenological variability: in the model

and, we can infer, in nature.

b. Hydroclimate and the global carbon cycle

As noted in the introduction, a unique advantage of

a model that can simulate phenology is its ability to

provide information on additional, difficult to measure

quantities. While carbon fluxes such as gross primary

productivity (GPP), net primary productivity (NPP),

and net ecosystem exchange (NEE) have been

measured at various tower sites (Baldocchi 2008), di-

rectly observed global distributions of land–atmosphere

carbon exchange are nonexistent. Model simulations,

however, can readily provide these fields, and many ex-

amples of such simulated distributions already appear in

the literature (e.g., Friedlingstein et al. 2006). [We note

that other approaches for inferring global fields, such as

machine learning algorithms that upscale from the site

measurements, are also available (Jung et al. 2011).]

Here we provide model-based estimates of the con-

nection between carbon exchange and hydroclimatic

variability, focusing mainly on GPP. We first provide in

Fig. 10a this particular model’s vision of the global dis-

tribution of GPP. Because GPP is a flux rather than

a manifestation of vegetation state, we present it in

terms of annual averages rather than for a 3-month

maximum period. The distributions have the expected

maxima in the densely forested tropics, with swaths of

high values in the boreal forests of the north. Figures

10b,c show the corresponding GPP fields from the sim-

ulations prescribing grassland and deciduous tree types,

respectively. The three panels show some differences but

are, to first order, very similar, indicating that vegetation

type alone is not the main source of spatial variations in

GPP; both GPP and vegetation distributions are appar-

ently controlled in tandem by something else.

Naturally, that ‘‘something else’’ is water availability.

Figure 11 shows, in analogy to Fig. 4, the square of the

spatial correlation between GPP and various meteoro-

logical forcing variables, showing, in effect, which me-

teorological variables are statistically related to theGPP

distribution and thus might have a hand in determining

it. For all three simulations (control, all grass, and all

trees), precipitation mean and variability have the

FIG. 8. Map of grassland locations, as derived from the distributions used in the second phase

of theGlobal SoilWetness Project (Dirmeyer et al. 2006). The dots overlain on the plot indicate

regions for which irrigation is extensive [.10%of the land area, based on data aggregated from

the Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org/nr/

water/aquastat/irrigationmap/index.stm], suggesting difficulty in relating observations-based

FPAR values to local precipitation amounts.
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dominant impact on GPP, with an r2 of about 0.55 for

the multiple regression of GPP on log10P and log10sP.

Adding in the annual temperature, temperature de-

viation, and net radiation information increases the r2 to

about 0.64. The fact that the r2 values do not increase by

much for the uniform vegetation experiments suggests

once again that variations in vegetation type do not by

themselves contribute significantly to spatial variations

in GPP; the remaining unexplained variance in Fig. 11a

presumably results from spatial variability in, for

FIG. 9. (a) As in Fig. 5f (average model-simulated FPAR in peak FPAR season as a function

of the mean precipitation and the standard deviation of annual precipitation), but for the case

in which the entire globe is forced to be covered by grassland: (b) for the all-trees case. (c) As in

Fig. 7c [product of the interannual variance of model-simulated FPAR (dimensionless) aver-

aged over the maximum FPAR season and the square of the correlation between NDVI and

annual precipitation, multiplied by 500], but for the case where the entire globe is forced to be

covered by grassland: (d) for the all-trees case.
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example, the seasonal cycles and shorter-term temporal

structure of the forcing quantities.

Figure 12 shows how precipitation means and vari-

ability control the spatial distribution of GPP using

scatterplots analogous to those shown in Fig. 5. As with

FPAR, GPP tends to increase with increasing mois-

ture availability (x axis) and decreasing interannual

variability (y axis), regardless of which vegetation types

are assigned at the surface.

In contrast to Fig. 5, Fig. 12 uses a nonlinear scale for

the shading, a scale that shows the dominance of pre-

cipitation means over precipitation variability in de-

termining GPP. The impact of precipitation variability

on GPP, however, is nevertheless significant. This is

FIG. 10. Global distribution of annual GPP in grams of carbon per square meter per day

(gCm22 day21) for (a) the control simulation; (b) the simulation in which all land is covered

with a grassland vegetation type; and (c) the simulation in which all land is covered with

a deciduous tree vegetation type.
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demonstrated with a supplemental model simulation

(‘‘ClimP’’) in which we prescribed standard, spatially

varying vegetation types (as in the control simulation)

but a modified precipitation forcing: at each grid cell in

ClimP, we scaled the precipitation forcing in eachmonth

of each year so that the seasonal cycle of monthly totals

for the year matched the long-term (climatological)

seasonal cycle. Thus, in ClimP, we artificially removed

the monthly-scale year-to-year temporal variability in the

precipitation forcing—at each grid cell, the mean pre-

cipitation applied was identical to that used in the control

simulation, whereas the interannual variability of monthly

precipitation was, by construction, set to zero.

Figure 13 shows the difference between the mean

annual GPP produced in ClimP and that in the control

simulation. Regions with large positive differences

appear in the southeast United States, along the eastern

coasts of South America and Australia, in the Indian

subcontinent, in northeastern China, and in various

other regions of South America and Africa. Negative

differences do not appear anywhere. In effect, Fig. 12

illustrates where GPP in the real world would be larger

if the year-to-year precipitation supply were more

FIG. 11. (a) As in Fig. 4, but for annual GPP (rather than year-

high NDVI or FPAR) produced in the control simulation. Annual

temperatures are used for the third bar, whereas warmest-month

temperature deviations from a single optimal temperature (as in

Fig. 4) are used for the fourth bar. The optimal temperature (T0) is

set here to 299K, which for this exercise turns out to maximize the

height of the bar. (b),(c) As in (a), but for GPP produced (b) in the

all-grass simulation and (c) in the all-trees simulation.

FIG. 12. (a) Average annual GPP (gCm22day21) as a function of

the mean precipitation (x coordinate) and the standard deviation of

annual precipitation (y coordinate) in the control simulation, with in-

dividual land grid cell values averaged over bins. At least five dotsmust

lie within a bin for the binned value to be plotted. (b),(c) As in (a), but

for the simulation in which all land is covered (b) with a grassland

vegetation type and (c) with a deciduous tree vegetation type.
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dependable: that is, where the interannual variability of

precipitation holds down the land surface’s carbon up-

take. Note, however, that human activities can mitigate

the effects of this variability. India, Southeast Asia, and

northeastern China in particular are known to undergo

extensive irrigation (Fig. 8). Because irrigation is effec-

tively a means of providing a more dependable water

supply, these particular areas may, in the real world, be

capturing the larger GPP rates.

With Fig. 14, we focus on the interannual variability of

GPP at each grid cell rather than on the spatial distri-

bution of its mean. Figure 14a shows the variance of

annual GPP. Figure 14b shows the spatial distribution of

Corr2(GPP, P), where P is the annual precipitation; that

is, Fig. 14b shows the fraction of the total GPP variance

that is associated with, or can be explained by, variations

in annual water supply. The fractions are reasonably

large across the globe, even in some areas considered to

be not strongly water stressed, such as the southeastern

United States. In contrast, the fields of Corr2(GPP, T)

and Corr2(GPP, Rnet), where T is the yearly averaged

temperature and Rnet is the yearly averaged net radia-

tion, show significantly lower values (Figs. 14c,d).

While interannual temperature variations do have some

impact on high latitude GPP variations (perhaps

through their effects on snow cover duration), they have

much smaller impact elsewhere. [Note that, when May–

September average temperatures are used (not shown)

rather than annual temperatures, the Corr2(GPP, T)

values do increase significantly in many Northern

Hemisphere temperate regions, though still not to the

level of the indicated Corr2(GPP, P) values.] Interannual

net radiation variations appear to contribute more, es-

pecially in Africa; it is quite possible, however, that these

particular contributions are not real and instead simply

reflect known existing correlations between precipitation

and net radiation there (not shown).

Together, annual precipitation, temperature, and net

radiation do not explain all of the simulated GPP vari-

ability. As before, presumably a significant part of the

variability stems from year-to-year variations in, for

example, the subannual timing of the precipitation and

associated variations in infiltration and runoff.

Figure 15 shows one final interesting result regarding

the interannual variability of GPP. The shading shows

Var(GPP) for a 3-month averaging period (centered, at

each grid cell, around the month of maximum GPP).

Overlain on the plot are black dots indicating where

Var(FPAR) for 3-month averages (centered around

the local monthly maximum for FPAR) exceeds a value

of 0.003, an arbitrary threshold chosen for plotting

convenience. The figure shows that Var(GPP) and

Var(FPAR) tend not to be maximized in the same re-

gions; Var(GPP)maxima tend to lie on thewetter sides of

theVar(FPAR)maxima.The samebasic result (not shown)

is found for comparisons of the water-limited portions

of the variances [i.e., Var(GPP)* versusVar(FPAR)*], and

it is also found (not shown) for the all-grassland and all-

deciduous-trees simulations, suggesting that variations

in vegetation type are not responsible for such spatial

offsets in the maxima. The spatial offsets are instead

induced by the carbon physics built into the modeling

system. Assuming these physical treatments are accurate,

then similar offsets would apply to the real world’s dis-

tributions of Var(GPP) and Var(FPAR). In other words,

given estimates of Var(FPAR) attained, for example,

through the processing of theGIMMSdata, knowledge of

the offsets could potentially help in the construction of an

estimated spatial field of Var(GPP).

5. Summary and discussion

Using the Catchment-CN model, a merger of the dy-

namic phenology components of the CLM4 dynamic

FIG. 13. Difference in the mean annual GPP (gCm22 day21) produced in the ClimP

simulation (the simulation using climatological precipitation forcing) and that produced in the

control simulation.
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vegetation model with the water and energy budget

framework of the GMAO catchment LSM, we examine

the connections across the globe between hydroclimate

and vegetation variables. Justification for the use of this

model in such a study is provided by its demonstrated

ability to reproduce observed connections between

FPAR and precipitation moments (section 3): namely,

the increase in FPAR with increasing mean precipitation

FIG. 14. (a) Variance of annual GPP (g2m24 day22) as produced by the control simulation. (b) Corr2(GPP,P): that is, the fraction of the

GPP variance associated with interannual variations in annual precipitation. (c),(d) As in (b), but for the fraction of the GPP variance

associated with interannual variations in (c) annual temperature and (d) annual net radiation.

FIG. 15. Interannual variance of GPP (g2m24 day22) for the 3-month period centered on the

month for which the local GPP is climatologically largest. Overlain on the plot are black dots

showing where the interannual variance of 3-month FPAR is maximized.
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and decreasing precipitation variability and the proper

geographical placement of spatial maxima in the global

field of moisture-related FPAR variance.

Our model results can be summarized as follows. First,

based on our supplemental simulations with globally

uniform vegetation type, we find that the aforemen-

tioned relationships between FPAR and precipitation

moments are largely independent of vegetation type; the

fact that trees grow in wet regimes, grass grows in drier

regimes, and shrubs grow in even drier regimes has only

a second-order impact on the spatial distribution of

FPAR and its interannual variability at each location.

Instead, hydroclimatic moments appear to be the dom-

inant determinants of both vegetation type and pheno-

logical expression, as represented by FPAR. Our second

basic result is that hydroclimatic moments provide

a similarly dominant control over the spatial and tem-

poral variability of gross primary productivity (GPP),

again with only a second-order contribution from veg-

etation type.

Such a global-scale description of GPP connections to

hydroclimate is achievable with a DVM but is not pos-

sible with observations, which are much more spatially

and temporally limited. Knapp and Smith (2001) used

observations collected across 11 tower sites to show that

above-ground net primary production (ANPP) tends to

increase with increasing annual precipitation, and our

global-scale results (for GPP, a related variable) are

consistent with this. We do see some inconsistencies,

however, with their study. For example, Knapp and

Smith find that ANPP has its maximum interannual

variability in grassland areas. We find that, while the

interannual variability of FPAR is maximized in grass-

land areas, the maxima for GPP variability tend to be

spatially offset from these FPAR variance maxima (Fig.

15), slightly toward the wetter (forested) side. The offset

is minor, however, and the apparent inconsistency, while

certainly a possible result of model deficiencies, may

also relate to the limited number of tower sites they

examined. More importantly, Knapp and Smith (2001)

find that ‘‘interannual variability in ANPP [is] not re-

lated to variability in precipitation’’ (p. 481). Results from

our control simulation (not shown) indicate that the square

of the spatial correlation coefficient between Var(GPP)

andVar(P) across land points is on the order of 30%,which

disagrees with their conclusion; indeed, when we limit the

calculation to values at the grid cells containing the Long-

Term Ecological Research (LTER) sites they studied, the

square of the correlation coefficient increases.We also find

a reasonably strong relationship between the time series of

GPP and precipitation (Fig. 14b) at individual locations.

While interpretations of DVM-based results must be

tempered by knowledge of model biases and limitations,

DVM experiments, if properly interpreted, open the

door to a wealth of potential studies of the global carbon

cycle and its interactions with the global water and en-

ergy cycles. This paper provides one such study. An-

other example of note is provided by Guan et al. (2012),

who show with DVM simulations over Africa that the

statistical character of precipitation forcing (e.g., rainfall

intensity) manifests itself in the GPP produced. The

advantages of using DVMs—their provision of com-

prehensive (and often unmeasurable) data and their

ability to be modified at will to allow the examination of

the impacts of individual physical processes—stand

them in good stead for future carbon analyses. Our

understanding of global carbon–water–energy connec-

tions should continue to increase as researchers con-

tinue to improve their models through careful analysis

against observations (Luo et al. 2012) and apply them to

carbon–water–energy questions in innovative ways.
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