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ABSTRACT

Context. The effects of non-equilibrium processes on the ionisation state of strongly emitting elements in the solar corona can be
extremely difficult to assess and yet they are critically important. For example, there is much interest in dynamic heating events lo-
calised in the solar corona because they are believed to be responsible for its high temperature and yet recent work has shown that the
hottest (≥107 K) emission predicted to be associated with these events can be observationally elusive due to the difficulty of creating
the highly ionised states from which the expected emission arises. This leads to the possibility of observing instruments missing such
heating events entirely.
Aims. The equations describing the evolution of the ionisaton state are a very stiff system of coupled, partial differential equations
whose solution can be numerically challenging and time-consuming. Without access to specialised codes and significant computa-
tional resources it is extremely difficult to avoid the assumption of an equilibrium ionisation state even when it clearly cannot be
justified. The aim of the current work is to develop a computational tool to allow straightforward calculation of the time-dependent
ionisation state for a wide variety of physical circumstances.
Methods. A numerical model comprising the system of time-dependent ionisation equations for a particular element and tabulated
values of plasma temperature as a function of time is developed. The tabulated values can be the solutions of an analytical model, the
output from a numerical code or a set of observational measurements. An efficient numerical method to solve the ionisation equations
is implemented.
Results. A suite of tests is designed and run to demonstrate that the code provides reliable and accurate solutions for a number of
scenarios including equilibration of the ion population and rapid heating followed by thermal conductive cooling. It is found that
the solver can evolve the ionisation state to recover exactly the equilibrium state found by an independent, steady-state solver for
all temperatures, resolve the extremely small ionisation/recombination timescales associated with rapid temperature changes at high
densities, and provide stable and accurate solutions for both dominant and minor ion population fractions. Rapid heating and cooling
of low to moderate density plasma is characterised by significant non-equilibrium ionisation conditions. The effective ionisation tem-
peratures are significantly lower than the electron temperature and the values found are in close agreement with the previous work of
others. At the very highest densities included in the present study an assumption of equilibrium ionisation is found to be robust.
Conclusions. The computational tool presented here provides a straightforward and reliable way to calculate ionisation states for a
wide variety of physical circumstances. The numerical code gives results that are accurate and consistent with previous studies, has
relatively undemanding computational requirements and is freely available from the author.
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1. Introduction

Recent interest in the detectability of dynamic heating events
localised in the solar corona (Bradshaw & Cargill 2006; Reale
& Orlando 2008), believed to be responsible for its high tem-
perature, has brought the importance of non-equilibrium ioni-
sation (NEI) states to the forefront of research concerning the
nature of coronal heating. One example of such heating is the
reconnection of adjacent magnetic field lines that have become
twisted and braided in the corona due to the random motions
of their photospheric footpoints. Often called nanoflares (Parker
1988; Cargill 1993, 1994 1997; Klimchuk 2006), with refer-
ence to the fraction of energy released in comparison to a large
scale flare, models have shown that they may heat the corona

to temperatures ≥107 K (Cargill & Klimchuk 2004; Patsourakos
& Klimchuk 2005, 2006; Bradshaw & Cargill 2006; Klimchuk
2006).

The major obstacle to the overall acceptance of the idea
of a dynamically heated corona is the lack of direct observa-
tional evidence. A key piece of evidence that is currently miss-
ing and would support the idea of dynamic heating is extremely
hot (≥107 K) coronal emission. In recent work Schmelz et al.
(2009) report the detection of an extremely weak component of
hot emission in a quiet Sun differential emission measure (DEM)
curve constructed from Hinode-XRT (Golub et al. 2007) data.
However their result, though certainly suggestive, is inconclu-
sive at present because it lies at the very extreme of what DEM
techniques can reliably reconstruct. However, a further study
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based on Hinode-XRT data by Reale et al. (2009), who used
filter ratios to construct maps of temperature and emission mea-
sure in the quiet Sun, provides independent and corroborating
evidence for the presence of a hot, but weak, component of the
coronal emission. The lack of strong hot emission may be due to
the difficulty of creating the ionisation states from which the ex-
pected hot emission would arise. Since the corona is optically
thin the processes of ionisation and recombination are dominated
by electron collisions, which in low density plasma can occur on
timescales significantly longer than those associated with heat-
ing and cooling. Under these circumstances the ionisation state
of the plasma becomes decoupled from the electron temperature
and remains out of equilibrium until the density increases and
the ionisation and recombination timescales become compara-
ble with the timescale for temperature changes. For example, if
plasma is heated and cooled on timescales much shorter than the
ionisation and recombination timescales then changes in the ion-
isation state lag the change in temperature. At the peak temper-
ature reached during heating the ions that would be present un-
der equilibrium conditions will not have been created and, since
thermal conduction then rapidly cools the plasma, there can be
no associated hot component of the coronal emission.

Hansteen (1993), Bradshaw & Mason (2003), Bradshaw
et al. (2004), Bradshaw & Cargill (2006) and Reale & Orlando
(2008) have used numerical hydrodynamic models to examine
the implications of NEI for the observable signatures and the
detectability of hot emission associated with nanoflare heating
localised in the solar corona. They found that NEI does indeed
make nanoflares extremely difficult (and in some cases impossi-
ble) to detect directly, which certainly explains the lack of obser-
vational evidence, and one must instead rely upon secondary sig-
natures predicted by the models in order to infer their presence.

These studies are of particular relevance to current and
upcoming solar observing missions that have been specifically
designed to detect hot signatures of dynamic coronal heating by
making the instruments sensitive to wavelength ranges that con-
tain emission lines from ions that are formed at high tempera-
tures in equilibrium. For example: the long wavelength band of
Hinode-EIS (Culhane et al. 2007) is sensitive to emission from
ions of iron up to Fe XVI (peak abundance at T = 106.4 K
in equilibrium); Hinode-XRT (Golub et al. 2007) has multiple
filters sensitive to emission from Fe ions formed in the range
105.5 ≤ T ≤ 108 K in equilibrium; and SDO-AIA (Weber
et al. 2004) has multiple filters sensitive to emission from Fe
ions formed in the range 105.8 ≤ T ≤ 107.3 K in equilibrium.
The success of these instruments at detecting the hottest compo-
nents of the coronal emission associated with dynamic heating
depends critically on the importance of NEI. If the ionisation
state of the plasma is not in (or near) equilibrium then the choice
of wavelength ranges for these instruments may not reveal any
information at all about the heating process.

Analysing and understanding the contribution of NEI to any
set of observational data from which one hopes to identify signa-
tures of the coronal heating mechanism in operation is undoubt-
edly important. If the heating mechanism dynamically releases
energy directly into the corona then NEI becomes absolutely
critical. However, NEI can be extremely difficult to deal with be-
cause the equations that describe the evolution of the ionisaton
state are a very stiff system of coupled, partial differential equa-
tions whose solution can be numerically challenging and time-
consuming. Without access to specialised codes and significant
computational resources it is extremely difficult to avoid the as-
sumption of an equilibrium ionisation state, even when it clearly
cannot be justified, and for this reason NEI is often left out of

numerical models and observational data analyses, or at best it
is considered via order-of-magnitude estimates of timescales.

The aim of the current work is to develop a computational
tool to allow calculation of the time-dependent ionisation state
for a wide variety of physical circumstances. Though the solar
corona is the focus of the work presented here, the computational
tool is intended for application to any optically thin, astrophysi-
cal plasma environment (stellar coronae or the nebular phase of
expanding nova shells, for example). The numerical model and
solver upon which the code is based is described in Sect. 2, the
results of a series of tests designed to demonstrate that the model
provides accurate and reliable solutions are discussed in Sect. 3,
and a summary of the work and conclusions are presented in
Sect. 4.

2. Numerical model

The approach adopted here is to consider a zero dimensional
(0D) model (e.g. Cargill 1994). The relative abundances (pop-
ulation fractions) of the ions of a particular element are given
by

∂Y j

∂t
= n

(
I j−1Y j−1 + R jY j+1 − I jY j − R j−1Y j

)
, (1)

where n is the electron number density, which will be assumed
constant for the remainder of the current work and so the fo-
cus will be on timescales for temperature changes that are sig-
nificantly shorter than the inertial timescales for the onset of
bulk flows over which density changes may occur. The veloc-
ity terms have also been omitted from Eq. (1) for this reason.
Y denotes the element (H, He, C, Fe, etc.) and j the ionisation
stage. Y j=1 denotes neutral Y (or Y I in spectroscopic notation)
and Y j=2 denotes the first ionisation stage of Y (Y II), etc. Values
of Y1 = 0.25 and Y2 = 0.75, for example, would mean that
25% of element Y is present in the form of neutral Y and 75%
is present in the form of singly-ionised Y. I and R are the tem-
perature dependent ionisation and recombination rates, respec-
tively. The collisional ionisation and excitation-autoionisation
rates of Dere (2007) and the radiative and dielectronic recom-
bination rates of Mazzotta et al. (1998) are tabulated in intervals
of 0.01 dex in the range 4.0 ≤ log10 T ≤ 8.0. A third order poly-
nomial interpolation scheme is used to calculate I and R as a
function of T .

Equation (1) must be solved using a set of tabulated values
that describe the evolution of the temperature during a particular
process such as heating or cooling. [T (t)] could be the solution
to an analytical model, the output from a numerical code or a set
of observational measurements. In the numerical tests to follow
in Sect. 3 the heating process is represented by linearly raising
the temperature of the plasma from an initial value Ti to a peak
value Tp over a timescale τH. Thus:

T (t) =
Tp − Ti

τH
t + Ti. (2)

The cooling process is represented by the analytical solution
to the equation for cooling by thermal conduction in the non-
evaporative limit, given by Antiochos & Sturrock (1976):

T (t) = Tp

(
1 +

t − τH

τCp

)− 2
5

for t > τH, (3)

where τCp is the conductive cooling timescale at the peak tem-
perature. In general:

τC =
3kBnL2

1/2

κT 5/2
, (4)
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where L1/2 the loop half-length, kB is the Boltzmann constant
and κ is the coefficient of thermal conduction. Equations (2)
and (3) are then used to generate the tabulated values [T (t)].

Equation (1) represents an extremely stiff set of coupled
differential equations and their solution can be a computation-
ally demanding problem. It is worth noting that many numeri-
cal methods for the solution of stiff sets of equations rely upon
the use of implicit integration schemes. The additional compu-
tational expense of implicit schemes is considered outweighed
by the permittance of large timesteps and guaranteed numeri-
cal stability. One point often overlooked is that implicit schemes
only guarantee convergence to equilibrium and the solution at
0 < t < τeq may not represent the true state of the system if
the timesteps are too large. The condition for accuracy for an
implicit scheme is equivalent to the condition for stability for
an explicit scheme, or: there’s no such thing as a free numerical
lunch. If one is interested in the detailed evolution of the sys-
tem before any equilibrium state is reached, which in the present
work is most certainly the case, then the principle timescale must
be resolved. This condition can be efficiently satisfied by using
an adaptive method (MacNeice et al. 1984) for choosing the in-
tegration timestep (see Appendix A) and linearly interpolating
between the tabulated values [T (t)] to find the exact tempera-
ture at each timestep. The NEI module from the HYDRAD code
(Bradshaw & Cargill 2006, and references therein), which has
been documented and used extensively in the published litera-
ture, is used to solve these equations and the solutions are output
at time intervals corresponding to [T (t)].

3. Numerical tests

3.1. Ionisation equilibration

A suite of numerical tests has been devised in order to demon-
strate that the numerical code provides accurate and reliable so-
lutions. The first test checks that it can accurately reproduce and
maintain appropriate equilibria. Equilibrium solutions to Eq. (1)
are well established and can easily be found from sets of ion-
isation and recombination rates, giving the ionisation state for
a fixed temperature which can then be tabulated and compared
with the equilibria found by time-stepping Eq. (1). The effective
ionisation temperature Teff is used as a measure of the strength
of departures from equilibrium of the ionisation state. Here Teff
is calculated by choosing the equilibrium ionisation state from
a set of values tabulated as a function of temperature (in steps
of 0.01 dex in the range 4.0 ≤ log10 T ≤ 8.0) that most closely
matches the current NEI state. Reale & Orlando (2008) adopt
a similar approach but choose to compare only the three most
populated stages of the NEI state in order to determine the most
closely matching equilibrium state. In the current work all ion-
isation stages will be compared in order to identify the most
closely matching equilibrium state. This provides a far more rig-
orous set of conditions to be satisfied because an accurate match
requires the solver to properly handle both the dominant and the
minor ion population fractions. Iron (Fe) will be used as the
example element in the current work since it has many ionisa-
tion stages (27 in all) and dominates the spectrum of coronal
emission.

To test the ability of the solver to find and maintain equi-
librium solutions Eq. (2) was used to generate a set of values
[T (t)] such that T (t = 0 s) = 104 K and T (t ≥ 10 s) =
[105, 106, 107, 108] K, to represent heating, which were solved
with Eq. (1) for n = [108, 1010, 1012] cm−3. Figure 1 shows that

Fig. 1. The temperature equilibration rate for the ionisation state of Fe
for heating to a range of temperatures at several densities. The diamonds
show the actual electron temperature T and the lines show the effective
ionisation temperature Teff . The calculations were carried out for densi-
ties n = [108 (solid), 1010 (dot), 1012 (dash)] cm−3.

this requirement is satisfied because Teff → T in all cases. At
n = 1012 cm−3 Teff = T for all T , which shows that an assump-
tion of ionisation equilibrium is valid at high densities, and at
n = 1010 cm−3 the ionisation state equilibrates during the first
100 s. Note that the T and Teff data points are plotted in in-
tervals of 100 s. At n = 108 cm−3 the equilibration timescale
tends to increase with temperature due to the difficulty of freeing
the strongly bound inner-shell electrons. A direct comparison of
the population fractions as t → ∞ shows that the solver recov-
ers their equilibrium values exactly and this can readily be con-
firmed by users of the numerical code. Through a comparison of
T and Teff, at t = 10 s and n = 1010 cm−3, with the equilibration
timescale for the corresponding n = 108 cm−3 curve the results
in Fig. 1 also indicate a trend for the equilibration timescale to
scale with inverse proportion to the density, as expected from
Eq. (1).

Since the numerical code is also expected to be used for
cooling studies (post flare, for example), Eq. (2) was used to
generate a set of [T (t)] such that T (t = 0 s) = 108 K and
T (t ≥ 10 s) = [107, 106, 105, 104] K which were solved with
Eq. (1) for the same density range as before. The results are
shown in Fig. 2 and confirm the ability of the solver to find and
maintain equilibrium solutions at all temperatures. Again, a di-
rect comparison of the population fractions as t → ∞ shows that
the solver recovers the exact equilibrium solutions.

The final equilibration test in this section assesses the ability
of the solver to follow the temperature when it varies rapidly,
over several orders of magnitude, by maintaining the ionisation
state in equilibrium at high densities. This is a particularly strin-
gent test; it requires extremely small timescales to be resolved
because the ionisation state needs to rapidly evolve to keep up
with the temperature changes. Furthermore, stable and accurate
solutions for the dominant and minor population fractions are
essential because the minor population fractions can quickly be-
come dominant and vice versa. Without accurate solutions er-
rors would quickly accumulate. [T (t)] was calculated with the
temperature varying sinusoidally between 104 K and 108 K for
periods τ = [1, 10, 30, 60] s. Figure 3 shows Teff compared with
T for n = 1010 cm−3 and, clearly, the ionisation state is far from

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810735&pdf_id=1
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Fig. 2. The temperature equilibration rate for the ionisation state of Fe
for cooling to a range of temperatures at several densities.

Fig. 3. The variation of the effective ionisation temperature Teff (solid)
as it tracks a sinusoidal variation in the electron temperature T (dash)
for a range of wave periods at a density of 1010 cm−3.

equilibrium for all τ ≤ 60 s. This is expected because the first test
(Fig. 1) showed that the timescale for equilibration is of O(100) s
for a temperature change of 104 K to 108 K at n = 1010 cm−3.
However, at n = 1012 cm−3 these results showed that the ionisa-
tion state should be in equilibrium and this expectation is indeed
satisfied in Fig. 4 where Teff = T for τ ≤ 60 s.

The tests carried out in this section confirm the ability of the
numerical code to find and maintain appropriate equilibria, to
resolve the extremely small ionisation/recombination timescales
associated with rapid temperature changes at high densities, and
to provide stable and accurate solutions for both dominant and
minor ion population fractions.

3.2. Rapid heating and efficient cooling

A traditional test of the accuracy of numerical solutions is to
compare them with appropriate analytical solutions. However,
since no analytical solutions to Eq. (1) exist a convenient test is

Fig. 4. As Fig. 3 for n = 1012 cm−3.

instead to check for consistency between alternative codes. This
is useful because it can serve to verify the results or highlight
any discrepancies that may need to be investigated, which is of
particular importance if the codes are in common use but have
not previously been benchmarked/calibrated. The work of Reale
& Orlando (2008) is chosen to serve as the basis for comparison.
Their study was performed using a 1D code and solutions to the
NEI equations in such circumstances, coupled as they are to the
hydrodynamic equations, require long run times of hours or days
depending upon the parameters of the run (number of elements
included in the NEI treatment, grid resolution). Conversely, the
numerical code presented here can complete a run in a few sec-
onds. If consistent solutions can be obtained for several orders of
magnitude less computational time then the code can be a valu-
able addition to the selection of modeling tools that are available
to the community.

The remainder of this section will be devoted to describing
a new study, following Reale & Orlando (2008) and the earlier
work of Bradshaw & Cargill (2006), that was carried out with the
code described here. The purpose of this study is (a) to provide
corroboration of the results of the independent, earlier work and
(b) to demonstrate that consistent results can be obtained with
the current, far less computationally demanding code.

As discussed in Sect. 1 concerns regarding the detectability
of coronal nanoflares have promoted recent interest in NEI stud-
ies because the lack of significant hot emission, that would other-
wise be expected to provide corroborating evidence for coronal
heating by nanoflares, can be explained by the difficulties of cre-
ating the associated highly charged ionisation states. Rapid, non-
evaporative, nanoflare-like heating of coronal plasma to high
temperatures is represented by setting Ti = 104 K, Tp = 107 K
and τH = [5, 15, 30, 60] s in Eq. (2) and generating [T (t)].
Equation (1) is then solved for n = [108, 109, 1010, 1012] cm−3.
This parameter space has been chosen so that a range of possi-
ble heating scenarios (fast to relatively slow) and coronal con-
ditions (tenuous to very dense) can be investigated since there
are open questions regarding the heating rate and the initial
(pre-heating) coronal density (e.g. Bradshaw & Cargill 2006;
Hudson et al. 2008). Results for the ionisation state of Fe are
presented in Figs. 5 to 8 for each region of the parameter space.
A limited number of ions (Fe IX, Fe XII, Fe XV, Fe XIX and
Fe XXIV) were selected for the sake of readability of the figures.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810735&pdf_id=2
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Fig. 5. The ionisation state of Fe during a heating phase of τH = 5 s
for n = [108, 109, 1010, 1012] cm−3. The solid curves show the relative
abundances of a selection of Fe ions (identified by the labels) obtained
by solving Eqs. (1) and (2). The dotted curves show the equilibrium
ionisation state.

Figure 5 shows the ionisation state of Fe in plasma of density
108 cm−3 as it is raised from a temperature of 104 K (though the
x-axis scale begins at 105 K) to 107 K in 5 s. The solid lines in the
figure are the solutions to Eq. (1) for each ion and the dotted lines
show the corresponding equilibrium solutions (the solutions for
τH → ∞) for comparison. The order-of-magnitude displacement
in temperature between each solid and corresponding dotted line
makes it immediately clear that the ionisation state of Fe is far
from equilibrium at all times during the heating phase. The pop-
ulation of Fe IX peaks at T = 105.8 K in equilibrium (dotted
line), yet at this temperature in Fig. 5 (upper-left panel) its pop-
ulation fraction is negligible (<10−10) and doesn’t approach a
peak until T = 107 K. The same behaviour is true of Fe XII and
Fe XV. The population fractions of Fe XIX and Fe XXIV are
negligible throughout the heating phase and so do not appear on
the plot.

The upper-right panel of Fig. 5 shows the ionisation state of
Fe in plasma of density 109 cm−3 subject to the same rate of
heating. The peaks in the population fractions of Fe IX, Fe XII
and Fe XV have shifted to lower temperatures, though the dis-
placements remain almost an order-of-magnitude, and a some-
what more significant amount of Fe XIX begins to emerge near
T = 107 K. This trend continues at 1010 cm−3, although there is
still a marked displacement between the peak Fe IX to XIX pop-
ulation fractions and their equilibrium temperatures. The popu-
lation fraction of Fe XXIV remains negligible to 1010 cm−3. At
1012 cm−3 the ionisation state of Fe is close to equilibrium during
the heating phase. The temperatures of peak relative abundance
for each of the ions are in good agreement with their equilibrium
values. There is a marked deviation between the Fe IX popula-
tion fractions below T = 105.5 K. The time taken to reach this
temperature (given the parameter values for Ti, Tp and τH) is
0.3 s, which is short enough for the rate of ionisation to Fe IX to
lag the rate of temperature change.

As the heating timescale increases (Figs. 6 to 8) the ionisa-
tion state of Fe tends more closely to equilibrium, as would be
expected. However, the departures from equilibrium at densities
up to 1010 cm−3 are still significant at 60 s. The steep gradients
of the ion population fraction curves, away from the peak value,

Fig. 6. As Fig. 5 for τH = 15 s.

Fig. 7. As Fig. 5 for τH = 30 s.

mean that even a slight shift of the peak in temperature can result
in large differences from the values for the population fractions
in equilibrium.

The results for heating presented here are certainly consistent
with the findings of Reale & Orlando (2008). For example, in
their Fig. 1 after 5 s of heating the corona reaches a temperature
of 107 K at s = 109 cm, where n = 3×108 cm−3, and their Fig. 4
shows that Teff for Fe is between 1 and 2 MK. In the present
work Fig. 5 shows that for τH = 5 s and densities near 108 cm−3

the most abundant ions at the end of the heating phase are in the
range Fe IX to Fe XV, which have peak equilibrium populations
in the region of the 1 to 2 MK temperature range. Calculations
of Teff for the parameter space of heating explored in the current
study confirm this good agreement. Figure 9 shows that Teff for
n = 3 × 108 cm−3 (obtained by interpolating between Teff for
n = 108 and 109 cm−3) is expected to be in the region of 1 MK.
Note that the temperature at t = 0 s, s = 109 cm in Reale &
Orlando (2008) is 105.7 K, whereas in the current work the initial
temperature is 104 K. Therefore, one would expect Teff found by
Reale & Orlando (2008) to be systematically higher than in the
current work.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810735&pdf_id=5
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Fig. 8. As Fig. 5 for τH = 60 s.

Fig. 9. The evolution of the electron temperature T (solid) from 104 K
to 107 K during heating phases of τH = [5, 15, 30, 60] s. The cor-
responding effective ionisation temperature Teff of Fe is plotted for
n = [108 (dot), 109 (dash), 1010 (dot-dash), 1012 (triple-dot-dash)] cm−3.

The evidence from these independent studies supports
the conclusion that for rapid heating of plasma at densities
≤109 cm−3 the effective ionisation temperature can be signif-
icantly lower than the electron temperature and even at rela-
tively high densities (around 1010 cm−3) there may still be im-
portant differences between these values. Furthermore, Reale &
Orlando (2008) show that for elements of lower atomic number
than Fe, but of similar abundance (e.g. C, N, O, Ne, Mg, Si) in
the solar corona, the differences between the effective ionisation
temperature and the electron temperature can be even greater.
At very high densities (around 1012 cm−3) the effective ionisa-
tion temperature and the electron temperature are expected to be
identical.

Following heating, coronal plasma is assumed to at first cool
rapidly by thermal conduction and at later times to cool more
slowly by optically thin radiation (Cargill 1993). Equation (4)
shows that thermal conduction operates far more efficiently
in short, tenuous, hot loops than it does in long, dense, cool
loops. If the energy release for heating is on sufficiently short

Fig. 10. The ionisation state of Fe during thermal conductive cool-
ing following a heating phase of τH = 5 s for L1/2 = 109 cm and
n = [107, 108, 109, 1010] cm−3. The solid curves show the relative abun-
dances of a selection of Fe ions (identified by the labels) obtained by
solving Eqs. (1) and (3). The dotted curves show the equilibrium ioni-
sation state.

timescales that the loop enters its cooling phase before any
significant evaporation of chromospheric material then thermal
conduction is expected to be an extremely effective cooling
mechanism for the coronal plasma, even in relatively long loops.

In the current work the plasma is allowed to cool by thermal
conduction until the associated timescale exceeds the timescale
for radiative cooling, at which point it is assumed that radiation
takes over as the dominant cooling mechanism and the model
run is ended. Equation (3) is used to generate suitable sets of tab-
ulated values [T (t)]. The radiative cooling timescale is given by

τR =
3kBT 1−α

nχ
, (5)

where α and χ are derived from power law fits within specified
temperature ranges to the optically thin radiative energy losses
Λ(T ) such that Λ(T ) = χTα (Cargill 1994). Note that a non-
equilibrium ion population can change the radiative losses and
the associated cooling timescale (Bradshaw & Mason 2003b),
although by the time of the onset of radiative cooling the ion
populations are generally expected to have equilibrated with the
local plasma temperature.

Table 1 shows thermal conductive cooling timescales evalu-
ated from Eq. (4) for a range of densities and loop half-lengths
at the peak temperature Tp reached for the nanoflare-like heat-
ing profiles. The limits of the density range of interest have been
shifted to lower values because at higher densities (≥1011 cm−3)
τR ∼ τC for Tp = 107 K and the range of loop half-lengths con-
sidered. It is pure thermal conductive cooling that is of interest
in the present study.

Figures 10 to 13 show the ionisation state of Fe during ther-
mal conductive cooling for the density range in Table 1 and for
heating timescales and loop half-lengths at the extremes of the
parameter space, hence: τH = [5, 60] s; and L1/2 = [109, 8 ×
109] cm. The properties of the ionisation state for intermediate
regions of the parameter space can easily be inferred from the
figures. The condition τR < τC is generally satisfied for higher
densities at higher temperatures, as reflected by the truncated ex-
tent of the solid curves in Figs. 10 to 13.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810735&pdf_id=9
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Table 1. The thermal conductive cooling timescale at Tp = 107 K for a
range of loop half-lengths and plasma densities.

n = 107 cm−3 108 109 1010

L1/2 = 109 cm τC = 0.0131 s 0.131 1.31 13.1
2 × 109 0.0524 0.524 5.24 52.4
4 × 109 0.2095 2.095 20.95 209.5
8 × 109 0.8379 8.379 83.79 837.9

Fig. 11. As Fig. 10 for τH = 60 s.

Fig. 12. As Fig. 10 for τH = 5 s and L1/2 = 8 × 109 cm.

Figures 10 and 11 show that the ionisation state of Fe re-
mains far from equilibrium during thermal conductive cooling
in the shortest and most tenuous loops. The ion populations con-
sidered to be characteristic of the high temperature at the on-
set of cooling could not be created during the heating phase
and the cooling timescale is initially too short (∼0.01 s) to al-
low the ionisation state to equilibrate. As cooling progresses
its timescale increases, approaching the ionisation / recombi-
nation timescale and eventually drives the ionisation state to-
wards equilibrium. This effect becomes clear at higher densities
(n = [108, 109] cm−3) in Figs. 10 and 11 where the ionisation
state remains out of equilibrium in the range 106 ≤ T ≤ 107 K

Fig. 13. As Fig. 10 for τH = 60 s and L1/2 = 8 × 109 cm.

and the ion populations of lower charge state gradually equili-
brate when T < 106 K. For n = 1010 cm−3 the ionisation state re-
mains close to equilibrium throughout most of the cooling phase
with exceptions being the most highly charged (≥Fe XXIV) ion
populations during the initial stage of cooling when T > 106.5 K.
The effect of increasing the heating timescale simply ensures a
more highly charged ion population at the onset of cooling and
consequently a more highly charged population during the cool-
ing phase until the ionisation state begins to equilibrate due to
high density and / or increasing cooling timescale.

Figures 12 and 13 show the effect of increasing the loop half-
length by a factor of 8. The cooling timescale is substantially
increased, yet for lower densities (n ≤ 108 cm−3) the ionisation
state still shows significant departures from equilibrium during
the initial stage of cooling. The ion populations of lower charge
state gradually equilibrate at later times when T < 106 K. For
n = 109 cm−3) the ionisation state undergoes a period of rapid
equilibration during the initial stage of cooling, due to the rela-
tively long cooling timescale, and remains close to equilibrium
thereafter with exceptions again being the most highly charged
(≥Fe XXIV) ion populations. For n = 1010 cm−3 the ionisation
state remains in equilibrium throughout the cooling phase.

As before the overall behaviour of the ionisation state can
be understood by comparing the effective ionisation temperature
with the electron temperature. Figures 14 to 17 show the effec-
tive ionisation temperature Teff of Fe corresponding to each of
the ionisation states shown in Figs. 10 to 13 for the first 5 min
of the cooling phase (which begins at t = 0 s in the figures).
Teff is clearly shown to increase with density, heating timescale
and loop half-length since increasing each of these parameters
leads to an overall more highly charged ionisation state either at
the onset of cooling or during this phase. During the initial stage
of cooling Teff < T regardless of density, heating timescale and
loop half-length. The end of this initial stage is characterised by
a transition to Teff ≥ T . The temperature at which this transition
takes place marks the highest ionisation state created during the
entire heating and cooling phase and, consequently, the maxi-
mum temperature of the observable emission.

The period of cooling that elapses before the transition
takes place becomes shorter with increasing density and heat-
ing timescale (as expected from increasing Teff) but longer
with increasing loop half-length. The nature of the dependence
on the half-length is due to the longer cooling timescale and
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Fig. 14. The evolution of the electron temperature T (solid) and the
corresponding effective ionisation temperature Teff (dash) of Fe during
thermal conductive cooling following a heating phase of τH = 5 s for
L1/2 = 109 cm and n = [107, 108, 109, 1010] cm−3.

Fig. 15. As Fig. 14 for τH = 60 s.

the additional time required to reach the more highly charged
ionisation states characteristic of coronal plasma that main-
tains a high temperature. Consequently, for short loops one
may expect to observe Teff > T for most of the cooling
phase unless the density is particularly low and the heating
timescale particularly short, in which case the condition Teff < T
may persist for a significant length of time. Teff can become
substantially greater than T for longer heating timescales in
short loops. However, for long loops one may expect to observe
Teff < T for most of the cooling phase at low densities and for a
significant period of time at intermediate densities regardless of
the heating rate. The differences between Teff and T become neg-
ligible with increasing density, as expected, regardless of heating
timescale and loop half-length.

4. Summary and conclusions

A computational tool has been developed to allow straightfor-
ward calculation of the time-dependent ionisation state for a

Fig. 16. As Fig. 14 for τH = 5 s and L1/2 = 8 × 109 cm.

Fig. 17. As Fig. 14 for τH = 60 s and L1/2 = 8 × 109 cm.

wide variety of physical circumstances. The numerical model
comprises the system of time-dependent ionisation equations for
a particular element and tabulated values of plasma temperature
as a function of time. The tabulated values [T (t)] can be the so-
lutions of an analytical model, the output from a numerical code
or a set of observational measurements. An efficient numerical
method to solve the ionisation equations has been implemented
and subjected to a suite of tests which demonstrated that it can
find and maintain appropriate equilibria, resolve the extremely
small ionisation/recombination timescales associated with rapid
temperature changes at high densities, and provide stable and
accurate solutions for both dominant and minor ion population
fractions.

In the case of rapid heating at densities ≤109 cm−3 the effec-
tive ionisation temperature Teff can be significantly lower than
the electron temperature and even at relatively high densities
(around 1010 cm−3) important differences between these val-
ues may still arise. As a result the highest temperatures reached
during the period of heating can be missed because there sim-
ply isn’t time to create the ionisation states responsible for the
expected emission. Values of Teff were found that are in good

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810735&pdf_id=14


S. J. Bradshaw: Ionisation states 417

agreement with those of Reale & Orlando (2008), thus estab-
lishing the consistency of the codes. Furthermore, it was found
that Teff < T during the initial stage of thermal conductive cool-
ing (which is thus far too rapid to allow the ionisation state time
to equilibrate) and the temperature of the transition at which Teff
later reaches/exceeds T marks the equilibrium temperature of
the highest ionisation state created during the entire heating and
cooling phase. The transition temperature is then the maximum
temperature of the observable emission and can be significantly
less than the peak temperature reached during heating, except
for at the very highest densities.

This certainly explains the lack of an observed hot (≥107 K)
component of the emission associated with heating events, cited
as evidence against the nanoflare heating scenario, and is a con-
clusion in agreement with Bradshaw & Cargill (2006) and Reale
& Orlando (2008). It is important to note that the results pre-
sented here are consistent with this earlier work and yet have
been achieved for significantly (several orders of magnitude)
less demanding computational requirements than are necessary
to run a traditional 1D hydrodynamic code with an NEI solver.
The implications of this work are of particular importance to cur-
rent and upcoming solar observing missions (Hinode, SDO) that
have been specifically designed to carry out high cadence stud-
ies of highly dynamic coronal processes and to detect signatures
of coronal heating by making the instruments (EIS, XRT, AIA)
sensitive to wavelength ranges that contain emission lines from
ions that are formed at high temperatures in equilibrium.

There are processes to be investigated that may help to
mitigate the difficulties associated with NEI. In a recent study
West et al. (2008) considered the effect of a non-local model
for thermal conduction on cooling timescales for hot coronal
plasma associated with nanoflare heating. They found that cool-
ing timescales can be increased due to a bottling up of energy
in the corona, although whether this process can maintain the
coronal temperature long enough for the ionisation state to equi-
librate and to obtain sufficient photon counts for the detection
of any hot emission associated with nanoflare heating has yet
to be determined. The effect of evaporative cooling would be
twofold in driving the ionisation state towards equilibrium and
Teff towards T . The increasing coronal density would shorten
the ionisation/recombination timescale and reduce the efficacy
of thermal conduction resulting in longer cooling timescales.
An earlier transition to radiative cooling would also be ex-
pected, with increasing density and decreasing temperature lead-
ing to shorter cooling timescales. However, the radiative cooling
timescale and the ionisation/recombination timescale have the
same density dependence, so if the ionisation state had reached
equilibrium at the onset of the radiative cooling phase then sig-
nificant deviations would not be expected to arise thereafter, un-
less the radiative emissivity had a particularly strong temperature
dependence.

Future work should proceed along both observational and
theoretical/numerical lines. Observationally it is of crucial im-
portance to constrain values for the density prior to the onset
of heating (Hudson et al. 2008). If the densities are low the
problems associated with making measurements due to low pho-
ton counts and the subsequent consequences of NEI become
particularly challenging. Theoretically and numerically the next
step will be to investigate the effects of an evaporative model
along the lines of the EBTEL code (Klimchuk et al. 2008),
which can provide both [T (t)] and [n(t)]. EBTEL itself also
requires several orders of magnitude fewer computations than
traditional 1D codes and in tandem with the code presented
here will constitute a powerful tool for the study of NEI in the

solar corona, stellar coronae and potentially other astrophysical
plasma environments.

The numerical code, atomic data, and IDL plotting routines
used in this work are freely available from the author in order
that the interested reader may make a detailed assessment of the
importance of NEI to their own investigations.
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Appendix A: Determining the integration timestep

The integration timestep Δt can be made adaptive by the intro-
duction of two control parameters εd and εr. Δt is then chosen
sufficiently small such that:
∣∣∣Y j(t + Δt) − Y j(t)

∣∣∣ ≤ εd (A.1)

and

10−εr ≤ Y j(t + Δt)

Y j(t)
≤ 10εr . (A.2)

The parameter εd controls the accuracy of the ions with the great-
est population fraction and εr controls the accuracy of the minor
ions. Condition A.1 could, if necessary, be made stricter by sub-
stituting

∣∣∣Y j(t + Δt) − Y j(t)
∣∣∣ ≤ εdY j, since Y j ≤ 1. In the current

work εd = 0.1 (since the dominant ions generally have popu-
lations fractions of O(1)) and εr = 0.6, which are the values
suggested by MacNeice et al. (1984) and are found to work well
for all of the examples considered here. To ensure stability while
maintaining efficiency the largest value of Δt consistent with A.1
and A.2 for all Y j is chosen for the integration timestep.

An additional parameter εy can further improve the efficiency
of the scheme by helping to avoid waste of time calculations
for ions of negligible population (and associated underflows and
overflows):

Y j = 0 when Y j ≤ εy. (A.3)

If Y j ≤ εy then it is set equal to zero until another Y j brings
it above εy. This makes the equations significantly less stiff,
though with the minor drawback that particle conservation is sat-
isfied only to a few times εy rather than to machine accuracy. In
the current work εy = 10−300. This choice ensures that particle
conservation does not become an issue since it is close to the
lower limit representable by a 32 bit, double precision, floating
point value. In addition, the values Y j are renormalised after each
timestep to guarantee

∑Z+1
j=1 Y j = 1, where Z is the atomic num-

ber of element Y.
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