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ABSTRACT

Recently a new spectral technique has been developed for the analysis of aperiodic signals from nonlinear
systems—the Hilbert–Huang transform. It is shown how this transform can be used to discover synoptic and
climatic features: For sea level data, the transforms capture the oceanic tides as well as variations in precipitation
patterns. In the case of solar radiation, variations in the diurnal and seasonal cycles are observed. Finally, from
barographic data, the Hilbert–Huang transform reveals the passage of extratropical cyclones, fronts, and troughs.
Thus, this technique can detect signals on synoptic to interannual time scales.

1. Introduction

For generations researchers have used Fourier anal-
ysis to analyze signals. Because both the signal and its
Fourier transform are important in understanding most
processes, contour plots of the signal energy as functions
of time and frequency (temporal–frequency analysis)
have the potential of painting a more revealing picture
than just the temporal signal or frequency analysis alone.

The earliest time–frequency representation (TFR) was
the short-time Fourier transform (STFT; see Allen and
Rabiner 1977). This scheme divides the temporal signal
f (t) into a series of small overlapping pieces. Each piece
is then windowed and individually Fourier transformed.
The STFT of a function f (t) is defined by

`1
2ivtF (t, v) 5 f (t)h(t 2 t)e dt , (1)ST E2p

2`

where h(t) is the window function. Contour plots of the
energy density function | FST(t, v) | are typically pre-
sented. This scheme is most useful when the physical
process is linear, so that the superposition of sinusoidal
solutions is valid and the time series is locally stationary,
so that the Fourier coefficients are slowly changing.

One of the drawbacks of STFT is the presence of a
fixed window, although Czerwinski and Jones (1997)
have developed a short-time Fourier analysis with an
adaptively adjusting window. Wavelet analysis (see
Daubechies 1992; Torrence and Compo 1998) seeks to
address this defect by decomposing the time series into
local, time-dilated, and time-translated wavelet com-
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ponents using time–frequency atoms or wavelets c. The
wavelet transform of the signal f (t) is then

`1 t 2 b
F (a, b) 5 f (t)c dt, (2)WT E 1 2aÏa 2`

where a is the scale and b is the time shift. The wavelet
transform represents the energy in the signal of temporal
scale a at t 5 b. Wavelet analysis is attractive because
1) it is local, although higher frequencies are more lo-
calized; 2) it has uniform temporal resolution for all
frequency scales; and 3) it is useful for characterizing
gradual frequency changes. However, it is nonadaptive
because the same basic wavelet is used for all data.

Finally, empirical orthogonal function (EOF) analysis
or its Fourier transform version, the singular spectral
analysis (SSA), decomposes a time series using eigen-
functions of the covariance matrix (see Ghil et al. 2002).
This analysis is quite different from the short-time Fou-
rier transform or wavelet analyses because the EOFs are
derived from data. However, its distribution of eigen-
values does not yield characteristic time or frequency
scales. Furthermore, the eigenfunctions themselves are
not necessarily linear or stationary and therefore are not
easily analyzed by spectral modes.

From our experience with short-time Fourier trans-
forms, wavelets, and EOF analyses, an ideal scheme for
the spectral analysis of signals would be complete (i.e.,
the sum of the modes equals the original signal), or-
thogonal, local, and adaptive. This method would also
allow us to extract local time and frequency scales. The
Hilbert–Huang transform is another step toward this
goal.

Hilbert transforms were originally developed to solve
integral equations. Instead of re-expressing a function
of time with its Fourier transform that depends on fre-
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FIG. 1. The computation of the first intrinsic mode function from a sea level dataset. The solid line in (a)
shows a portion of the original data with sea level height (in m). The solid lines in (b) and (c) show the
first intrinsic mode when the mode’s extrema and zero crossings are equal or differ by one for the first and
third times, respectively. The dashed lines give the envelopes, while the dotted line is the mean. (d) The
first IMF from the original dataset (solid line) and the original data after applying a Shapiro filter (dashed
line). (e) The signal after the first intrinsic mode has been removed.

quency, the Hilbert transform yields another temporal
function that has been phase shifted by 2908 via the
integral definition:

`1 f (t)
f̂ (t) 5 dt . (3)Ep t 2 t

2`

By itself, this holds little interest for us. However, when
Gabor (1946) developed his theory of communications
Hilbert transforms appeared in his concept of analytic
signal, z(t) 5 f (t) 1 if̂ (t). A particularly interesting case
occurs if f (t) is band limited. Then we can rewrite z(t)
ø A(t)eiu(t) , a local time-varying wave with amplitude
A(t) and phase u(t).

Most signals are not band limited. Huang’s great con-
tribution was to devise a method, which he calls sifting,
that decomposes a wide class of signals into a set of
band-limited functions, which he calls intrinsic mode
functions (IMFs). In their original paper, Huang et al.
(1998a) tested out their analysis on simple nonlinear
systems such as Stokes waves and the solutions to the
Duffing and Lorenz equations. Subsequently, the Hil-

bert–Huang analysis has been applied to signals from
pulmonary blood pressure (Huang et al. 1998b) to earth-
quake signals (Huang et al. 2001) to the rotational re-
siduals from the solar convection zone (Komm et al.
2001). In the atmospheric sciences, these transforms
have been applied to climatic signals (Pan et al. 2003;
Salisbury and Wimbush 2002; Wu et al. 1999; Xie et
al. 2002). The purpose of this paper is to illustrate the
advantages of applying Hilbert–Huang transforms to
signals that include synoptic as well as climatic signals.

A detailed description of the scheme is provided in
section 2. In section 3, this scheme is then applied to
datasets of sea level heights, incoming solar radiation,
and barographic data. Conclusions are presented in sec-
tion 4.

2. Procedure

The process of developing time–frequency diagrams
using Hilbert–Huang transforms consists of three steps.
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FIG. 2. The solid line gives the amplitude and period of the first
IMF shown in Fig. 1. The dashed line also gives the amplitude and
period of the first IMF of the signal shown in Fig. 1 but the data
have first been Shapiro filtered.

FIG. 3. Using sea level data, the curve fit when instantaneous am-
plitudes and periods over a 24-h interval are grouped together to form
a single Hilbert–Huang transform (solid line). The dotted line is the
average of 24 curve fits to each hour’s instantaneous amplitudes and
periods. Some of the instantaneous amplitudes used in computing the
averages are plotted as data points.

FIG. 4. The (a) Fourier power spectrum and (b) average marginal
spectrum (in m2) derived from 48 000 h of sea level observations at
the mouth of the Chesapeake Bay.

The first step decomposes or ‘‘sifts’’ the signal into its
intrinsic mode functions. The first intrinsic mode gives
the smallest local variations of the original signal. Using
a cubic spline, two envelope curves are generated, one
of which connects the maxima of the signal while the
other connects the minima. From these curves the mean
is computed. The difference between the signal and this
mean constitutes a first guess of the first IMF. If the
IMF were sinusoidal, then the number of extrema would
equal the number of zero crossings, or differ by one.
This is usually not the case and suggests that our first
guess, while good, needs further refinement because
there may be yet smaller scales buried in the data.

Originally Huang et al. [1998a, their Eq. (5.5)] re-
peated this sifting process until a Cauchy-like integral
condition was satisfied. In later papers they adopted a
stopping criterion based on the number extrema and zero
crossings. When these quantities were equal, or differed
by one, for three consecutive iterations, the IMF is set
to the values found in the final iteration. This is the
criterion that shall be used. Although it cannot be proven
mathematically, this procedure always converged for the
datasets tested here.

To illustrate the decomposition process, Fig. 1 pre-
sents various steps in computing the first IMF. Figure
1a presents a small portion of the original dataset—sea
level observations taken at the mouth of the Chesapeake
Bay during the 1980s. In addition to the oscillations due
to the oceanic tides, there is a large peak at 133 h due
to the passage of Hurricane Gloria during the early hours
of 27 September 1985.

Figures 1b and 1c show the first IMF after it has
satisfied the convergence criteria for the first and last
(third) time, respectively. Also shown are the top and
bottom envelopes (the dashed lines) as well as the mean

(the dotted line). Note how the sifting process has gen-
erated a mode that is symmetrical with respect to the
abscissa.

It will be shown shortly that this first IMF represents
the semidiurnal tides. This mode varies smoothly except
in the interval 125–150 h. If the original data record in
Fig. 1a is examined this behavior can be associated with
several ‘‘kinks’’ in the data record. It is unclear whether
these kinks are real or due to a failure of the instrument.

To examine the effects that such kinks have on the
construction of the IMFs, smooth the original data with
a single pass of a simple Shapiro filter [a digital filter
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FIG. 5. Contour plot of the Hilbert spectrum of the sea level heights (in m2) at the mouth of the Chesapeake Bay as a function of time
and period. The amplitudes were time averaged, as described in the text, over 480 h.

developed by Shapiro (1970) that eliminates waves with
a period of 2Dt but leaves longer-period waves relatively
unaffected]. After sifting, Fig. 1d gives the first IMF of
the original (solid line) and smoothed (dashed line) data.
This improved behavior in the structure of the IMF
might argue for smoothing the data before applying Hil-
bert–Huang transforms. Unfortunately, filtering is a two-
edged sword: It both modifies the true signal and elim-
inates noise. Because Huang–Hilbert transforms were
designed specifically to analyze aperiodic and nonlinear
signals (signals from nonlinear systems), the use of a
linear filter could alter the signal in ways that might

compromise the usefulness of the technique. For this
reason, the presence of the noise will simply be endured.

Once the first IMF is found, it is subtracted from the
signal, yielding a residual that is smoother and has a
lower frequency than the original signal because the first
IMF captures the smallest local variation of the signal
(see Fig. 1e). The process then begins anew with the
residual to obtain the second IMF.

Having found the second IMF, it is subtracted from
the residual, leaving an even smoother residual. Further
modes are found in the same manner, and the sifting
process concludes when there is no longer any maxima
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FIG. 6. A portion of third and fifth IMFs from the Hilbert–Huang
analysis of 48 000 h of sea level heights taken at the mouth of the
Chesapeake Bay. For the IMFs, the scale for the amplitudes (in m)
is given on the left while the period (in h) is given on the right.

or minima in the residual. The original signal equals the
sum of the various IMFs plus this small residual trend.

One drawback in using a cubic spline to obtain the
envelope curve is the possibility of large swings near
the endpoints. The method of Komm et al. (2001), that
adds buffer zones on each end that equal the length of
the original data, has been adopted. The signal was ex-
trapolated into these buffer zones by fitting a sine wave
using the closest extrema and zero crossing to define
the frequency and amplitude of the wave.

Having determined the IMFs, the second step consists
of computing the Hilbert transform f̂ (t) of each mode
f (t) and then the corresponding analytic signal z(t) 5
f (t) 1 if̂ (t). Because only numerical values are avail-
able, the conventional method of computing f̂ (t) is to
take the fast Fourier transform of the data, multiply the
transform by i sgn(v), and then take the inverse Fourier
transform of this product (see Čı́žek 1970 or Henrici
1986, p. 203). Here sgn( ) denotes the sign function.

Computing the instantaneous frequency v(t) from the
data is difficult because it is the time derivative of u(t).
Barnes (1992) tested a number of methods to compute
it from f (t) and f̂ (t). He found that the best represen-
tation of the instantaneous frequency is

1 f (t 2 Dt) f̂ (t 1 Dt) 2 f (t 1 Dt) f̂ (t 2 Dt)
21v(t) 5 tan , (4)[ ]2Dt f (t 2 Dt) f (t 1 Dt) 1 f̂ (t 1 Dt) f̂ (t 2 Dt)

where Dt denotes the time between observations. This
is the method that will be used.

Figure 2 illustrates the instantaneous amplitude A(t)
and period P(t) 5 2p/v(t) corresponding to the first
IMF shown in Fig. 1. The solid and dashed lines give
the results for the original signal and Shapiro-filtered
signal, respectively. In both cases, the period equals
approximately 12.5 h outside of the region from 125 to
150 h. Within the interval there are considerable dif-
ferences between the orginal and smoothed data. Be-
cause analytic signals cannot have negative frequencies,
the appearance of some suggests that the data are not
correct here. For this reason, we will discard any am-
plitudes and periods when they are negative. This is
acceptable because when the frequencies are negative
the amplitude is small, as Fig. 2 shows.

Once the analytic signal for each IMF is obtained,
the final task remains to display the results graphically.
Although A(t) and P(t) could be plotted for each IMF,
a better idea is to plot the square of the amplitude as a
function of P(t) and time, combining amplitude and pe-
riod measurements of all IMF components on a single
figure. This contour plot is commonly called the Hilbert
spectrum, H(t, v). Although two IMFs can have the
same period, this will not occur at the same time and
there is no ambiguity in constructing the Hilbert spec-

trum. Because most geophysical datasets contain a mix-
ture of phenomena, with time scales varying from hours
to years, it was found convenient to work with the log-
arithm of the instantaneous period rather than the period
itself.

One problem with displaying the results is the irreg-
ularity of the location of the frequencies associated with
each IMF at a given instant. Not only are these locations
irregular but they also vary with time. Although most
graphical packages can handle such irregularly spaced
data, the plots are too noisy. One possible solution
would be to construct a smoothed field before plotting.

If the instantaneous amplitudes are viewed as ‘‘data’’
observed at various instantaneous periods, then regres-
sion techniques developed by statisticians for fitting a
curve through data can be used (Ryan 1997, chapter
10). Because there is little a priori knowledge about the
shape of the curve, a nonparametric scheme that in-
cludes a kernel smoother is used. [Such a scheme was
developed by Herrmann (1996); the FORTRAN 77 code
is available online at http://www.unizh.ch/biostat/
Software/kernf77.html.]

For large datasets, this method was modified to in-
clude time averaging. There are two possible methods.
One method would group all of the instantaneous am-
plitudes and periods within a particular time interval
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FIG. 7. Morlet wavelet analysis of sea level heights at the mouth of the Chesapeake Bay. The letter A denotes the diurnal tides, while B
and C denote the Election Day Flood of Nov 1985 and the Feb 1989 snowstorm, respectively.

and assign them a common time. The second method
would find curve fits at each time and then these curves
would be averaged over an appropriate time interval.
Figure 3 shows the instantaneous amplitudes and pe-
riods at four instances during the 24-h interval from
2330 LST 24 September 1985 to 2330 LST 26 Septem-
ber 1985 using sea level data. The solid line shows the
grouping of instantaneous amplitudes and phases to
form a single time value, while the dashed line shows
the averaging of the curve fits. The first method retains
the character of the higher-temporal-resolution ampli-
tudes better compared to the second method.

As will be seen shortly, time–frequency plots contain
a wealth of detail. For that reason, it is useful to integrate
H(t, v) over time, say from 0 to T. Because this mar-

ginal spectrum represents the energy of the signal, it is
analogous to the power spectrum in Fourier analysis.
Here a monochromatic, linear, and periodic signal ap-
pears as a sharp peak in the marginal spectrum, whereas
a nonlinear and nonperiodic phenomenon yields a broad
peak in the spectrum. If the marginal spectrum is nor-
malized by T, we have the average marginal spectrum.

3. Applications

Having presented the procedure for constructing a
Hilbert–Huang transform, this technique is now applied
to three very different data fields: sea level heights,
incoming solar radiation, and barographic observations.
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FIG. 8. The (a) Fourier power spectrum and (b) average marginal
spectrum [in (W m22)2] derived from 96 000 h of diffuse solar ra-
diation measured on a horizontal surface at ground level in Des
Moines, IA.

a. Sea level heights

As a first application of the Hilbert–Huang transform
to geophysical data, observations were obtained of the
sea level heights observed at the Chesapeake Bay Bridge
and Tunnel (CBBT) from 0000 LST 8 April 1984 to
2300 LST 28 September 1990. These 48 000 h of con-
secutive observations contain a wealth of physical phe-
nomena—from highly predictable, astronomically
forced tides to chaotic coastal storms.

Figure 4 shows the Fourier power spectrum and av-
erage marginal spectrum for the sea level heights. The
Fourier analysis only reveals a semidiurnal tide with a
period of 12.42 h and a diurnal tide with a period of
23.93 h. The average marginal spectrum also reveals
the semidiurnal and diurnal tides. This is consistent with
a study by Susanto et al. (2000), who showed that Hil-
bert–Huang transforms capture the diurnal and semi-
diurnal tides in the Makassar Straits. Furthermore, the
marginal spectrum captures a wealth of other physical
phenomena. For example, there is a peak near 100 h
due to baroclinic instability. (Baroclinic instability is
the instability of the prevailing atmospheric westerlies
that generates cyclones. Its time scale is on the order
of days.) At lower periods, we see peaks with annual
and semiannual periods associated with the increased
precipitation during the warmer months and the melting
of snow during the spring. Finally, there are peaks as-
sociated with the intraseasonal event of the El Niño–
Southern Oscillation (ENSO).

Figure 5 shows the Hilbert spectrum. A persistent
maximum is found at approximately 12 h; this is the
semidiurnal tides. A modulation in the amplitude that
has a period of approximately 1 month is noted; this is
the lunar forcing of the tides. There is also a faint green

line at 24 h (denoted by the letter A), which is the diurnal
tides.

At longer periods there are many local maxima. Two
particularly large ones are highlighted in Fig. 5 by the
letters B and C. Maximum B occurs during mid-No-
vember 1985 and is associated with the ‘‘Election Day
Flood,’’ 4–7 November 1985, the second-worst river
flood in Virginia during the twentieth century. During
this event, heavy rain occurred in the mountainous re-
gions of Virginia and West Virginia, and shown in Fig.
5 is the corresponding runoff.

February 1989 was the snowiest month (62 cm) in
50 yr (1948–99) for Norfolk, Virginia, due in large part
to its heaviest 24-h snowfall (36 cm), which occurred
during 17–18 February 1989. Point C in Fig. 5 corre-
sponds to the melting and runoff of this snowpack dur-
ing late February and early March 1989.

During the late 1980s, there were two significant
ENSO events: an El Niño event in 1986 and a La Niña
event in 1988. Because ENSO influences the precipi-
tation and temperature along the U.S. East Coast, it is
not surprising to see its signatures in the Hilbert spec-
trum.

The above analysis of Fig. 5 has shown that one of
the possible uses of Hilbert–Huang transforms is the
identification of significant events from the Hilbert spec-
trum. However, one might ask whether the original data
could not simply be used. To answer this question, the
original sea level data from the first 2000 h of 1989
have been plotted in Fig. 6. Also included are the third
and fifth IMFs for the same period of time. By con-
sulting daily weather maps, each peak in the third IMF’s
amplitude could be traced to the presence of cyclones
in the North Atlantic (labelled as), coastal storms (cs),
or a strong high pressure (h) located over New England,
and its strong northerly winds. It would be very difficult
to detect these phenomena in the original data. The large
maximum in the fifth IMF’s amplitude is due to the
spring melt of the snowpack in the Appalachian Moun-
tains.

As mentioned in the introduction, Hilbert–Huang
transforms are one of several temporal–frequency tech-
niques. A particularly popular one is wavelet analysis.
Figure 7 shows the wavelet analysis [using an IDL pack-
age by Torrence and Compo (1998)] for our sea level
height data. Clearly seen in the power spectrogram is
the presence of the tides, storms (including the Election
Day Flood and the 1989 snowstorm), and two ENSO
events. The strong signal at ;104 h is from variations
in the seasonal cycle. The primary difference is the
smoothness of the spectrogram compared to the Hilbert
spectrum.

In summary, the Hilbert–Huang transforms have dis-
cerned persistent, periodic features such as the tides, as
well as episodic events such as snowmelt and heavy
precipitation events.
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FIG. 9. Contour plot of the (natural) logarithm of the Hilbert spectrum of diffuse solar radiation [in (W m 22)2] as a function of time and
period. The amplitudes were time averaged, as described in the text, over 480 h.

b. Solar radiation

For the second dataset, the hourly diffuse horizontal
radiation (the amount of solar radiation from the sky
excluding the solar disk) for Des Moines, Iowa, from
1 January 1980 through 13 December 1990 is analyzed.
(These observations may be found online at http://
rredc.nrel.gov/solar/oldpdata/nsrdb/hourly.)

Figure 8 shows the Fourier power spectrum and av-
erage marginal spectrum. As one might expect, there
are two peaks, one corresponding to the diurnal cycle
and the other to the seasonal cycle.

Figure 9 shows the Hilbert spectrum for the signal.
The maximum values occur along the line correspond-
ing to a period of 24 h, the diurnal cycle, and during
the summer months. For periods between 102 and 103

h, there are relative minima during the winter months
due to the increased cloud cover that reduces the in-
coming radiation at ground level. Finally, for periods
near 104 h the seasonal cycle is clearly seen. Of partic-
ular interest are the maxima that occur during 1982 and
1988. What physical phenomenon is the Hilbert–Huang
transform detecting?

Recently, Koch and Mann (1996) studied the spatial
and temporal variation of 7Be, a natural radionuclide
that is produced in the stratosphere and upper tropo-
sphere and is carried on aerosols. They found that ENSO
events could significantly affect the concentration of this
radionuclide. They suggested that this signal was due
to observed rainfall anomalies during ENSO and its
effect on the aerosol concentration in the troposphere.
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FIG. 10. Morlet wavelet analysis of diffuse solar radiation over Des Moines, IA, during the 1980s.

FIG. 11. The (a) Fourier power spectrum and (b) average marginal
spectrum (in hPa2) derived from barographic observations near
Champaign–Urbana, IL, during the latter half of 1995.

Because the amount of sunlight scattered by aerosols
depends on their concentration, our maxima correspond
to the El Niño event of 1982, as well as the eruption
of El Chichón, and the La Niña event of 1988. Appar-
ently the El Niño event of 1986 did not significantly
affect the aerosol concentration of Des Moines.

Finally, in Fig. 10, the wavelet analysis of the solar
data is presented. It captures the diurnal and seasonal
cycle (the signal at ;104 h) and the El Niño event of
1982. However, there is no maxima for either the 1986
or 1988 ENSO events, and the spectrogram is much
smoother than the Hilbert–Huang analysis.

c. Barographic observations

Our third test involves barographic data averaged to
produce observations at 2-min intervals from a network
located in central Illinois (Grivet-Talocia et al. 1999).
These data were grouped by station and quarter of the
year.
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FIG. 12. Contour plot of the (natural) logarithm of the Hilbert spectrum of surface pressure (in hPa 2) as a function of time and period.
The amplitudes were time averaged, as described in the text, over 128 min.

Figure 11 gives the Fourier power and average mar-
ginal spectrum for the latter half of 1995. The largest
peak occurs at 100 h and is due to the dominance of
baroclinic instability—the instability of the prevailing
atmospheric westerlies that creates cyclones and anti-
cyclones. It is interesting to note that conventional Fou-
rier analysis detected the atmospheric tides.

Figure 12 is the Hilbert spectrum for the final quarter
of 1995. Overall, the amplitudes increase with time due
to the onset of winter. Using the daily weather maps
from 1200 UTC published by the National Oceanic and
Atmospheric Administration (NOAA), each maximum
was easily correlated with the nearby passage of a cy-
clone and its associated front; these maxima have been

labeled A–F in Fig. 12. For example, maximum A cor-
responds to the passage of the remnants of Hurricane
Opal on 6 October 1995. The passage of a particularly
strong cold front on 11 November 1995 is highlighted
with the letter G.

Because these data have a high temporal resolution,
one would hope to see mesoscale signals as well as
synoptic events. To this end, Fig. 13 shows the fifth and
eighth IMFs as a function of time (19–29 October 1995),
while the original data is plotted on top. Turning to the
fifth IMF, many of the peaks could be paired with me-
teorological events such as the passage of a cold front
(cf ), a warm front (wf ), and trough (t). There are prob-
ably other mesoscale events present in this analysis, but
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FIG. 13. The fifth and eighth IMFs from the Hilbert–Huang analysis of surface pressure measurements over central Illinois during the 10
days from 19 to 29 Oct 1995. For the IMFs, the scale for the amplitudes (in hPa) is given on the left, while the period (in h) is given on
the right.

the lack of other independent data precludes their clas-
sification. The eighth IMF clearly shows the passage of
two major cyclones during this period. Taken together,
Figs. 12 and 13 show how well the Hilbert–Huang trans-
form can discern various mesoscale and synoptic events.

Finally, Fig. 14 shows the Morlet wavelet analysis of
the same pressure observations used earlier. The strong
signal at ;500 h is associated with the transition from
the summer regime to winter. The wavelet analysis
agrees with the Hilbert–Huang analysis except that it
fails to pick out the individual cyclones and correspond-
ing frontal passages that the Hilbert–Huang transform
captures.

4. Conclusions

The purpose of data analysis is to discover the phys-
ical processes underlying the observations. For gener-

ations scientists have only had Fourier analysis. As our
analysis has shown, this technique is quite good for
periodic signals, such as atmospheric and oceanic tides.
However, it is inadequate for most meteorological sig-
nals because they are nonlinear and aperiodic.

Recently several new techniques (short-time Fourier
transforms, wavelets, and EOFs) have been developed
to handle these aperiodic and nonlinear signals. To this
list we now add the promising technique commonly
known as Hilbert–Huang transforms because it is adap-
tive, local, complete, and nearly orthogonal in the sense
of Reynolds decomposition 5 0,[ f (t) 2 f (t)] · f t)
where the overbar denotes a local average [see Huang
et al. 1998a, their Eq. (6.1)].

The procedure for computing a Hilbert–Huang trans-
form consists of two steps. First, the data are sifted and
decomposed into a set of intrinsic mode functions. If
the data consisted of a pure sine wave, then its first (and
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FIG. 14. Morlet wavelet analysis derived from barographic observations near Champaign–Urbana, IL, during the last quarter of 1995.

only) IMF would be the original sine wave. The second
step consists of taking the Hilbert transform of each
IMF and then computing the instantaneous amplitude
and frequency. In the case of a pure sine wave, the
Hilbert transform would be a negative cosine and both
the instantaneous amplitude and frequency would be
constant.

So far this technique has only been applied to cli-
matological datasets. Here the method was tested on
datasets that also contain synoptic signals: sea level
heights, incoming solar radiation, and barographic ob-
servations. These tests showed that the Hilbert–Huang
transforms capture a wide variety of phenomena: the
diurnal cycle, frontal passages, baroclinic instability,
and the seasonal cycle. Therefore, we can use this tech-
nique to flag important weather events from floods to
ENSO events.

In this paper two methods for presenting Hilbert–
Huang transforms are highlighted. One method plots the
instantaneous amplitude as a function of time and (in-
stantaneous) period or frequency via the Hilbert spec-
trum. These plots are useful in suggesting the location
and nature of significant events in the original data.
Unfortunately, a significance test has not yet been de-
veloped for the Hilbert–Huang transform. The second
method is the marginal spectrum. It is similar to the
popular concept of power spectrum in Fourier analysis
and gives a global picture of the dataset.
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