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ABSTRACT

We report on the first Suzaku observation of IGR J16318−4848, the most extreme example of a new group of highly absorbed X-ray
binaries that have recently been discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The Suzaku
observation was carried out between 2006 August 14 and 17, with a net exposure time of 97 ks.
The average X-ray spectrum of the source can be well described (χ2

red = 0.99) with a continuum model typical for neutron stars i.e.,
a strongly absorbed power law continuum with a photon index of 0.676(42) and an exponential cutoff at 20.5(6) keV. The absorbing
column is NH = 1.95(3) × 1024 cm−2. Consistent with earlier work, strong fluorescent emission lines of Fe Kα, Fe Kβ, and Ni Kα are
observed. Despite the large NH, no Compton shoulder is seen in the lines, arguing for a non-spherical and inhomogeneous absorber.
Seen at an average 5–60 keV absorbed flux of 3.4×10−10 erg cm−2 s−1, the source exhibits significant variability on timescales of hours.
Key words. stars: individual IGR J16318−4848 – binaries: general – X-rays: binaries

1. Introduction

IGR J16318−4848 was detected on 2003 Jan. 29 during a scan
of the Galactic plane by the IBIS/ISGRI soft gamma-ray detector
onboard the International Gamma Ray Laboratory (INTEGRAL,
Courvoisier et al. 2003; Walter et al. 2003). The source was the
first and most extreme example of a number of highly absorbed
Galactic X-ray binaries discovered with INTEGRAL. Due to the
strong absorption, which can exceed an equivalent hydrogen col-
umn of 1024 cm−2, these sources are extremely faint in the soft
X-rays and had not been detected by earlier missions (Rodriguez
et al. 2003; Patel et al. 2004; Kuulkers 2005).

Right after its discovery, a re-analysis of archival ASCA
data by Murakami et al. (2003) revealed a highly photoabsorbed
source (NH = 4 × 1023 cm−2) coincident with the position given
by INTEGRAL. The data also suggested an iron emission line
at 6.4 keV. These results were confirmed by various subsequent
studies (e.g. Schartel et al. 2003; de Plaa et al. 2003; Revnivtsev
et al. 2003; Walter et al. 2003). Matt & Guainazzi (2003) de-
tected intense Fe Kα, Fe Kβ, and Ni Kα emission lines in the
spectrum. Based on the interstellar absorption toward the sys-
tem, which is two orders of magnitude lower than the mea-
sured NH, Revnivtsev (2003), Filliatre & Chaty (2004), and
Lutovinov et al. (2005) also suggested that much of the X-ray
absorption is intrinsic to the compact object.

In an optical study of the system, Filliatre & Chaty (2004)
proposed that IGR J16318−4848 is a High Mass X-ray Binary
(HMXB) with an sgB[e] star as the mass donor surrounded by a
dense and absorbing circumstellar material (see also Revnivtsev
2003; Moon et al. 2007). This dense stellar wind results in sig-
nificant photoabsorption within the binary system. Based on the
optical data, Filliatre & Chaty (2004) suggest a distance be-
tween 0.9 and 6.2 kpc for the system. A likely location for the

source is in the Norma-Cygnus arm (Revnivtsev 2003; Walter
et al. 2004), which would place it at a distance of 4.8 kpc
(Filliatre & Chaty 2004).

In this Paper, we describe the results of follow-up observa-
tions of IGR J16318−4848 obtained with the Suzaku satellite,
the instruments on which are uniquely suited to study Compton-
thick absorption. In Sect. 2 we describe the data reduction.
Section 3 is devoted to a presentation of the results of the spectral
and temporal analysis. We discuss our results in Sect. 4.

2. Data analysis

We observed IGR J16318−4848 with Suzaku from 2006
August 14 until 2006 August 17 for a total net exposure
of 97 ks (Suzaku sequence number 401094010). We used
the standard procedures to reduce the data from the X-Ray
Imaging Spectrometer (XIS, Koyama et al. 2007) and the Hard
X-Ray Detector (HXD, Takahashi et al. 2007). For the XIS
in particular we barycentered the data with aebarycen (version
2008-03-03) and then extracted source events, images, spec-
tra, and lightcurves with XSELECT v2.4. A circular source
extraction region of 3.′23 radius was applied. The background
spectrum was extracted from a circular region having the same
area as the source extraction region. This process was done
for every XIS. Response matrices and ancillary response files
were generated using XISRMFGEN (version 2009-02-28) and
XISSIMARFGEN (version 2009-02-28), taking into account
the hydrocarbon contamination on the optical blocking filter
(Ishisaki et al. 2007). As recommended by the Suzaku team,
the spectra of the three front illuminated CCDs (XIS0, XIS2,
and XIS3) were then combined with addascaspec (version 1.30).
Although the XIS1 was operational when the observation was
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Fig. 1. Spectrum of IGR J16318−4848 in the range 0.3–60 keV.

made, it is not used in the present study due to cross calibration
issues.

To extract the HXD PIN spectrum, we again followed the
standard procedure of barycentric correction, gti-filtered spec-
trum extraction with XSELECT and dead-time correction with
HXDDTCOR (version 1.50). The cosmic background was cre-
ated with a model provided by the Suzaku team using a flat
response (ae_hxd_pinflate2_20080129.rsp) and then combined
with the internal background model provided by the Suzaku
team (ae401094010_hxd_pinbgd.evt). The resulting combina-
tion is used for the background subtraction. The response matrix
used for the analysis is the one proposed by the Suzaku team for
the time of our observation, ae_hxd_pinxinome2_20080129.rsp.
The count rates of IGR J16318−4848 are 0.1437± 0.001 cts s−1

for the combined XISs and 0.6108 ± 0.004 cts s−1 for the
HXD PIN diodes.

For the analysis with XSPEC (v.11.3.2ag; Arnaud 1996) we
rebinned the spectrum to a minimum of 250 and 200 counts per
bin for the XIS and the PIN, respectively. The uncertainties for
all fits are quoted at the 90% level for a single parameter of in-
terest. In order to account for flux cross calibration issues among
the instruments, in all spectral fits a multiplicative constant was
introduced.

3. Suzaku observation of IGR J16318−4848

3.1. Spectral analysis

Although we detected a soft excess in the spectrum below 5 keV
(Fig. 1), we did not include it in the modeling because it is most
probably due to a serendipitous source at a distance �30′′ from
IGR J16318−4848 (Ibarra et al. 2007; Matt & Guainazzi 2003).
The presence of this source could not be confirmed here be-
cause of the lower angular resolution of the XISs compared to
XMM-Newton, even when using an optimal attitude solution for
Suzaku by measuring the attitude directly through following the
location of IGR J16318−4848 on the XIS chips.

In order to describe the 5–60 keV broad-band spectrum of
the source we fit the spectral continuum with an absorbed cut-
off powerlaw, taking also into account non-relativistic Compton
scattering. Photoabsorption was modeled with a revised ver-
sion of the TBabs model (Wilms et al. 2000, 2006), using the

interstellar medium abundances summarized by Wilms et al.
(2000). This model describes the continuum extremely well
(Fig. 3). In addition to the continuum, strong fluorescent emis-
sion lines from iron (Fe Kα and Kβ) and nickel (Ni Kα) are
introduced in the model (within the absorber) to obtain a sat-
isfactory description of the data (Fig. 4). We model these lines
with Gaussians fixed to a width of σ = 0.1 eV (i.e., we use lines
narrow compared to the resolution of the XIS). The Fe Kα line
is modeled as the superposition of the Fe Kα1 and Fe Kα2 lines,
with the relative line normalizations held at the 2:1-ratio of the
flourescence yields of these lines and the Fe Kα2 line constrained
to be 13.2 eV below the Fe Kα1 line. We also modeled the
Fe Kβ line as the combination of the Fe Kβ1 and Fe Kβ3 lines
(the Fe Kβ3 energy being fixed to 16 eV below Fe Kβ1, and its
intensity to half the one of Fe Kβ1). This physically correct ap-
proach is to be preferred to modeling the Fe Kα and Fe Kβ lines
with a single Gaussian. We introduced a multiplicative constant
c to normalize the HXD flux with respect to the XIS one.

The resulting model (Table 1) provides a good description
of the data (χ2/d.o.f. = 242.6/245). With NH = 1.95+0.02

−0.03 ×
1024 cm−2 the column density is very high, as is to be expected
for this kind of source, and is in agreement with the previous ob-
servations (e.g., Lutovinov et al. 2005; Walter et al. 2006; Ibarra
et al. 2007). In contrast, the photon index, Γ = 0.676+0.009

−0.042, is
considerably harder than in several earlier analyses (e.g., Walter
et al. 2004: Γ = 2.6 or Ibarra et al. 2007: Γ = 1.35–1.46). As
shown by the contour plots in Fig. 2, our broad-band data al-
low us to determine Γ to a high precision. The photon index is
not correlated with NH, and there is only a slight dependency
between Γ and Efold, which is much smaller than the difference
between the photon index found here and that found in earlier
observations.

Despite the large NH, which corresponds to a moderately
high Thomson optical depth of τes = 1.3, no Compton shoul-
der is apparent in the spectrum and all lines are well modeled
with narrow Gaussians (Fig. 4). In order to determine an upper
limit for the flux in a putative Compton shoulder, following Matt
& Guainazzi (2003) we model this feature by adding a mod-
erately broad (σ = 50 eV) Gaussian at 6.3 keV to the model.
The 90% upper limit for the flux in the Compton shoulder is
1.8 × 10−5 ph cm−2 s−1, corresponding to a 90% upper limit of
34.6 eV for the equivalent width.

Data from the three XIS and the HXD-PIN were used to ob-
tain lightcurves in the 5–12 keV and in the 12–60 keV band. To
study the evolution of the spectral hardness of the source, count
rates were determined at the resolution of the good time intervals
of the XIS0 detector, which cover approximately one Suzaku-
orbit each (∼90 min). Figure 5 shows the significant variability
of IGR J16318−4848 on this resolution. Throughout the obser-
vation, for XIS count rates above 0.1 counts s−1 the source shows
no clear dependence of the hardness ratio from the source count
rate, indicating that only slight changes in the spectral shape oc-
cur. At even lower count rates, the X-ray spectrum softens, but
the signal to noise in the X-ray spectrum is too low to allow us
to quantify these changes further.

4. Summary and conclusions

We have presented first results from the analysis of a long
Suzaku observation of IGR J16318−4848, the most extreme of
the strongly absorbed “INTEGRAL-sources”. As found in pre-
vious studies, the average spectrum of the source is consistent
with a strongly absorbed exponentially cutoff power-law and
strong flourescent line emission. In contrast to earlier studies,
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Table 1. Best fit parameters obtained from modeling the joint XIS and HXD data in the 5–60 keV band.

Acutoffpl = 3.79+0.05
−0.03 × 10−2 FFe Kα1 = 3.7 ± 0.1 × 10−3 FFe Kα2 = 1.85 ± 0.05 × 10−3

FFe Kβ1 = 3.2+0.3
−0.4 × 10−4 FFe Kβ3 = 1.57+0.15

−0.20 × 10−4 FNi Kα = 7.4+2.2
−2.7 × 10−4

c = 1.00 ± 0.01 Γ = 0.676+0.009
−0.042 EFold = 20.5+0.6

−0.3 keV

NH = 1.95+0.02
−0.03 × 1024 cm−2 AFe = 1.14+0.03

−0.02

EFe Kα1 = 6404+3
−2 eV EWFe Kα1 = 467+13

−54 eV EFe Kα2 = 6391+3
−2 eV EWFe Kα2 = 233+7

−27 eV

EFe Kβ1 = 7093+13
−14 eV EWFe Kβ1 = 44.1+1.4

−5.2 eV EFe Kβ3 = 7092+13
−14 eV EWFe Kβ3 = 22.1+0.6

−2.7 eV

ENi Kα = 7446+46
−51 eV EWNi Kα = 108+4

−12.7 eV

F absorbed
5.0−60 keV = 3.4+0.7

−0.1 10−10 erg cm−2 s−1 F unabsorbed
5.0−60 keV = 2.43+0.44

−0.09 10−9 erg cm−2 s−1 χ2/d.o.f. = 242.6/245 χ2
red = 0.99

We list the photon index (Γ), folding energy (EFold), hydrogen equivalent column (NH), Fe abundance (AFe), the total absorbed and unabsorbed
fluxes, and the energy (E) and equivalent width (EW) of the fluorescence lines. The norm of the absorbed cutoff powerlaw (Acutoffpl) is defined as
the photon flux at 1 keV; for the absorbed Gaussian lines the norm (F) equals the total line flux.
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Fig. 2. Confidence contours (68, 90, and 99 percent) of the column den-
sity and the folding energy as a function of the photon index. The cross
mark indicates the best fit value.

the power-law photon index was found to be considerably harder
than before (ΔΓ from 0.67 up to 1.93). This result can be due to
the significantly better signal to noise ratio in the energy band
above 10 keV compared to the earlier studies, which allows for
a better determination of the high energy cutoff, the continuum
parameters, and NH than the earlier soft X-ray measurements,
although an instrinsic change in the source is not ruled out.

The soft excess below 2 keV is probably due to a serendip-
itous source near IGR J16318−4848 (Ibarra et al. 2007). The
considerable variability of the source can be explained as being
due to variations in NH.

As pointed out by Walter et al. (2004), the general spectral
characteristics derived from the fit are typical for accreting neu-
tron stars (e.g., Naik & Paul 2004; Hill et al. 2008). Note that this
result does not mean that the neutron star nature of the compact
object in IGR J16318−4848 is confirmed, which would require
e.g. the detection of pulsations. A search for pulsations in the
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Fig. 3. Broad band spectrum of IGR J16318−4848 together with the
best fit model and its residuals.

range between 1 s and 10 ks was negative, while shorter period
pulsations are probably not detectable due to the smearing of
pulsations by Compton scattering (Kuster et al. 2005).

Turning to the emission lines, we note that our fit requires
a slight overabundance of iron with respect to the ISM values
of Wilms et al. (2000), as one would expect for an evolved star.
Furthermore, the flux ratio of Fe and Ni also points towards a
Ni overabundance by a factor of ∼2.5 with respect to Fe.

The ratio of the Fe Kα and Fe Kβ line fluxes is given by
η = (F(Fe Kβ1) + F(Fe Kβ3))/(F(Fe Kα1) + F(Fe Kα2)) =
0.086 ± 0.008. This flux ratio is formally slightly smaller than
that found in theoretical calculations for neutral gas phase Fe
atoms of Jacobs & Rozsnyai (1986, η = 0.121), Kaastra & Mewe
(1993, η = 0.125), or Jankowski & Polasik (1989, η = 0.132(2)),
and it is also smaller than the value of η found in experimental
measurements performed in solid Fe (e.g., η = 0.1307(7) found
by Raj et al. 1998 and Pawłowski et al. 2002). The difference
between the different theoretical calculations is due to certain
approximations made in solving the structure of the excited Fe
ion after the K-shell photoabsorption, while for the latter mea-
surements η is affected by internal absorption in the Fe crystal
used to make the measurements as well as by the dependence
of the emission probability of the photoelectron on orientation.
The systematic uncertainty of η in theory and measurements is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810811&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810811&pdf_id=3
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Fig. 4. Close-up of the Fe Kα band.
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Fig. 5. Top: lightcurve for the XIS (5–12 keV, squares) and the
HXD PIN (12–60 keV, triangles). Bottom: hardness ratio as a function
of time.

therefore probably as large as 0.02, which would make our mea-
surement consistent with neutral Fe. We note that our value for
η is significantly smaller than the η = 0.20+0.02

−0.03 found in the
XMM-Newton EPIC-pn analysis of Matt & Guainazzi (2003,
but see Walter et al. 2003). These authors speculated that this
higher η could be due to the absorbing wind being moderately
ionized. Given that the line ratio (and also the line energy) found
in the higher resolution Suzaku data are consistent with neu-
tral Fe, we might be seeing a change in the ionization structure
of the wind between the XMM-Newton and the Suzaku obser-
vations. Alternatively, the larger value for η may be due to sys-
tematic effects in the XMM-Newton analysis: with Suzaku, the
Fe Kβ line and the Fe K edge are easier to separate and the
spectral continuum is better constrained in the present analysis
than with XMM-Newton, since spectral information is available
above 9 keV.

Finally, despite the large column of the source, no significant
evidence for the presence of a Compton shoulder is found in
the Suzaku spectrum, which is consistent with previous results.
This result is in contrast to the expectation for absorption in

an homogeneous medium: as shown by Matt (2002), with this
assumption the equivalent width of the Fe Kα line at the NH
of IGR J16318−484 should be much less than that observed
here, and a strong Compton shoulder should be present, in line
e.g. with the Compton shoulder observed by Watanabe et al.
(2003) in GX 301−2. As pointed out by e.g. Walter et al. (2003,
2006) and Ibarra et al. (2007), the non-existence of the Compton
shoulder could be due to a strongly inhomogeneous absorbing
medium. Since the strength of the shoulder is strongly depen-
dent on the assumed accretion geometry, further work using self-
consistent modeling of the absorption, fluorescent line formation
and Compton shoulder formation is required. We will present
such self-consistent analyses, as well as a more detailed study of
the variability of the source, in a future publication.
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