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ABSTRACT

Aims. We determine the nature of the intermediate polar candidates XSS J00564+4548, IGR J17195–4100, and XSS J12270–4859.
Methods. Pointed RXTE observations searched for intermediate polar characteristics in these candidate systems.
Results. XSS J00564+4548 exhibits a period of 465.68 ± 0.07 s, which we interpret as the spin period, an energy dependent modula-
tion depth, and a spectrum that is fit by a 22 keV photoelectrically absorbed bremsstrahlung with an iron line profile. IGR J17195–4100
shows several candidate periodicities and a spectrum that is fit by a power law with an iron line. XSS J12270–4859 exhibits a candi-
date spin period of 859.57 ± 0.64 s and a spectrum that is fit by a power law with no evidence of an iron line.
Conclusions. XSS J00564+4548 is confirmed to be an intermediate polar. IGR J17195–4100 and XSS J12270–4859 both show some
properties of intermediate polars, but cannot be confirmed as definite members of the class here.
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1. Introduction to magnetic cataclysmic variables

Intermediate polars (IPs) belong to the class of systems known
as cataclysmic variables (CVs). They occupy the phase space,
in terms of magnetic field strength, between the polars and the
non-magnetic CVs. This intermediate strength magnetic field al-
ters the accretion flow from the main sequence donor star to the
white dwarf (WD). Eventually, most of the accreting material is
channelled to accretion curtains above the WD magnetic poles.
The temperature and density of this region causes the emission
of bremsstrahlung radiation, which varies at the spin period of
the WD. It is this variation that most consider to be the defining
characteristics of IPs. For a review of IPs see e.g. Warner (1995).
There are at least 30 confirmed IPs1. Ramsay et al. (2008), how-
ever, have recently pointed out that the commonly used criteria
to certify CVs as IPs may be too restrictive. It is possible that
many of the 84 candidates1 are indeed IPs, and if classes such
as SW Sex systems are in fact IPs then the true number may be
several hundred.

In recent years there have been 16 IPs found to emit in
the hard X-ray/soft gamma-ray part of the spectrum, with the
INTEGRAL/IBIS survey (Barlow et al. 2006; Bird et al. 2007).
With this in mind we have embarked on a campaign to observe
some hard X-ray sources and determine their credentials as po-
tential IPs. In the first paper in this campaign, SWIFT J0732.5–
1331 was confirmed as an IP (Butters et al. 2007). Here the
results of pointed RXTE observations of XSS J00564+4548
(hereafter J0056), IGR J17195–4100 (hereafter J1719) and
XSS J12270–4859 (hereafter J1227) are presented.

1 asd.gsfc.nasa.gov/Koji.Mukai/iphome/iphome.html as at
30/04/08.

2. Previous observations

J0056 was associated with the ROSAT source
1RXS J005528.0+461143, and catalogued as an unidenti-
fied object in the RXTE all sky survey (Revnivtsev et al. 2004).
It was found to have a count rate of 0.71 ± 0.04 ct s−1 PCU−1

in the 3–8 keV energy band and a photon index of 1.77 ± 0.23.
Analysis by Bikmaev et al. (2006) using SWIFT/XRT archive
data revealed two X-ray sources in the ROSAT error circle. One
source was present at low energy, which they presumed to be a
chromospherically active star. The other source showed a typical
spectrum of a CV, with an emission feature close to 6.7 keV.
Bikmaev et al. (2006) also carried out optical observations with
the 1.5 m Russian-Turkish Telescope. Their photometric data
indicated a period of approximately 480 s to be present.

J1719 was detected as an INTEGRAL object by Bird et al.
(2004); Pandey et al. (2006) found radio galaxies coincident
with its error circle and suggested it was extragalactic. Tomsick
et al. (2006) confirmed a tentative association of J1719 with
the softer X-ray target 1RXS J171935.6–410054 using pointed
Chandra data. They also reported variability of J1719 in the
0.3–10 keV band and a flux of 2.5+0.9

−0.4 × 10−11 erg cm−2 s−1. In
calculating this flux they used a power law model and a galac-
tic column density of 0.77 × 1022 cm−2 (derived from Dickey &
Lockman 1990). Tomsick et al. (2006) also reported the spec-
tral properties of J1719 using public INTEGRAL data, finding a
flux of 1.9 × 10−11 erg cm−2 s−1 in the 20–50 keV energy band.
Masetti et al. (2006) classified J1719 as a CV based upon its
optical spectrum, they also speculated that it may be an IP.

J1227 was found in the RXTE all sky survey (Revnivtsev
et al. 2004). It was classified as a CV and suggested to be an IP
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by Masetti et al. (2006), using optical spectroscopy. Bird et al.
(2007) later found J1227 to be an INTEGRAL source.

3. Observations and data reduction

Data were obtained from the RXTE satellite (Bradt et al. 1993)
with the PCA instrument.

In each case initial data reduction was done with the stan-
dard ftools, and the flux was normalised according to the num-
ber of correctly functioning PCUs. For the lightcurve analysis
PCUs 2, 3, and 4 were used; whilst for the spectral analysis only
PCU 2 was used. Only the top layer of each PCU was included
in the measurements and the time resolution of the data was 16 s.
Background subtracted light curves were constructed in four en-
ergy bands: 2–4 keV, 4–6 keV, 6–10 keV and 10–20 keV, as well
as a combined 2–10 keV band for maximum signal-to-noise.

In the presence of white noise in the data, the power val-
ues in the power spectrum are expected to follow an exponen-
tial distribution. However, any correlated noise e.g. red noise,
will mean the distribution becomes frequency dependent. This
makes estimating the significance limits in the power spectra
non-trivial. As accreting systems usually show flickering in their
lightcurves, it is feasible to believe that there may be a signifi-
cant red noise component in the data. In order to take this into
account in the analysis, the technique introduced in Hakala et al.
(2004) was used. The data were equally spaced (apart from the
large gaps in between different orbits), so the red noise com-
ponent was modelled by fitting a second order autoregressive
process model to the lightcurves. This model was then used to
generate 50 000 synthetic lightcurves with similar red and white
noise properties, as well as observing window, to the original
datasets. The 95.2%, 99.72% and 99.954% (2, 3 and 4σ respec-
tively) significance limits (as a function of frequency) were then
calculated.

To estimate the error on the measured periods we folded the
raw data at the period found from the period analysis. We then
fitted a curve to this folded data. This curve (repeated over the
whole data set) was then subtracted from the raw data leaving
residual values. These were then shuffled and added to the fitted
curve, yielding a new synthetic raw data set. This synthetic data
was then analysed as before. This whole process was repeated
∼200 times and the resulting periods were then used to calculate
a standard deviation of periods, which was then used as the error
estimate.

A mean X-ray spectrum was also extracted for each source,
and two spectral models applied to find the best fit, using the
xspec package. The models considered were a photoelectrically
absorbed single temperature bremsstrahlung with a Gaussian at
the iron line emission energy (model A), and a photoelectrically
absorbed power law with a similar Gaussian (model B).

3.1. XSS J00564+4548

J0056 was observed over two consecutive days (see Table 1).
The total good time on target (37 800 s) comprised fourteen ap-
proximately equal segments of one satellite orbit each. In the
2–10 keV energy band the raw count rate varied between 3.9 and
9.1 ct s−1 PCU−1. The background count rate, generated from the
calibration files, varied between 2.9 and 4.1 ct s−1 PCU−1.

A significant (>4σ) peak was present in the periodogram at
∼185 cycles day−1 in the 2–10 keV energy band (see Fig. 1).
Analysis of the peak gave a pulsation period of 465.68 ± 0.07 s.
The data were then folded in each energy band at this period,

Table 1. Observing log.

Target Start time End time Time Good
(UTC) (UTC) on target timea

(s) (s)
J0056 05:27 20/12/07 00:31 22/12/07 84 672 37 800
J1719 18:45 07/01/08 11:16 09/01/08 69 636 35 936
J1227 16:13 28/11/07 16:20 29/11/07 58 183 26 814

a Good time is defined as the time that met our selection criteria.

Fig. 1. 2–10 keV periodogram of J0056. Three significance levels, 95.2,
99.7 and 99.954% (2, 3 and 4σ respectively), are superimposed.

Fig. 2. 2–10 keV lightcurve of J0056 folded at the 465.68 s pulse period
with an arbitrary zero point. Two cycles are shown for clarity.

Fig. 2 shows the result of the 2–10 keV energy band. In each
energy band a sinusoid was fitted to the folded data to estimate
the modulation depth of the variation (see Table 2). There is a
clear decreasing trend in the modulation depth with increasing
energy. Clustered around the 185 cycles day−1 peak were a series
of smaller peaks, spaced apart by ∼8 cycles day−1, the largest
of which was at 489.0 ± 0.7 s. There was also one other peak
detected at above the 4σ level at ∼41 cycles day−1 (2109 s).

The best spectral fit was a simple photoelectrically absorbed
bremsstrahlung model with a Gaussian added. This fit had the
parameters kT = 22 ± 2 keV, nH = (0.6 ± 0.4) × 1022 cm−2

and a Gaussian at 6.5 ± 0.1 keV with a width of 0.3 ± 0.1 keV,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=1
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Table 2. Modulation depths of the pulse profile in different energy bands. Modulation depth is defined here as the semi-amplitude of a fitted
sinusoid compared to the fitted mean.

J0056a J1719b J1227c

Energy band Modulation depth Fitted mean Modulation depth Fitted mean Modulation depth Fitted mean
(keV) (%) (ct s−1 PCU−1) (%) (ct s−1 PCU−1) (%) (ct s−1 PCU−1)
2–10 8 ± 1 2.69 5 ± 1 4.22 26 ± 2 1.29
2–4 14 ± 2 0.59 4 ± 1 1.01 27 ± 3 0.37
4–6 9 ± 1 0.93 4 ± 1 1.45 25 ± 3 0.45
6–10 5 ± 1 1.17 6 ± 1 1.75 27 ± 3 0.47

10–20 8 ± 3 0.60 5 ± 2 0.72 28 ± 7 0.22

a Folded at the 465.68 s period; b folded at the possible period of 1 842.4 s; c folded at the 859.57 s period.
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Fig. 3. 2.5–20 keV mean spectrum of J0056 fitted with a photoelectri-
cally absorbed bremsstrahlung plus iron line profile.

which was interpreted as a iron feature (χ2
reduced = 0.8), as shown

in Fig. 3 and summarised in Table 3. The table also shows
the Galactic column density to the object as derived from the
HEASARC nH tool2.

3.2. IGR J17195–4100

Data were taken over two consecutive days (see Table 1). The
total good time on target (35 936 s) was split over twelve ap-
proximately equal segments. The raw target flux varied from
5.4–11.3 ct s−1 PCU−1 and the generated background varied
from 2.8–3.9 ct s−1 PCU−1.

The periodogram of J1719 had six potential periods that
were over 4σ, see Fig. 4. To discount any artifacts arising from
the windowing of the raw data we also used the clean algo-
rithm of Lehto (1997). This was a necessary step as the raw data
was rather fragmented. This iteratively deconvolved the window
function from any signals present in the lightcurve itself. The
four peaks between 8 and 22 cycles day−1 were found to have
a much lower significance in the cleaned analysis and were
thus discounted as an artifact of the windowing. Both remaining
peaks above the 4σ level (1 842.4 ± 1.5 s and 2 645.0 ± 4.0 s)
were equally viable periods. We selected the 1 842.4 s period to
fold the data at, but we stress that the other period was an equally
likely candidate period, see Fig. 5. Folding the data in each en-
ergy band at this period showed that the modulation depth is

2 http://heasarc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl

Fig. 4. 2–10 keV periodogram of J1719. Three significance levels, 95.2,
99.7 and 99.954% (2, 3 and 4σ respectively), are superimposed.

Fig. 5. 2–10 keV folded lightcurve of J1719. Folded at 1 842.4 s with an
arbitrary zero point. Two periods are shown for clarity.

constant across them all (see Table 2). We also note that there
is a further peak (at just below 3σ significance) at 941 s, whose
period is close to half that of the 1842.4 s candidate period, and
may therefore represent a first harmonic.

Spectral analysis showed the presence of an iron line in a
photoelectrically absorbed bremsstrahlung profile, however the
fit was poor with χ2

reduced = 3.0. A better fit was achieved with
a power law model as shown in Fig. 6 and Table 3, however

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=3
http://heasarc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=5
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Table 3. Spectral fits.

Target nH(Galactic) Model nH kT Γ Fe σFe EW χ2
reduced Flux (2–10 keV)

(×1022 cm−2) (×1022 cm−2) (keV) (keV) (keV) (keV) (×10−11 erg cm−2 s−1)
J0056 0.1 A 0.6 ± 0.3 22 ± 3 – 6.5 ± 0.1 0.3 ± 0.1 0.8 0.8 2.8
J0056 0.1 B 1.9 ± 0.7 – 1.7 ± 0.1 6.5 ± 0.1 0.3 ± 0.1 0.9 1.1 2.9
J1719 0.7 A 0.7 ± 0.1 17 ± 1 – 6.5 ± 0.1 0.1 ± 0.1 0.5 3.0 4.4
J1719 0.7 B 0.7a – 1.8 ± 0.1 6.5 ± 0.1 0.3 ± 0.1 0.7 1.1 4.7
J1227 0.1 A 0.1a 14 ± 1 – 6.5b 0.1b <0.08 1.3 1.5
J1227 0.1 B 0.1a – 1.8 ± 0.1 6.5b 0.1b <0.17 0.8 1.5

a Pegged to a lower limit of this value to reflect the Galactic column density; b no error as this value was imposed. See notes in the text.
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Fig. 6. 2.5–20 keV mean spectrum of J1719 fitted with a photoelectri-
cally absorbed power law plus iron line profile.

this fit had the column density pegged to a lower limit of 0.7 ×
1022 cm−2 to reflect the galactic column density.

3.3. XSS J12270–4859

Data were collected over the course of just over one day
(see Table 1). Total good time on target (26 814 s) was split
over nine segments. The raw target count rate varied between
2.4–10.9 ct s−1 PCU−1, the generated background count rate var-
ied between 2.8–3.9 ct s−1 PCU−1.

Analysis of the lightcurve showed significant (>4σ) struc-
ture at ∼100 cycles day−1 (see Fig. 7). The peak of this structure
was at 859.57 ± 0.64 s. Folding the data at this period showed a
clear modulation in the 2–10 keV energy band (see Fig. 8), with
approximately the same percentage depth in each energy band
(see Table 2). There was also a peak at approximately one cy-
cle day−1 in the periodogram; we discounted this peak as it was
of the order of the length of the observing run, and was probably
a feature of the window function.

In fitting the spectrum, the column density was again pegged
to the lower limit of the galactic column density for both the
models. The best fit was the power law model, giving χ2

reduced =
0.8 (see Table 3). There is no significant sign of an excess at
the iron line energy (see Fig. 9). A Gaussian was fitted to the ex-
pected position of the iron emission feature, but in each case only
a small upper limit to the equivalent width was found (<0.08 and
<0.17 keV for models A and B respectively).

Fig. 7. 2–10 keV periodogram of J1227. Three significance levels, 95.2,
99.7 and 99.954% (2, 3 and 4σ respectively), are superimposed.

Fig. 8. 2–10 keV lightcurve of J1227 folded at the 859.57 s pulse period
with an arbitrary zero point. Two cycles are shown for clarity.

4. Discussion

4.1. XSS J00564+4548

We interpret the period found here (465.68 ± 0.07 s) as the spin
period of the WD in J0056. Bikmaev et al. (2006) gave an ap-
proximate value of 480 s from their analysis. To obtain an es-
timate of the error in their period we consider the FWHM of
their Lomb-Scargle plot, which gives 480± 20 s. Our period de-
termination therefore is in agreement with their optical data. If

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=8
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Fig. 9. 2–15 keV mean spectrum of J1227 fitted with a photoelectrically
absorbed power law plus Gaussian.

we interpret the second strongest peak in our periodogram as a
beat period, this implies the orbital period must be ∼2.7 h. This
places it in the 2–3 h CV period gap, but we note that there are
now several CVs in this range and some mCVs too. This inter-
pretation would also explain the cluster of peaks around the spin
period as being various harmonics of the beat period. We are un-
sure of the origin of the 41 cycles day−1 peak as it is too short to
be interpreted as an orbital period of a typical IP. The energy de-
pendant modulation depth of the folded lightcurves is common
among IPs and indicates an accretion column absorbing struc-
ture (Norton & Watson 1989). We also note that the pulse profile
of J0056 is very similar in shape to that of FO Aqr (Beardmore
et al. 1998).

The spectral fits indicate that the emission process is more
likely to be a photoelectrically absorbed single temperature
bremsstrahlung process rather than a power law, as is common
in IPs. The power law spectral fit is however in agreement with
Revnivtsev et al. (2004). The Gaussian at 6.5 keV is identifiable
with an iron feature which is also a common aspect of IPs, and
agrees with the feature found by Bikmaev et al. (2006).

The ROSAT bright source catalogue has no other sources in
the RXTE PCA field of view of J0056. Bikmaev et al. (2006)
showed that there was a source in the error circle of ROSAT but it
was only present at low energies, and so will not affect this mea-
surement. There is therefore very little contamination from other
near by sources. We note that J0056 is significantly brighter now
than was reported in the RXTE all sky survey (Revnivtsev et al.
2004).

4.2. IGR J17195–4100

The peaks in the periodogram of J1719 (1 842.4 ± 1.5 s and
2 645.0 ± 4.0 s) are typical for a spin period length in IPs. The
small peak at 941 s is close to being half the 1 842.4 period, and
therefore may be a first harmonic, however, the significance of
this peak is below 3σ. We note that if the two longer periods
above correspond to the spin and beat periods respectively then
this implies an orbital period of approximately 1.7 h. The small,
almost constant, modulation depth seen in the lightcurves in each
energy band is not present among any other confirmed IPs and

implies that the modulation is caused by obscuration as opposed
to absorption.

The presence of an iron feature at 6.5 keV is a strong indi-
cator of an IP classification. A significantly better spectral fit is
obtained from a power law instead of a bremsstrahlung model.
The 2–10 keV fluxes obtained from each of the spectral models
are also considerably larger than the value reported by Tomsick
et al. (2006) in the 0.3–10 keV energy band. This may be indica-
tive of the simplistic single temperature bremsstrahlung model
used here; multi-temperature fits are often needed to model the
post-shock flow (see e.g. Ezuka & Ishida 1999). However, the
signal to noise and the spectral resolution of the data is such that
a complex model may yield non-unique or degenerate results.

There are several X-ray sources near by in the PCA field
of view which may contribute to the count rate. We used the
ROSAT count rate of each source to estimate an RXTE count rate
using the on line tool webPIMMS3 (for each source we assume a
power law with a photon index of 1.7), we then scaled this value
by the response of the PCAs based upon the distance from the
source. For this source the contribution is up to 1.1 ct s−1 PCU−1

in the 2–20 keV energy band, i.e. �20% of the measured count
rate. These extra sources will have the effect of decreasing the
percentage modulation depth. Moreover, since it is likely that
these sources are softer than the target, the contamination will
have a greater effect at lower energies. The modulation depth
will therefore be reduced more at lower energies. This could
make a decreasing modulation depth with energy look like a
constant modulation depth with energy. The spectral fitting is
likely to be affected by these other sources and they may be the
cause of the poor bremsstrahlung model fit. It is also possible
these other sources may skew the model fit in such a way that
the calculated flux is then overestimated, this may explain why
the flux reported here is larger than the Tomsick et al. (2006)
value. We emphasise that this is only an estimate of the contami-
nation; the other sources may differ markedly from the assumed
spectral shape.

4.3. XSS J12270–4859

J1227 exhibits a structure in the periodogram that indicates it
has a period close to 100 cycles day−1. This is consistent with
being interpreted as a spin period. It shows an approximately
constant modulation in each energy band at the 859.57 ± 0.64 s
period, which implies that the process causing this effect must be
a geometrical effect causing obscuration instead of absorption.

The upper limit placed on the equivalent width of a potential
iron line is small, and goes against the classification of this as an
IP, since all IPs exhibit some kind of iron emission features. We
do note however that Masetti et al. (2006) did see significant iron
features in their optical spectra. The best spectral fit is obtained
from a power law profile, the parameters of which are in good
agreement with Revnivtsev et al. (2004). Again we note that a
multi-temperature bremsstrahlung fit may be more accurate, but
beyond the scope of this study. The count rate has not changed
significantly since the measurements of Revnivtsev et al. (2004).

This source also has nearby X-ray sources that may con-
tribute to the count rate. Using the same procedure as out-
lined above we estimate that they may have contributed up to
0.26 ct s−1 PCU−1 in the 2–20 keV energy band, i.e. �20% of
the total count rate. It is again possible that these extra sources
would alter the modulation depths, and that the spectral fits are
also skewed.

3 http://heasarc.nasa.gov/Tools/w3pimms.html

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809942&pdf_id=9
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5. Conclusion

The unambiguous detection of an X-ray spin period of 465.68±
0.07 s in J0056 and its decreasing modulation depth with in-
creasing energy, along with its spectral properties, confirm its
inclusion into the IP class. Both J1719 and J1227 clearly exhibit
some properties seen in IPs, but not to an extent for us to defini-
tively classify them as such. We do note that it is likely these
latter two are IPs, and that their true nature is being masked by
the presence of contamination from other sources. X-ray imag-
ing of these sources will definitively decide their fate, allowing
their true spectral characteristics to be revealed. All three sources
would benefit from long base line optical campaigns to deter-
mine their orbital periods and ratify the validity of the periods
in J1719 and J1227. If J1227 does turn out to be an IP, then the
presence of an X-ray iron feature will have to be reconsidered as
a defining characteristic of IPs, since it is not present here.
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