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ABSTRACT

Aims. We refer to the recent observational data of Hinode, which detected weakly-attenuated coronal loop oscillations in the presence
of background flow (Ofman & Wang 2008, A&A, 482, L9). Vertical loop oscillations that lasted for three wave periods were reported
with a wave period P = 113 ± 2 s, attenuation time τ = 560 ± 260 s, and wave amplitude Amax = 0.67 ± 0.12 Mm. Ofman & Wang
(2008) estimated the flow speed within the range of 74–123 km s−1. We consider impulsively generated standing fast magnetoacoustic
kink waves of a straight solar coronal slab with field-aligned internal flow. We aim to determine the influence of such flow on the
spatial and temporal signatures of these waves.
Methods. The time-dependent, ideal magnetohydrodynamic equations are solved numerically.
Results. The numerical results show that as a result of wave scattering on inhomogeneous flow kink waves experience stronger
attenuation than for a still plasma, while P remains weakly altered by this flow. Numerically evaluated values of Amax and P are close
to the observational data. A value of τ is about two times smaller than observed.

Key words. magnetohydrodynamics (MHD) – Sun: corona – Sun: oscillations

1. Introduction

In the frame of coronal seismology (Uchida 1970; Roberts
et al. 1984; Nakariakov et al. 1995) solar magnetohydrodynamic
(MHD) waves are recognised as an important diagnostic tool
for the medium through which they propagate. The recent years
have brought observations of a variety of coronal loop oscil-
lations which were interpreted either as propagating or stand-
ing MHD waves. The oscillations observed by Aschwanden
et al. (1999) are horizontally polarised, while the oscillations
detected by Wang & Solanki (2004) are vertically polarised.
Standing (Wang et al. 2002) and propagating (Ofman et al. 1997;
DeForest & Gurman 1998; Ofman et al. 1999; Ofman et al.
2000; De Moortel et al. 2002) slow magnetoacoustic waves were
also reported. The method of coronal seismology was success-
fully applied to these waves and oscillations by Nakariakov &
Verwichte (2005).

This work is stimulated by results of the first Hinode obser-
vation of coronal loop oscillations (Ofman & Wang 2008). The
observations were made by Solar Optical Telescope on Hinode
with the Ca II H line filter, which has the formation temperature
of 104−2 × 104 K. The loops were traced with thin threads of
field aligned flow of chromospheric material in the above tem-
perature range. Co-spatial loops were seen by SOHO Extreme
ultraviolet Imaging Telescope in 195 Å at this location and time
that corresponds to coronal temperature (peak formation tem-
perature of 1.6 MK), but with much lower spatial and temporal
resolution than Hinode/SOT (Ofman & Wang 2008). The obser-
vational data was interpreted as the oscillations that were seen
for about 3 wave periods, with a wave period lasting about 2 min.
These oscillations occurred in the presence of background flow
whose magnitude was estimated in the range of 74−123 km s−1.

The effect of flow on magnetoacoustic waves was discussed
in the literature. For instance, Nakariakov & Roberts (1995)
considered steady flows of plasma using slab geometry. They
showed that flows change the characteristics of magnetoacous-
tic modes qualitatively and quantitatively. They concluded that
flow breaks the symmetry (e.g., by the appearance of a new type
of trapped waves, namely backward waves). Terra-Hommem
et al. (2003) extended the work of Nakariakov & Roberts (1995)
to cylindrical geometry. It was demonstrated by Joarder et al.
(1997) that for the flows slower than the threshold of Kelvin-
Helmholtz instability, backward waves can be of negative en-
ergy and hence subject to instabilities associated with negative
energy waves. Murawski & Roberts (1994) developed a model
of the solar f -mode in a randomly flowing plasma to show that
the f -mode exhibits frequency reduction and amplitude atten-
uation. Murawski et al. (2001) showed that random mass den-
sity leads to acceleration and attenuation of fast magnetoacous-
tic waves that propagate perpendicularly to a uniform magnetic
field. Grappin et al. (2003) investigated time-dependent siphon
flows in coronal loops driven by Alfvén waves. When consid-
ering a 1.5-D isothermal MHD model, they showed that the re-
action of the loop to Alfvén waves depends entirely on parallel
velocity fluctuations. Grappin et al. (2005) using an isothermal
MHD model of the solar corona, studied coronal loops reaction
to Alfvén waves generated at the base of the corona. They found
steady increase of the mass density along the excited loops. They
also observed density oscillations along the apex of the longest
loops, that is, those along which waves are substantially attenu-
ated. Recently, Soler et al. (2008) inferred that the presence of
flow has no effect on the attenuation of slow magnetoacoustic
and thermal modes, whereas fast magnetoacoustic kink waves
are more (less) attenuated when they propagate parallel (anti-
parallel) to the flow.
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The above mentioned studies were devoted to propagating
waves and the effect of flow on standing waves was not studied
so far. We aim to explore the importance of parallel background
flow on standing fast magnetoacoustic kink waves by compar-
ing results for two cases: (a) flowing and (b) still plasmas. We
realise our goal in the context of the Hinode data (Ofman &
Wang 2008), which revealed a co-existence of standing waves
and background flow.

This paper is organised as follows. The numerical model is
described in the following section. Numerical results are pre-
sented and discussed in Sect. 3. This paper is concluded by a
short summary of the main results in Sect. 4.

2. Numerical model

We describe coronal plasma with a use of the ideal MHD equa-
tions, viz.:

∂�

∂t
+ ∇ · (�V) = 0, (1)

�
∂V
∂t
+ �(V · ∇)V = −∇p +

1
μ

(∇ × B) × B, (2)

∂B
∂t
= ∇ × (V × B), (3)

∂p
∂t
+ ∇ · (pV) = (1 − γ)p∇ · V, (4)

∇ · B = 0, (5)

p =
R
μ̂
�T. (6)

Here � is mass density, p is gas pressure, V = [Vx,Vy,Vz] is flow
velocity, B = [Bx, By, Bz] is magnetic field, μ is the magnetic per-
meability, γ = 5/3 is the adiabatic index, T is temperature and μ̂
is the mean atomic weight (average mass per particle in units of
mass of a proton). We limit our discussion to a 2-D magnetically
structured medium in which the equilibrium magnetic field and
flow are polarised in the x−z plane such that Vy = By = 0, and we
assume that all plasma variables are invariant in the y-direction,
∂/∂y = 0. This assumption results in a removal of the Alfvén
wave from the system, which is able to propagate fast and slow
magnetoacoustic waves only.

We consider an initial state, which corresponds to a straight
slab model with an enhanced mass density over a width a in
an otherwise uniform and still medium (Nakariakov et al. 1995).
The magnetic field is uniform and directed along the x-direction,
B0 = B0 x̂, where x̂ is a unit vector. The initial plasma flow, V0 =
V0(x)x̂, is limited to the slab only. This initial state is given by

p, �(z), Bx̂,V(z)x̂ =
{

p0, �i, B0,V0(x), | z |≤ a,
p0, �e, B0, 0, | z |> a (7)

here the width of the slab, a, is chosen equal to 2.5 Mm. We take
the mass density within the slab, �i, to be 5 times larger than
in the ambient medium, d = �i/�e = 5. This value is consis-
tent with the observational data of Aschwanden & Nightingale
(2005). Additionally, we implement dense plasma layers for
x < xl = 0.15 L and x > xr = 0.76 L, where L = 100 Mm is the
system length. This is realised by setting mass density �̃e(x, z):

�̃e(x, z) = �e(z) +
1
2
�e(z)(dph − 1)

⎧⎪⎪⎨⎪⎪⎩
[
1 − tanh

(
x − xl

sph

)]

+

[
1 − tanh

(
x − xr

sph

)] ⎫⎪⎪⎬⎪⎪⎭· (8)

Fig. 1. Equilibrium mass density profile representing a straight coronal
slab. Note dense photosphere layers for x < 0.15 L and x > 0.76 L.

Here xl = 0.15 L and xr = 0.76 L denote left and right po-
sitions of the dense layers, which give the length of the slab
Ls = 71 Mm. The ratio of the mass density of the photosphere
to the ambient medium is chosen as dph = 102 and sph = 2 Mm
is the width of the transition region. The dense layers represent
the photosphere in which the slab footpoints are rooted. Initial
configurations of the slab and the photosphere layers are shown
in Fig. 1. The plasma flow of Eq. (7) is chosen either uniform
within the slab

V0(x, z, t = 0) = V̂0 = const., xl ≤ x ≤ xr, | z |≤ a , (9)

or varying along the slab according to the following formula:

V0(x, z, t = 0) = V̂0e−(x−L/2)2/ω2
x , | z |≤ a . (10)

Here V̂0 denotes magnitude of the flow, V̂0 = 92 km s−1. This
value is close to the Hinode’s observational data (Ofman &
Wang 2008). The symbol ωx is the half-width of the initial flow
profile. These two types of initially set flow are displayed in
Fig. 2.

It is noteworthy here that the above described mass density
and flow do not correspond to any exact equilibrium. Even ini-
tially uniform flow within the slab suffers from the lack of equi-
librium that results from flux �̃eV0, which is not conserved at
x = xl and x = xr. The dense photosphere layers serve as natural
wave reflectors. As they mimic action of the photosphere they
consist of necessary ingredients of the developed model. Note
that, as a flow magnitude V̂0 is much smaller than Alfvén speed
in the ambient coronal medium cA =

√
B0/μ�e the initial state

evolves on a slow temporal scale. This evolution results from
plasma reflection from the dense plasma layers, but the system
remains at the initial stage of its evolution in a quasi-equilibrium.

We choose and hold fixed cA = 106 m s−1 and cse =√
γp0/�e = 2 × 105 m s−1 for the sound speed in the ambient

coronal medium. As a result, plasma beta β = 2μp0/B2
0 = 0.048

in the overall region. For this choice of parameters sound speed
in the slab csi =

√
γp0/�i = 0.92 × 105 m s−1. This value of csi

is close to the detected flow speed in the Hinode’s data (Ofman
& Wang 2008).

3. Numerical results

To obtain numerical results we use the code ATHENA as
described by Gardiner & Stone (2005). ATHENA is a grid
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Fig. 2. Two types of field-aligned flow, initially launched within the
slab: uniform flow (top panel) and Gaussian flow (bottom panel).

based code that is developed for astrophysical plasma dy-
namics applications. This code implements the higher-order
Godunov method. Numerical fluxes are computed using a lin-
earised Riemann solver and the divergence-free condition is sat-
isfied with the use of a constrained transport method. To rep-
resent a physical region we use an Eulerian box (0, 0.91 L) ×
(−0.5 L, 0.5 L). This box is covered by 400 × 400 grid points.
We set open boundary conditions at all boundaries of the simu-
lation region, allowing an outgoing wave signal to leave freely
the simulation area.

Fast magnetoacoustic kink oscillations are triggered impul-
sively by launching the initial pulse in vertical component of
velocity Vz, i.e.

Vz(x, z, t = 0) = Vz0 exp

[
− (x − x0)2 + (z − z0)2

w2

]
· (11)

Here x0 and z0 denote the pulse’s initial position, w = 10 Mm is
a parameter that determines its width and Vz0 = 0.092 cA is its
amplitude. As we aim to excite the fundamental kink mode we
launch the pulse centrally and below the slab. In particular, we
set x0/L = 0.455 and z0/L = −0.1. This pulse results in a wave
signal that hits the slab centre, at x/L = 0.42.

Figure 3 displays contour lines of �(x, z), evaluated at two
consecutive times. Such lines denote two spatial positions of the
slab, which are approximately in anti-phase. We infer from these
positions that the slab essentially oscillates at the fundamental
fast magnetoacoustic kink mode.

Figure 4 illustrates time-signatures of mass density evaluated
at the slab for still (top panel) and initially uniform flowing (bot-
tom panel) plasmas. Kink oscillations are clearly seen in both
panels. Additionally, bottom panel reveals slow magnetoacous-
tic sausage oscillations, which result from reflected plasma from
the left photosphere layer. These oscillations reach the detection
region at t ≈ 200 s, the moment at which mass density falls
off abruptly. The rarefaction of the slab is associated with the
Bernoulli effect. At a place where a gas pressure, magnetic pres-
sure, and flow attain high values, a plasma within the slab has

Fig. 3. Spatial position of the slab and photosphere edges at t = 25 s
(solid lines) and t = 100 s (ticked lines) for the case of still plasma.

Fig. 4. Time-signatures of mass density evaluated at x/L = 0.42 for still
(top panel) and initially (at t = 0 s) uniform flowing (bottom panel)
plasmas.

to be rarefied to satisfy the Bernoulli equation, which is valid
for a stationary flow. For an incompressible plasma this equation
stands as

p
γ − 1

+
B2

2μ
+
�V2

2
= const.

From Fig. 4, we can see that at time t = 200−400 s the slab is
rarefied the most. As a result, we conclude that the slab-aligned
flow exerts a strong influence on slab mass density, leading to
significant rarefaction of the slab at a location of a shock that is
associated with the slow magnetoacoustic waves.

Figure 5 shows positions of the slab centre for the case of
initially still plasma (solid line), uniform flow (dashed line),
and Gaussian flow (dotted line). It is noteworthy that maximum
shifts for still and flowing plasmas are of similar magnitude
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Fig. 5. A position of the slab centre evaluated from Fig. 4; solid line
corresponds to V̂0 = 0, dashed line to V̂0 = 92 km s−1 and dotted line to
Gaussian flow with wx = 15 Mm (top panel) and wx = 10 Mm (bottom
panel).

(Amax = 0.73 Mm), which is close to the observational data of
Hinode, Amax = 0.67 ± 0.12 Mm (Ofman & Wang 2008). Up
to t � 200 s, the slab positions essentially overlap each other
for still and flowing plasmas, suggesting that flowing plasma
does not alter significantly time-signatures of fast magnetoa-
coustic kink waves. At a later stage, some differences rise up
and they grow up in time. At this stage, initially uniform flowing
plasma becomes inhomogeneous, essentially as a result of re-
flection from the left dense layer. This partial reflection results in
wave attenuation, which is further enhanced by wave scattering
from inhomogeneities. As a result of this scattering, fast mag-
netoacoustic waves reduce their amplitude and alter their wave
period. Such phenomena are well known for waves in randomly
flowing fluid (e.g., Murawski 2004). We infer that the slab oscil-
lations are attenuated at a higher rate for flowing plasma than for
still plasma.

From Fig. 5 we can estimate wave period P and attenuation
time τ. For this purpose we fit a position of the slab centre to the
attenuated sine function sin(2π t/P) exp(−t/τ) (e.g., Gruszecki
et al. 2008). We find that for the case of initially uniform flowing
plasma P = 124 s, which is somewhat lower than for still plasma
(P = 126 s). These values are close to the detected wave period
by Hinode P = 113± 2 s (Ofman & Wang 2008). This wave pe-
riod reduction may result from Doppler effect from rightward di-
rected flow, which settles in the system after the original flow re-
flection from the left photosphere layer. Note that the difference
in the estimated wave periods of the long-wavelength kink mode
in the tube and slab geometry. In the long-wavelength limit, the
phase speed of this mode tends to the external Alfvén speed in
the slab case, while it tends to the kink speed in the tube case.
This clearly leads to the error in the theoretical estimation of the
phase speed and, as a result, in a wave period.

Fig. 6. (Top) Wave period P vs. half-width of the initial Gaussian flow
ωx. (Bottom) Attenuation time τ vs. ωx. Horizontal dashed lines cor-
respond to the data for still (V0 = 0) and dotted line to flowing
(V0 = const.) plasmas.

We find that attenuation times differ for the case of still
plasma and for the case of flowing plasma; for still plasma
we get τ = 283 s and for uniform flowing plasma we obtain
τ = 259 s. From the obtained results we infer that the oscilla-
tions are stronger attenuated for the flowing plasma case. This
stronger attenuation results from wave scattering on plasma in-
homogeneities, which become more pronounced for initially in-
homogeneous flow and when flowing plasma reflects from the
region x ≈ 0.15 L. As a consequence of this reflection even ini-
tially homogeneous flow becomes inhomogeneous and a slow
magnetoacoustic sausage wave settles in.

To make a deeper analysis of the effect of initial flow V0 on
P and τ, we consider now Gaussian flow inside the slab (Fig. 2,
bottom panel). We investigate the importance of the half-width
of the initial flow profile, ωx, on the wave characteristics. We
vary ωx from ωx = 5 Mm to ωx = 70 Mm. In the later case, the
flow becomes essentially homogeneous. A value of flow ampli-
tude V̂0 was chosen in a way that kinetic energy inside the slab
remains initially invariant withωx. The results of our simulations
are shown in Fig. 6. From the obtained results we infer that, ac-
cording to our expectations, P remains weakly dependent on the
initial flow. However, wave period is higher than in the case of
still plasma. Both in the case of constant flow and Gaussian flow
wave period is altered by less than 1%, which is insignificant for
coronal slab application. Wave period P attains a minimum for
wx � 15 Mm.

Figure 6 (bottom panel) illustrates attenuation time τ vs. ωx.
From the obtained results we infer that τ also reaches a min-
imum for ωx � 15 Mm. A physical reason for a location of
the minimum is presently unclear. We might expect that for a
very narrow Gaussian profile, ωx, the effect of flow is small on
wave attenuation. Simply, in this case, wavelength (that is equal
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to 2 Ls) is so large that small-scale inhomogeneity is not impor-
tant. Similarly, in the limit of large ωx a fast magnetoacoustic
wave perceives such a flow as locally constant and as a result the
flow effect is small. A stronger effect of flow should occur for
intermediate values of ωx. Indeed a strongest effect is expected
when flow exhibits spatial scales, which are comparable with the
wavelength.

Note, that Gruszecki et al. (2008) showed that τ depends
on density contrast dph and smoothness sph of the dense
photosphere-like layer. They estimated that τ/P grows by about
a factor of 2, while dph varies from 102 to 104. Thus, choosing
a density contrast between photosphere and corona as dph = 104

we get closer to the observational value of τ = 560 ± 260 s
(Ofman & Wang 2008).

4. Summary and discussion

We discussed the effect of uniform and inhomogeneous initial
flows on wave characteristics of fast magnetoacoustic kink os-
cillations of the fundamental standing mode. Our findings can
be summarised as follows: neither uniform nor inhomogeneous
flows are able to alter significantly wave period of the mode.
Note that Murawski (2004) found that a randomly structured
flow leads to frequency reduction (wave period increase) of
sound waves. However, this result was obtained for an ensem-
ble averaged random field and for some realisations of this field
wave frequency increase was reported. Whether wave frequency
is decreased or increased depends on wave scattering scenario
on random inhomogeneities. As we got that P is decreased by
Gaussian flow our findings fit into findings for those particular
realisations of a random field, for which P is reduced (Murawski
2004). As a result of wave scattering on an inhomogeneous flow
a stronger wave attenuation is also present in the case of random
flow (Murawski 2004). This attenuation was obviously strongest
for the case of a most abruptly varying spatial profile of the flow;
for Gaussian flow with ωx = 15 Mm attenuation time τ was re-
duced by ∼14% in comparison to the case of still plasma. It is
noteworthy that flow results in Doppler shift. The influence of
the flow on the wavelength of the fast mode is small since flow
speed V0 � cA. However, V0 is comparable to a typical wave
speed of a slow magnetoacoustic wave, and can effect the slow
magnetoacoustic wave frequency due to Doppler shift.

This study concludes that the flow increases the wave atten-
uation. However, in the Hinode observation very weak attenu-
ation is seen (Ofman & Wang 2008). One of possible ways to
remedy this is to consider negative energy waves (i.e., the flow
supplies energy to the waves). Studies by Soler et al. (2008)
are relevant in this case. Finally, we mention that the agreement
of our numerical model with Hinode observations of Ofman &
Wang (2008) as well as with the theory of coronal seismology
(Nakariakov & Verwichte 2005) is encouraging.

It is noteworthy that the slow shock (Fig. 4, bottom panel)
is not seen in the loop in Hinode observations (Ofman & Wang
2008). This shock is due to the cold slab model we have chosen,
and the reflections which occur at the photosphere-like layers.
Since the goal of the paper was to compare to the Hinode data it
is important to remove this inherent feature. One way of doing
so is a construction of an isothermal slab model (Murawski et al.
1997). In this model a uniform parallel flow is set along a warm

Fig. 7. Time-signatures of mass density evaluated at centre of the slab.

slab. In this slab internal magnetic field Bi (gas pressure pi)
within the slab is lower (higher) than in the ambient medium.
In particular we have chosen

Be

Bi
= 1.12,

pi

pe
= 5,

Te

Ti
= 1. (12)

Figure 7 illustrates time-signature of the mass density collected
at the slab centre. According to our expectations a slow shock is
absent in this time-signature and therefore such a model would
be more realistic.
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