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[1] This study shows for the first time statistical evidence that when anthropogenic
aerosols over the eastern United States during summertime are at their weekly mid‐week
peak, tornado and hailstorm activity there is also near its weekly maximum. The
weekly cycle in summertime storm activity for 1995–2009 was found to be statistically
significant and unlikely to be due to natural variability. It correlates well with previously
observed weekly cycles of other measures of storm activity. The pattern of variability
supports the hypothesis that air pollution aerosols invigorate deep convective clouds in a
moist, unstable atmosphere, to the extent of inducing production of large hailstones
and tornados. This is caused by the effect of aerosols on cloud drop nucleation, making
cloud drops smaller and hydrometeors larger. According to simulations, the larger ice
hydrometeors contribute to more hail. The reduced evaporation from the larger
hydrometeors produces weaker cold pools. Simulations have shown that too cold and
fast‐expanding pools inhibit the formation of tornados. The statistical observations suggest
that this might be the mechanism by which the weekly modulation in pollution aerosols is
causing the weekly cycle in severe convective storms during summer over the eastern
United States. Although we focus here on the role of aerosols, they are not a primary
atmospheric driver of tornados and hailstorms but rather modulate them in certain
conditions.

Citation: Rosenfeld, D., and T. L. Bell (2011), Why do tornados and hailstorms rest on weekends?, J. Geophys. Res., 116,
D20211, doi:10.1029/2011JD016214.

1. Introduction

[2] This study puts to a statistical test the hypothesis that air
pollution increases the chance of severe convective storms.
The motivation for posing this question is based on physical
considerations that are described in section 1.2. These con-
siderations have already been partially supported by the
observations of a weekly cycle in rainfall, storm heights,
and large‐scale vertical winds, made by Bell et al. [2008].
We believe this hypothesis does two things: (1) it provides
a framework for understanding the observations originally
reported by Bell et al. [2008] and (2) it has been a very
successful tool for predicting weekly cycles in other meteo-
rological quantities, some of which have been reported
elsewhere (e.g., lightning activity [Bell et al., 2009a]), and
fractional cloud cover and cloud top temperatures (mentioned
by Bell et al. [2009b]), and some of which (weekly cycles in
hailstorm and tornado activity) are reported here.
[3] We believe that a strong observational case is made in

this paper for the existence of a weekly cycle in hailstorm
and tornado activity over the eastern United States during
the summer. We would not have looked for such evidence

had we not had the physical theory we present below to guide
us. Nevertheless, we should emphasize that the observations
we report here only show a correlation in hailstorm and tor-
nado activity with the well‐established weekly cycle in pol-
lution over the same area, and correlations do not prove
causality. These observations provide the impetus for more
detailed observational studies and advances in modeling of
the effects of aerosols on storm development that will be
capable of establishing the causal connection, a connection
we can only present as a hypothesis here.

1.1. The Weekly Cycle in Rain Intensity
and Lightning Activity

[4] The weekly cycle of working weekdays and resting
weekends is associated with weekly varying levels of partic-
ulate air pollution [e.g., Bell et al., 2008]. This cycle has been
shown to be associatedwith weekly cycles of midweek rainfall
amounts, storm heights [Bell et al., 2008, 2009b], and lightning
activity [Bell et al., 2009a] in the warm and moist climate
of summer months in the southeast United States. It was
hypothesized that this is caused by mid‐week enhanced par-
ticulate air pollution invigorating convective storms, as will be
described in section 1.2. Theoretical considerations and cloud
simulations, described in section 1.3, support this hypothesis.

1.2. The Physical Basis for Aerosols Invigorating
Convective Clouds

[5] Particulate air pollution can invigorate convective
storms whose cloud bases are warm enough that the cloudy
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air has to rise several km before reaching the freezing level.
In clouds forming in pollution‐free air, rain can develop and
precipitate from the lower parts of the cloud without freezing.
This early rain can be inhibited by the pollution aerosol
particles that act as cloud drop condensation nuclei (CCN)
and nucleate greater concentrations of smaller cloud drops
that are slower to coalesce into raindrops [Gunn and Phillips,
1957]. In clouds with warm cloud base temperatures the
freezing level is several km above cloud base, so that rain can
develop and fall from the rising air in the cloud. Because the
effect of aerosols is to suppress coalescence, rain is delayed
and a larger fraction of the cloud water ascends above the 0°C
isotherm level, where it is accreted on ice precipitation par-
ticles that fall and melt at lower levels [Molinié and Pontikis,
1995; Andreae et al., 2004]. The additional release of latent
heat of freezing aloft and reabsorbed heat at lower levels by
the melting ice implies greater upward heat transport for the
same amount of surface precipitation in the more polluted
atmosphere. In addition, greater evaporative cooling of the
cloud water in the downdrafts increases further the vertical
heat exchange [Lee et al., 2010]. This means that more
instability is consumed for the same amount of rainfall. The
inevitable outcome is invigoration of the convective clouds
[Rosenfeld et al., 2008]. Cloud simulations have supported
this hypothesis by showing that updrafts increase in warm‐
base clouds (∼20°C) with added aerosols that suppress the
warm‐rain processes [Khain and Pokrovsky, 2004, 2005,
2008; Khain and Lynn, 2009; Wang, 2005; Tao et al., 2007;
Li et al., 2008; Lee et al., 2008a; van den Heever et al., 2006;
van den Heever and Cotton, 2007; Ntelekos et al., 2009].
According to these simulations, invigoration was not neces-
sarily associated with added rainfall amounts. Enhanced
rainfall was simulated only in warm, moist, unstable, and
low‐shear environments [Khain et al., 2008; Lee et al.,
2008b; Fan et al., 2007, 2009]. The stronger updrafts and
downdrafts resulted in more coherent organization of the
simulated convection that feeds back into the intensity of the
storms [Ntelekos et al., 2009; Lee et al., 2010]. The invigo-
ration was supported also by observations of more polluted
convective clouds growing taller [Koren et al., 2005, 2008,
2010] and invigorating the circulation systems [Zhang et al.,
2007; Bell et al., 2008].

1.3. The Physical Basis for Aerosols Enhancing
Lightning, Hail, and Tornados

[6] The invigorated updrafts with added supercooled water
and ice hydrometeors provide the conditions for enhanced
cloud electrification [Molinié and Pontikis, 1995; Williams
et al., 2002; Andreae et al., 2004]. However, the observa-
tional evidence was questioned due to the difficulty in sepa-
rating the roles of thermodynamics and aerosols [Lyons et al.,
1998; Williams and Stanfill, 2002; Williams et al., 2002;
Williams, 2005]. Critical supporting observational evidence
for the validity of the invigoration hypothesis was obtained
very recently, where volcanic aerosols, whose variability was
completely independent of meteorology, were observed to
invigorate deep convective clouds over the northwest sub-
tropical Pacific Ocean and more than double the lightning
activity [Yuan et al., 2011; Langenberg, 2011].
[7] The greater amount of supercooled cloud water in

polluted situations means greater growth rate of ice hydro-
meteors. The stronger updrafts mean that larger hail stones

can be suspended in the cloud before falling to the ground.
Therefore, it is reasonable to expect that clouds in more
polluted air would produce larger hail stones. This is sup-
ported by some observations [Andreae et al., 2004; Wang
et al., 2009] and simulations [Storer et al., 2010;Khain et al.,
2011].
[8] The dynamics of convective storms respond to the

initial changes in precipitation by changes in the downdrafts
and their evaporative cooling, which feed the cold pools and
their gust fronts. Early simulations [Gilmore et al., 2004;
van den Heever and Cotton, 2004] showed that storm
dynamics are very sensitive to changes in hydrometeor size,
such that smaller hydrometeors create larger cold pools and
stronger gust fronts that feed back to the storm dynamics.
Colder downdrafts would produce a faster moving gust front
that would tend to cause faster propagation of the squall line.
A supercell can be regarded as a quasi steady state convective
storm, where the gust front is not outrunning and undercutting
the updraft in the feeder clouds. Less evaporative cooling into
the downdraft would reduce the cooling and extent of the cold
pool. A slower‐moving gust front with respect to its origi-
nating cell would drive the convective system closer to a state
of a supercell, which is the typical cloud type that produces
large hail and tornados.
[9] Supercell storms inherently form in a high–wind shear

environment. The wind shear causes the main rain shaft with
the associated downdraft to be displaced from the low‐level
updraft. This is themechanism that allows the longevity of the
supercell storms, and hence increases their vigor and potential
for generating tornados and large hail. The simulations of
Fan et al. [2009] showed that aerosol‐induced invigoration
of the updraft aloft requires a weak wind shear environment.
With little aerosol‐induced invigoration expected during the
strong–wind shear conditions that are favorable for large
hail and tornadic storms, the mechanism in question by
which aerosols increase the chance of tornados, cannot be
fully explained by the convective invigoration hypothesis
[Rosenfeld et al., 2008]. Here we propose that the aerosol‐
induced changes in the precipitation particle size distribution
reduce the evaporative cooling in the precipitation shaft. The
way by which it might enhance tornadogenesis is described
next.
[10] Ludlam [1963] proposed that air parcels within the

downdraft tend to be less negatively buoyant (warmer) in
tornadic versus nontornadic supercells. Tornadic vortices
increase in intensity and longevity as downdraft parcel
buoyancy increases, because colder parcels are more resistant
to lifting. This was supported by observational and numerical
modeling studies [Markowski et al., 2002, 2003]. Simulations
of the sensitivity of tornadogenesis to the hydrometeor size
distribution, done at the high resolution of 100 m [Snook
and Xue, 2008], showed that by merely increasing the hydro-
meteor size an EF‐2 intensity tornado was produced by the
model. When the cold pool is strengthened by decreasing the
hydrometeor sizes, the updraft is tilted rearward by the strong,
surging gust front, causing a disconnection between low‐
level circulation centers near the gust front and the mid‐level
mesocyclone.
[11] Clouds with smaller drops were observed to produce

larger raindrops for the same rain intensity [Rosenfeld and
Ulbrich, 2003]. This was confirmed by simulations of warm
rain [Altaratz et al., 2008] and mixed phase clouds [Khain
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et al., 2011]. Incorporating this effect in simulations of an
idealized supercell thunderstorm [Lerach et al., 2008]
showed that the added aerosols suppressed the precipitation
and produced larger and fewer hailstones and raindrops. This
produced an EF‐1 tornado. The unpolluted simulation pro-
duced more precipitation evaporative cooling, and thus a
stronger surface cold pool that surged and destroyed the rear
flank downdraft structure. This resulted in a single gust
front that propagated more rapidly away from the storm
system, separating the low‐level vorticity source from the
parent storm and thus hindering the tornadogenesis.
[12] Rosenfeld and Ulbrich [2003] attributed the aerosol

effect on precipitation particle size distribution to the larger
number of raindrop embryos that form in warm rain pro-
cesses as compared to precipitation initiation by ice precip-
itation embryos in mixed phase clouds. For the same aerosol
concentrations, warmer cloud base means larger distance to
the freezing level, where cloud drops can grow bigger and
coalesce faster into raindrops. Therefore, this aerosol effect

on the precipitation particle size distribution and in turn on
tornadogenesis is expected to be more pronounced for clouds
with warmer bases. According to Figure 1, sufficiently warm
cloud base for the aerosol effects (>∼15°C) occur during the
months June–August over the eastern part of the United
States, to the east of longitude 100°W. During the summer
months this line lies along the dew point isotherm of 15°C
within a sharp gradient of increasing dew points eastward.
The analysis of the aerosol effects in this study is focused at
these times and places. Interestingly, the strongest hailstorms
occur just to the west of 100°W. Williams et al. [2005]
ascribed this to the fact that cloud base height is sufficiently
high and cold while the instability is still very high, such that
warm rain is prevented from forming in the short distance
between cloud base and the freezing level regardless of the
aerosol amounts, allowing large accumulations of super-
cooled water that feed the growth of large hail. The cloud base
is still not too cold to deplete the amount of potential con-
densates and supercooled water that are required for the

Figure 1. Mean dew point temperature for (top) July and (bottom) April. From the National Oceanic and
Atmospheric Administration Climatic Data Center.
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growth of large hail. The cloud base west of 100°W is thus
too cool for aerosols to be a major factor in modulating the
hailstorms.
[13] In this brief review we have shown that there is a

physical basis for the hypothesis that added aerosols can
contribute to the occurrence of large hail and tornados. In
the next sections the hypothesis that the weekly cycle in
pollution aerosols is associated with a similar cycle in the
hail and tornados will be tested using observational data for
hail and tornado activity.

2. The Data

[14] On the basis of the physical considerations above, we
expect that the occurrences of severe convective storms
would be enhanced in a more polluted atmosphere during
the summer months in the eastern United States, where the
convective storms form in a warm and moist atmosphere
and are least forced by synoptic weather systems such as
cold fronts. In order to test whether there is a weekly cycle,
daily counts of tornados or hail, categorized by intensity,
were analyzed.
[15] Data for tornado and hail observations in the United

States were obtained from the Web site of the Storm Predic-
tion Center (SPC) of the National Oceanic and Atmospheric
Administration (see http://www.spc.noaa.gov/wcm/index.
html#data). The observational data maintained by the SPC are
based on reports collected by local National Weather Service
Forecast Offices from a wide variety of sources (trained
spotters, emergency personnel, the media, the general public,
etc.). The assignment of tornado strength on the enhanced
Fujita scale (http://www.spc.noaa.gov/efscale/) for a tornado

probably reflects both estimates of the intrinsic strength of
the tornado and valuations of the level of property damage
found along the path of the tornado [see, e.g., Doswell and
Burgess, 1988]. A characteristic largest hailstone size is
assigned to hailstorm events, according to the National
Oceanic and Atmospheric Administration (NOAA) National
Weather Service storm data preparation rules (see http://
www.weather.gov/directives/sym/pd01016005curr.pdf).
Hail diameters are given in inches. One inch equals 2.54 cm.
The NOAAWarning Coordination Meteorologist attempts to
identify and remove duplicate observations and to link storms
that span several jurisdictions. The data we used were current
as of 16 March 2010.
[16] Schaefer and Edwards [1999] suggest a number of

possible biases in these data: tornados generally go unre-
ported where no one lives; both population and population
awareness has increased over the years; and the adoption of
warning systems has made people more alert to tornados.
More tornados are observed near populated areas than away
from them. Storms that are particularly severe are probably
missed less often, however. The total numbers of tornados
and of hailstorms have generally trended upward with the
years (Figure 2). The conventions for attributing a given
Fujita scale to a storm have also evolved [e.g., Schaefer and
Edwards, 1999]. Rapid increases in the numbers reported
may be due to the introduction of new technology: imple-
mentation of the WSR‐88D radars with Doppler capability
in about 1991, for example, may have led to increased
reporting of tornados after that date. An analysis by Ray et al.
[2003] suggests that tornados are reported more often near
population centers and that tornado occurrences prior to 1992
may have been underestimated by about 40%.
[17] The observational biases that may be present in the

data can easily be imagined to change with the day of the
week. Weekly changes in media coverage are possible, for
instance. Despite these possibilities, we report later in the
paper that we see no signs of a weekly cycle in the less
populated western half of the United States and no signs of a
cycle during the spring season in the eastern half. It is not
easy to think of a plausible sociological bias that is present
in the eastern half of the country but absent in the western
half, or one that is absent in the spring and then appears in
the summer. We also find that the weekly cycle in tornado
and hail activity seen in the eastern half of the United States
agrees well with the weekly cycle seen in other indicators of
severe storm activity such as lightning and extent of vertical
development of the storm clouds (indicators that are not
subject to the same concerns about weekly biases in the
observational system). These same indicators show no sig-
nificant weekly cycle in the western half of the United States
[Bell et al., 2008, 2009a, 2009b]. This suggests that what-
ever physical mechanisms are modulating severe storm
activity in the east during the summer are also affecting
tornado and hail activity. The evidence we report here
strongly suggests, we believe, that the weekly cycles in
tornado and hail activity are real. Attempts to explain them
as simply the result of weekly shifts in coverage by the
observational network require constructing a rather tortuous
and contrived picture of societal behavior.
[18] In preparing the data for analysis, we edited a small

fraction of the data entries based on the recommendations
accompanying the data provided by the SPC and on the

Figure 2. Number of tornado and hailstorm events each
summer (June–August) for 1980–2009. Graphs are shown
for tornados classified as F0 and as F2 in strength and for
hailstorms with reported hail diameters of 0.75 inches and
between 1 and 1.75 inches (exclusive). (Because hail dia-
meters are generally given in 0.25 inch increments, this bin
includes mostly hail diameters of 1.25 and 1.5 inches.)
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need to resolve various ambiguities. Entries with missing
state identifications were ignored. Entries with either zero
latitude or longitude locations were ignored. Entries with
negative Fujita scales were ignored (25 cases encountered).
Apparently misidentified time zones were corrected. Multiple
entries associated with a single tornado event were consoli-
dated into one entry (not an issue in the hail data set). Tornados
that crossed state boundaries were treated as two separate
events, however. Fifteen entries of hail sizes of 0.25 and 0.5
inches in 2007 were pooled with the entries for 0.75 inches. In
total, fewer than 2% of the tornado data set entries required
editing. A far smaller percentage of hail data entries required
editing. The number of tornado events for 1980–2009 in our
edited data set was approximately 33,000, while the number
of hail events was approximately 235,000.

3. The Data Analysis

[19] In the following subsections we provide details about
the assumptions and methods used in the statistical analysis
of the tornado and hailstorm data.

3.1. Statistical Model of Data Under the Null
Hypothesis

[20] Testing the data for the presence of a weekly cycle
requires a description of the statistics of the data under the
null hypothesis, which is that the frequency of tornados or
hailstorms does not vary cyclically with the day of the week.
In modeling the statistics of hailstorms and tornado occur-
rences under the null hypothesis, we try to accommodate the
known variations in statistics with the season and year. Our
goal is not to determine the “true” seasonal cycle or decadal
trend but simply to produce something likely to be closer to
the truth than ignoring the seasonal cycle or year‐by‐year
trend altogether.
[21] We used the average seasonal cycle over the years

1980–2009 to represent the modulation of the expected count
with the seasons (i.e., with the day of the year). Though we
used 15 years of data (1980–1994) prior to the period we are

concentrating on (1995–2009), they were used only to help
establish the background seasonal cycles and decadal‐scale
trends, and for the bootstrap statistical analysis described
later. The seasonal cycle estimated from 30 years of data is
smoother than the cycle estimated using 15 years (1995–
2009), as would be expected, but is not substantially different.
We believe that using data prior to 1995–2009 to increase the
stability of our estimate of the seasonal cycle increases the
overall robustness of our statistics, but that if we had confined
our averaging to the years 1995–2009 our conclusions would
not be changed in any substantial way.
[22] We show in Figure 3 the average number of tornados

reported east of longitude 100°W for each day of the year.
The averages for each day of the year in Figure 3, though
based on 30 years of data, exhibit quite a lot of variability
from day to day, almost certainly due to the sample size
(30 samples, one for each year) in the daily averages. Note
that averages for each day of the year include data from all
days of the week (Sunday through Saturday). Rather than
trying to build a smoother, parameterized model for the
seasonal cycle, we applied a kind of running average to the
365 daily averages (leap years treated as having 365 days).
The filter devised by Lee [1986] produced a satisfactory
curve when we applied the filter twice with a window size
of 11 days (on either side of the central value), as shown in
Figure 3. The Lee filter produces a smooth fit to the data
but tries also to capture sudden jumps in the local mean. The
climatological average compares well to the average obtained
by Brooks et al. [2003], though Brooks et al. [2003] report
averages for a different region and time period.
[23] The annual counts for each year from 1980 to 2009

vary quite a bit from year to year (e.g., see Figure 2), pos-
sibly attributable to large‐scale influences such as El Niño–
Southern Oscillation or to the unpredictable fluctuations in
weather, but there appears to be a decadal trend in the counts
as well. Some of these trends might be explained by societal
changes, such as increasing awareness of the danger of
tornados, and in the methods of collecting the data, as dis-
cussed by Schaefer and Edwards [1999].

Figure 3. Average number of tornados per day (jagged black curve), all strengths, for years 1980–2009.
The smooth red curve shows fit to data using a Lee filter, as described in the text, and was used by us as
the expected tornado count for days of the year. It is denoted by f( j) in the text.
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[24] We found that the seasonal cycles of the different
tornado strengths are fairly similar (although the small
numbers of high‐EF tornados make comparisons of averages
difficult), when the seasonal cycle of counts for a particular
EF values is normalized by the total number of storms at that
EF value. The seasonal cycles for different hail sizes are very
similar. We should note, however, that the similarity in the
seasonal cycles is used very little in the analyses presented
here.
[25] In order to test whether the tornado/hailstorm statis-

tics differ significantly from what would be expected under
the null hypothesis that there is no weekly cycle, we need a
statistical model for the expected number of storms under
the null hypothesis. Since we only test data from portions of
a year rather than for full years, we require a model that
describes the variation in the expected number of storms as a
function of the day of the year. We assume that the expected
number of tornado/hail events for a given day and season/
year is proportional to the total number of storms for that
season (thus capturing the interannual variability in Figure 2)
and to the average number of storms for the given day of the
year (as represented by the smooth curve in Figure 3). If there
is a weekly cycle, we generally assume in our analyses that
the cycle is described as a sinusoidal oscillation modulating
the expected number given by our null hypothesis model (this
is made precise by equations (2) and (3)). Another possible
shape for the weekly modulation, a step function, is investi-
gated later.
[26] To represent the expected number of tornados n0(y, j)

in year y and day j for summertime tornados (1 June–31
August, i.e., 152 ≤ j ≤ 243) under the null hypothesis, then,
we assume that the number is proportional to the number of
tornados that summer n(y) and to the seasonal cycle f ( j)
represented by the smooth curve in Figure 3. Thus,

n0 y; jð Þ ¼ n yð Þ f jð ÞP243
j′¼152 f j′ð Þ : ð1Þ

If n(y, j) is the actual number of observed storm occur-
rences in year y for day j, j = 1, …, 365 (or 366 in a leap
year), we define the ratio variable

r y; jð Þ ¼ n y; jð Þ=n0 y; jð Þ; ð2Þ

which has an average very near 1 when averaged over all
years of data, or when averaged over all j, by construction.
(Hailstorm statistics are similarly treated, using the clima-
tology of hail based on the years 1980–2009.)

3.2. Statistical Model of Weekly Cycle

[27] We determine whether there is a weekly cycle in the
ratio variable r(y, j) by fitting the time‐dependent data r(t) to
a 7 day sinusoid

r tð Þ ¼ r0 þ r7 cos !7 t � 87ð Þ½ � þ " tð Þ; ð3Þ

withw7 = 2p/7 days, where r0 is the mean of the ratio variable,
r7 is the amplitude of the cycle, and 87 is the time during the
week when the weekly cycle peaks. The error in the fit is
denoted by "(t). The time t is measured in days starting from
an arbitrary date (we used t = 0 on Tuesday, 1 January 1980).

[28] Statistical tests for the fit depend to some extent on an
implicit assumption that the statistics of r(t) do not change
with the year or month. Although this is difficult to check
with a short time series, we have tried to do this using some
tests that seem likely to expose such a variation if it exists.
We examined the variance of r(t) calculated from the daily
values of r(t) over the 92 days of a single season, and plotted
the variance versus the number of observed tornados for that
season, and did not see signs of a change in the variance
from those summers with relatively few tornados compared
with those with many. We also examined the variance of
r(y, j) for each Julian day j, j = 1, …, 365, over the 30 years
of data y = 1980–2009. When the variance is plotted versus
the mean tornado count for a given day j, denoted above by
f ( j), we find that the variance declines with the tornado
count approximately as f ( j)−0.62. Since f ( j) itself only varies
by approximately a factor of 3, this suggests that the vari-
ance of r(t) ranges only over about a factor of 2 in size.
Although we could adjust our statistical analysis to try to
accommodate this possible variation, it would be at the cost
of considerably more complexity in the analysis and very
little gain in knowledge. The bootstrap analysis method
described later also tends to circumvent the assumption of
homogeneity of the statistics of r(t), though not entirely.
[29] It is perhaps worth reminding the reader here that by

fitting the data to a pure sinusoid (equation (3)) we are not
assuming that this is in fact an exact description of the
weekly cycle in the data. A periodic signal with period 7 days
can always be expressed as a sum of sinusoids with periods
of 7 days and their higher harmonics. The higher harmonics
tend to be noisier and harder to estimate from small amounts
of data, and we have chosen not to examine them. Because
the sinusoid is fit using data from all days of the week, the
sinusoid makes better use of the data (generating more robust
statistics) than a search for a weekly cycle that uses only
averages of data from single days of the week, a practice that
is fairly common in searches for weekly cycles in data. It is
easy to obtain averages for each day of the week and to
estimate the uncertainty in the averages using standard sta-
tistical techniques. (An example is shown in Figure 4, to
be discussed later.) However, unless one has an a priori
hypothesis about which days of the week are likely to be
anomalously high or low, the investigator must first examine
the averages for each day of the week, and then decide which
averages are representative of the weekly high and low
values of a putative weekly cycle, and finally carry out an a
posteriori statistical test to see if the difference of the selected
pair of averages is “statistically significant.” In effect one has
examined 21 pairs of averages and chosen the pair most likely
to have a statistically significant difference. Carrying out such
an a posteriori test is not completely straightforward, since
the prior examination of 21 pairs of (probably correlated)
averages must be included in the estimation of the statistical
significance of the largest difference. This type of approach
generally has lower statistical power in detecting a weekly
cycle than the test for a sinusoidal variation in the averages,
which entails testing only a single parameter, the amplitude
r7 of the cycle, to ascertain whether there is an anomalous
cycle. Hasselmann [1979] provides a thorough discussion of
why multivariable testing for anomalous averages has less
statistical power than testing a single weighted average over
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all variables. See also the discussion of multihypothesis
testing by Wilks [2006].
[30] A still more powerful test for a weekly cycle might be

done if the precise shape of the weekly cycle can be guessed.
For instance, one might imagine that the weekly cycle con-
sists in a constant daily average for the weekend (Saturday–
Sunday) and another constant average for the weekdays
(Monday–Friday, i.e., a step function response), though it is
far from obvious that such a response is likely to be an
accurate description. We have tried such a test, and the sta-
tistical significance of such a postulated cycle is similar in
size to the significance we calculate for a sinusoidal weekly
cycle (these results are reported later, in section 4.1).

3.3. Statistical Tests for Weekly Cycle

[31] We write r7 cos[w7(t − 87)] = c7 cos(w7t) + s7 sin(w7t)
and use linear least squares fits to this expanded version of
equation (3) for each of the n weeks of data to obtain the
coefficients c7(i) and s7(i) for each week i of data, i = 1,…, n.
Each summer contains 13 weeks of data; for the 15 summers
in 1995–2009, there are n = 15 × 13 = 195 weeks of data.
The variance of the coefficients c7(i) and s7(i) from week to
week over the n weeks can be used to estimate the overall
uncertainty s7 in the amplitude r7, using s7

2 = (variance
[c7(i)] + variance[s7(i)])/n, where we assume that the cor-
relation of the coefficients from week to week is negligible
and the number of samples (n weeks) for variance estimates
is large enough that the coefficients c7 and s7 are approxi-
mately normally distributed. (We tested the time correlations
of the fitted amplitudes from week to week and found the

correlations to be statistically consistent with the assumed
correlation 0.) As explained in more detail by Bell et al.
[2008], the ratio (r7/s7)

2 has a Fisher F distribution [e.g.,
Fraser, 1958, p. 202] with two degrees of freedom in the
numerator and (2n − 2) degrees of freedom in the denomi-
nator. The quantity r7/s7 is a measure of the signal strength
(signal‐to‐noise ratio). The significance level p of the
amplitude r7, under the null hypothesis that there is no weekly
cycle, can be fairly accurately estimated from this ratio as

p ¼ exp � r7=�7ð Þ2
h i

; ð4Þ

as explained in much more detail by Bell et al. [2008]. The
estimate (4) gives nearly the same result as the more complex
Fisher F distribution. Note that this means that the probability
that r7 is larger than 1.73 s7 is p = 0.05; in other words, for
tests of the significance of r7 the threshold for significance is
1.73 s7 instead of the familiar 2s estimate 1.96 s7 that the
traditional normal distribution would suggest.
[32] Note that the coefficient r7 in equation (3) is obtained

by fitting all of the data, following the same procedure
described above that was used for each week of data, and is
related to the best fit coefficients c7 and s7 by the formula r7

2 =
c7

2 + s7
2. The phase 87 is obtained from [7/(2p)] tan−1(s7/c7)

measured in days. Since t = 0 is a Tuesday in our scheme, the
phase 87 is measured relative to a Tuesday.
[33] Because of the normalization of the observed number

n(y, j) by the expected number n0(y, j) in equation (2), the
value of r0 in (3) obtained by the fitting procedure is typi-
cally very close to 1. (It is not exactly 1 because the seasonal

Figure 4. Weekly cycle of the aerosols (PM2.5 and PM10), as measured by the Environmental Protection
Agency (EPA) over the United States during JJA of 1998–2005 east of 100°Wwithin the continental United
States, along with the associated weekly cycle of the Storm Prediction Center–reported hailstorms and
tornados over the same area averaged over JJA for 1995–2009. The value shown for each day of the
week, for tornado and hail, is a straightforward average of the recorded occurrences for that day of
the week, expressed as a fractional anomaly (the deviation of the average from the 7 day mean divided
by the mean). The values shown for PM data are averages over all sites of the fractional anomalies com-
puted at each EPA site for which there are data. The significance levels p for the weekly cycle of tor-
nados are p = 0.011 (F test) and p = 0.033 (bootstrap test). The significance levels for the hail data
are p = 0.00013 (F test) and p = 0.0008 (bootstrap tests with 104 simulated data sets). The error bars
for the hail are shown only as short horizontal blue lines. The plots repeat the first 7 days in order to
better display the nature of the weekly variations.
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cycle f ( j) is based on an average over all years (1980–2009)
whereas our fits generally use only the years 1995–2009.)
[34] The statistical significance of the amplitude r7 is

estimated both by the method described above and by a
second method. The second method of estimating the sta-
tistical significance of the fitted amplitude r7 uses a boot-
strap approach in which the original data are resampled in
segments 11 days long in a way that destroys any 7 day
periodicity in the original data. Segment sizes of 11 days are
used based on the belief that the correlation of weekly cycle
fits to the segments from one segment to the next is small.
Where we have checked, it is indeed small. For example, the
week‐to‐week lagged correlations of the coefficients c7(i)
and s7(i) calculated using the tornado data (east of 100°W) for
the 30 summers of 1980–2009 are found to be Corr[c7, c7] =
0.046, Corr[s7, s7] = −0.114, and Corr[c7, s7] = −0.0077; for
the hail data they are Corr[c7, c7] = 0.032, Corr[s7, s7] =
−0.014, and Corr[c7, s7] = −0.0051. Since there are about
390 weeks of data for this period, the 5% (2s) significance
threshold level for correlations is approximately 2

ffiffiffiffiffiffiffiffi
390

p
=

0.10. Only one of the six correlations passes this threshold,
barely. The hypothesis that the week‐to‐week correlations
of the fits are zero can therefore not be rejected.
[35] To randomize with respect to the day of the week,

segments are selected that are displaced from the original
segment anywhere from 7 days before to 6 days after the
original segment (i.e., whose starting point is chosen from
within a 14 day window). We choose segments from prior or
future seasons up to 5 years away, instead of confining
ourselves to data from the same year, to increase the number
of replacement choices. Thus, for example, if the segment
we are replacing starts on 10 August 2001, we may ran-
domly select a segment from the original data set beginning
anywhere from 3 to 16 August and from any year from 1996
to 2006. This tends to generate simulated data sets with
statistics that change with the day of the year in the same
way as the original data set, as far as preserving the sea-
sonality of the statistics and decadal trends, but having no
real weekly cycles. Note that because we have access to
years prior to 1995, we may select random segments from
years as early as 1990 when a segment from year 1995 is
being replaced. Note that because the statistics of the ratio
variable r(y, j) seem to be fairly constant from year to year
(as discussed at the end of section 3.2), we create simulated
data sets starting with the original data set for r(y, j) rather
than of n(y, j) itself, thereby minimizing the impact of
seasonal and interannual variability on the statistics of the
simulated data sets.
[36] Synthesized data sets assembled from the 11 day

segments are used to estimate values of r7 for each data set,
and the statistical significance of the value of r7 obtained
from the original data set is set at the fraction of synthesized
data sets with r7 larger than that of the original value. We
found that the two methods produced comparable signifi-
cance levels p (the probability that the value of r7 could
equal or exceed its value under the null hypothesis r7 = 0).

4. Analysis Results

4.1. Results for Tornados East of 100°W

[37] In accordance with the hypothesis that the impact of
air pollution on invigorating severe storms would be greatest

in a moist and warm atmosphere, we follow our previous
geographic partitioning [Bell et al., 2008, 2009a], and
examine data for the summermonths, June–August, and areas
east of 100°W for all latitudes within the United States (our
earlier studies were constrained by the latitudinal coverage
of the satellite data we used). The longitude of 100°W
separates the moist air mass to the east, where invigoration
can be expected, from the dry air masses to the west, where
cloud bases are too high and cold to be substantially invig-
orated by added aerosols. This is evident in the map of cli-
matological mean dew point temperature for July, shown in
Figure 1 (top).
[38] Hail and tornado data are available from 1950, but

their quality has evolved over time. The completeness of the
coverage has been improving, especially, we assume, for
the weaker and thus less noticeable events. On the basis of
the evidence in Figure 2, overall observational coverage of
tornados seems to have stabilized since the mid 1990s,
whereas coverage of hail appears to have grown continu-
ously. We have focused our search on the period 1995–2009.
This choice is also motivated by the results of Bell et al.
[2008], where clear signs were reported of a weekly cycle
in satellite estimates of rainfall, in rain gauge data, and in the
induced modulation of the regional circulation patterns for
the period 1998–2005, and where evidence that the weekly
cycle seemed to weaken in earlier decades was found.
[39] A weekly cycle in the aerosol impacts on storms

depends on the existence of a weekly cycle in anthropogenic
aerosols. Ideally one would examine long‐term records of
the concentration of cloud condensation nuclei (CCN) near
cloud base in order to establish the existence of weekly
cycles in the aerosols that directly influence storm evolution.
Continuous monitoring of CCN concentrations over the
geographical scales of interest is not yet available, unfortu-
nately. As an indicator of anthropogenic emission of aerosols,
however, we have examined Environmental Protection
Agency (EPA) data sets for surface‐level concentrations of
particulate matter with particle diameters greater than either
10 mm or 2.5 mm, respectively. These data were recently
analyzed by Bell et al. [2008]. A weekly cycle in both PM10

and PM2.5 is clearly to be seen in Figure 4. Figure 4 shows
the fractional anomalies (deviations from the mean divided
by the site mean) observed at each site, averaged over all
EPA sites. The weekly cycles of hail and tornadic storms for
the years 1995–2009, also shown in Figures 4 and 5, behave
very similarly to the cycle in the aerosols, with a distinct
minimum on weekends.
[40] When fits to the weekly cycle shown in Figure 4

using sinusoids are tested for statistical significance, the
p values (probability of the truth of the null hypothesis that
there is no weekly cycle) are small, especially for hailstorms
(of which there are many more events than for tornados). As
mentioned above (see section 3.2), one can carry out statis-
tical tests for other functional shapes of the weekly cycle
response. When we fit the data to a step function with one
constant during the weekend and another during the work
week, we found the statistical significance (p values) of such
a response shape to be similar to what we found for the
sinusoid, even though the sinusoid includes an extra param-
eter, the phase of the cycle. We found that a step function fits
the tornado data with a p = 0.013 using a Student’s t test and
p = 0.015 from bootstrap estimation. A step function fits the
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hail data with a p = 0.003 using a Student’s t test and p =
0.0001 from bootstrap estimation. (When p values get this
low, estimates of p values can be very noisy.) Both of these
step function fits used data from 1995 to 2009, JJA, for the
area east of 100°W. Figure 6 shows plots of the weekly
cycles and fits. (The constant portions of the step function fits
are not perfectly flat because of the effect of converting r(t)
to n(t) using equation (2), since it is r(t) that is fit to the step
function but it is averages of n(t) that are plotted in Figure 6.)
[41] The temporal and spatial distribution of the weekly

cycle matches the distribution of the warm, moist and unstable
conditions in which aerosols have the strongest tendency to
invigorate deep convective clouds [Rosenfeld et al., 2008].
During summer, the longitude of 100°W coincides with the
transition from the moist climate to the east of it to the hot and
dry climate to the west, as shown in Figure 1 (top).
[42] The moisture peaks in the months of June, July, and

August and reaches the northeast United States, but starts to
retreat southward during late August and September. The
aerosol invigoration effect on convective clouds can become
apparent in moist atmospheres when synoptic forcing is less
dominant. In cool base clouds (i.e., temperature of about 10°C
or less) the effect diminishes [Rosenfeld et al., 2008]. This
is in agreement with the spatial and temporal distribution of
the weekly cycle, as depicted in Figure 7. Figure 7 shows
the state of the weekly cycle over three latitudinal bands
east of 100°W as a function of the time of year. Each arrow
represents the statistics for a 2 month period from the years
1995–2009. The length of the arrow shows the amplitude
of the weekly cycle r7 as a fraction of the mean r0. The
direction indicates the day of the week when the sinusoidal
fit peaks. The color indicates the significance level p of the
fit, reflecting the signal‐to‐noise ratio of the fit. Figure 7
shows that the transition from the synoptically forced storms
in the spring, when moisture levels are also much lower
(Figure 1, bottom), to the more locally unstable storms that
form in a moist unstable air mass in the summer is accom-
panied by an increase in the weekly cycle modulation tending

Figure 5. (a) Daily averages for hail occurrences of various
strengths (hail diameters) are shown, using data for hail-
storms east of 100°W within the continental United States
for June–August 1995–2009. Smooth curves are sinusoidal
fits to data. (b) Daily averages for tornado occurrences of var-
ious strengths (F values) are shown, using data for tornados
east of 100°W within the continental United States for
June–August 1995–2009. Smooth curves are sinusoidal fits
to data.

Figure 6. Day‐of‐the‐week averages for tornado and hailstorm occurrences of all strengths, with step
function (dotted curve) and sinusoidal (dashed curve) fits superimposed. Error bars are estimated standard
errors of averages (i.e., 1s errors). All events east of 100°W within the continental United States are
counted, using June–August 1995–2009 data. Significance levels for fits are given in the text.
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to have a mid‐week maximum. The return of the synoptic
forcing and drier air in the early fall to the north part of the
domain is similarly associated with a decrease of the weekly
cycle there. Note that the weekly cycle of tornados only
becomes established sometime in June, even though tor-
nadic activity is reaching its peak well before then (see
Figure 3). We believe that the consistency of these patterns
of occurrence of the weekly cycle in time and space and the
predictions of the hypothesis that the pollution aerosols are
the cause of the observed weekly cycle in severe convective
storms lends additional credence to our hypothesis.
[43] The overall statistical significance of the weekly

cycles of tornado and hail activity for the 15 year period
1995–2009 is quite high (see caption to Figure 4). We can
also examine the weekly cycle for individual summers based
on sinusoidal fits to the data for each summer alone, though
the results are noisy given that there are only 13 weeks in a
summer. The results of such an analysis were displayed in
earlier papers as “clock plots” for rainfall [Bell et al., 2008]
and for lightning [Bell et al., 2009a]: the phase and amplitude
of sinusoidal fits were used to plot a point on a clock dial
running from Saturday to Friday and with the distance of the

plot point from the center of the plot proportional to the
signal‐to‐noise ratio of the amplitude. The “noise” s7 is
determined from the variance of weekly fits to the data.
The signal‐to‐noise ratio r7/s7 is given (see equation (4)) by
[−log(p)]1/2, where p is the significance level of the amplitude
r7, i.e., the probability that an amplitude this large could have
occurred by chance, due to small‐sample effects, when there
is in fact no weekly cycle present.
[44] Despite the small number of samples in each summer

of data, it was found [Bell et al., 2009a] that the phases of
the weekly cycles in lightning activity for summers between
1998 and 2009 fell year after year in the nonweekend sec-
tors of the clock plot. This strongly suggests that the weekly
cycle in the data has a period of exactly 7 days and is not an
atmospheric wave with a period “in the neighborhood” of
7 days. Because tornado and hail events are not nearly as
numerous as lightning events, and the tornado/hail obser-
vational coverage not nearly as dense, we would expect the
year‐by‐year clock plots of hail and tornado weekly cycles
to be noisier than for lightning. The clock plots for hail
and tornados are shown in Figure 8. They cover the years
1995–2009. In order to maximize the weekly cycle signal,

Figure 7. The dependence of the phase of the weekly cycle in (a) hailstorms and (b) tornadic storms on
the time of year and geographical latitude (for all storms east of 100°W within the continental United
States). Each arrow represents averages of the two months to either side of its location. The latitudes con-
tributing to each row of statistics are shown to the left. The arrow points to the day of the week when the
sinusoidal fit is a maximum, and the length indicates the weekly amplitude as a fraction of the bimonthly
mean, according to the key at the bottom left. The radius of the outermost circle in the key represents a
fractional anomaly of 0.15. The arrows are colored according to their significance level, with the color bar
indicating the significance level assigned to each color.
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only data from the afternoons (1200–2400 local solar
time), when convective instability is highest, are used in
these plots. Though the phases do not avoid the weekend
sectors as completely as the lightning weekly cycle phases
did, there is still a clear tendency for the weekly cycles of

hailstorms and tornados to peak in the middle of the week.
When the phase falls on weekends, the signal‐to‐noise
ratio is quite low, implying that the statistical uncertainty
in the determination of the phase is large. Note that the hail
data contain about 7 times as many events as the tornado data
and therefore have more stable statistics, and the phases are
more consistent in avoiding the weekend sectors (Figure 8a).

4.2. Results for Tornados West of 100°W

[45] The average July dew point temperatures are smaller
than 10°C at most of the area to the west of 100°W (see
Figure 1, top). Therefore we do not expect to find evidence
there of weekly storm invigoration. Even though there is a
pronounced weekly cycle in aerosols measured by ground‐
based EPA stations west of 100°W (Figure 9), no significant
weekly cycle is apparent to the west of 100°W (Figure 10).

5. Discussion

[46] The results are in agreement with our previous reports
of similar weekly cycles in the rainfall [Bell et al., 2008] and
lightning [Bell et al., 2009a] over the United States. The cycle
was ascribed there to aerosols invigorating deep convective
clouds in a warm, moist atmosphere. It is therefore not too
surprising to find that the invigorated clouds also produce
more hail and tornados.
[47] We show in Figure 8 that the hail and tornado data

are consistent with earlier results for rain and lightning in the
southeastern United States in another respect: when the
phase �7 and signal strength r7 for each summer of data for
the years 1995–2009 are displayed on a clock plot, there is a
clear tendency for the phases to avoid the weekend period,
despite the fact that there are only 13 weeks of data in a
single summer and estimates of the weekly cycle are quite
noisy. It is not surprising that the avoidance is not as clear as it
was for the lightning data [Bell et al., 2009a], since lightning
occurs far more frequently than hailstorms and tornados and
the effective sample size for lightning is far larger.
[48] It is conceivable that the storm data could be affected

by a weekly bias in the observations of storms. However, it is
shown in Figures 10a and 10b that no sign of a statistically
significant weekly cycle in tornado or hail occurrence is
visible in the data west of 100°W. If there is a weekly varying
bias in storm reports it would have to be present in the eastern
half of the United States and absent in the western half to
explain our results. Furthermore, the weekly cycle from
March toMay over the eastern United States (see Figure 7), is
not statistically significant, and no longer points to a mid‐
week maximum. If anything, it is pointing more toward the
weekend, but without any statistical significance. This is
consistent with the diminution of the convective invigoration
effect in cool base clouds, as hypothesized by Rosenfeld et al.
[2008]. The lack of a clear weekly cycle in the spring along
with its existence in the summer, plus the clear correspon-
dence of the weekly cycle that we see in the summer storm
data with the cycles observed in other variables with no
possible weekly varying observational bias such as lightning,
cloud top heights and rain intensities, suggest that the weekly
cycle in storms is a real one and not an artifact of the data
collection methods.
[49] The weekly cycle that we see is firmly pegged to the

work week. It is not plausible that it is a reflection of a

Figure 8. The phase (day of the week) and amplitude of
the weekly cycle (equation (3)) of data for each summer
for the years 1995–2009. The amplitude is represented by
the distance from the origin and is proportional to the signal‐
to‐noise ratio of the amplitude, r7/s7. The last two digits of
the year are shown in the colored balloons. The probability
p that the amplitude of the weekly cycle could exceed a given
radius, under the null hypothesis r7 = 0, is shown by the
circles labeled by the corresponding value of p. (a) Hail and
(b) tornado data.
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quasiperiodic 7 day cycle in atmospheric dynamics, whose
phase would surely wander from year to year, something we
do not see in any of the clock plots. Kim et al. [2010]
recently raised the possibility that the weekly cycle can
occur due to natural random variability [Kim et al., 2010].
This might be the case for a weekly cycle that is found in
general upper tropospheric synoptic features that have no
clear hypothesis to the way that they might be linked to
anthropogenic effects [Sitnov, 2010]. Weekly cycle in the
instability or low‐level temperature being larger on week-
days can potentially explain greater the activity of severe
convective storms at that time. However, this is not likely to
be the case here, based on the lack of evidence of a weekly
cycle in the 850 hPa temperatures and in other synoptic
properties that correlate with lightning activity that was
presented in the supporting online materials of Bell et al.
[2009a].
[50] An alternative explanation that might be considered

is that the radiative effects of the aerosols absorbing and
reflecting the solar radiation change the atmospheric stability.
If anything, greater aerosol optical depth during mid‐week
days would reduce the surface heating and suppress con-
vection, as was shown by Koren et al. [2004, 2008] and by
Rosenfeld et al. [2008].
[51] Previous reports of a weekly cycle of hail in Southern

France [Dessens et al., 2001] did not show a change in hail
frequency, but showed a larger kinetic energy of the hail-
stones on weekends. It was postulated that ice forming nuclei
(IFN) emitted during theweek days from the local industrywas
creating larger number of ice hydrometeors and therefore
decreasing the hailstone sizes due to greater competition on
the available supercooled water. There is no information
whether IFN have a weekly cycle in the eastern United States.
[52] This study has shown a clear correspondence between

the weekly cycle of anthropogenic aerosols and the occur-
rences of severe convective storms, which is highly unlikely
to be a result of natural variability. The observed associations
cannot serve as proof for causality. However, the results are
consistent with the hypothesis that air pollution aerosols
invigorate deep convective clouds in moist and unstable

Figure 9. Weekly cycle of the aerosol concentrations (PM2.5 and PM10), as measured by the EPA over
the United States during JJA of 1998–2005 to the west of 100°W within the continental United States.
Daily averages are expressed as fractional anomalies relative to the overall means.

Figure 10. (a) Daily averages for hailstorm occurrences of
various strengths (hail diameters) are shown, using data for
hailstorms west of 100°W within the continental United
States in JJA and for 1995–2009. Smooth curves are sinu-
soidal fits to data. The weekly cycles are not statistically sig-
nificant. (b) Daily averages for tornado occurrences of
various strengths (EF values) are shown, using data for tor-
nados west of 100°W within the continental United States in
JJA and for 1995–2009. Smooth curves are sinusoidal fits to
data. The weekly cycles are not statistically significant.
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atmosphere, and the possibility that they can even induce the
storms to produce large hail and tornados. This is also con-
sistent with the hypothesis that the severe storms are better
organized and violent because aerosols increase the hydro-
meteor size, decreasing their evaporation and so weakening
the negative buoyancy of the downdrafts, thereby preventing
the gust front from outrunning and undercutting the updraft in
the feeder clouds. Anthropogenic emissions have caused
large enhancements of aerosol loads even over the remote
continents, with typical enhancements of 50–300% over
remote regions of Asia, North America, and South America
[Wilson et al., 2001; Chin et al., 2004; Park et al., 2006; Stier
et al., 2006]. Regarding this increase, it is worth pointing out
that if a roughly 10% weekly variation in pollution levels is
resulting in a similar change in severe storm activity, then the
“background” aerosol level, which is elevated with respect to
the preindustrial level even during weekends, is also likely to
be changing the storm frequency that we experience today.
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