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ABSTRACT

Precipitation is arguably the most important meteorological forcing variable in land surface modeling.
Many types of precipitation datasets exist (with various pros and cons) and include those from atmospheric
data assimilation systems, satellites, rain gauges, ground radar, and merged products. These datasets are
being evaluated in order to choose the most suitable precipitation forcing for real-time and retrospective
simulations of the Global Land Data Assimilation System (GLDAS). This paper first presents results of a
comparison for the period from March 2002 to February 2003. Later, GLDAS simulations 14 months in
duration are analyzed to diagnose impacts on GLDAS land surface states when using the Mosaic land
surface model (LSM).

A comparison of seasonal total precipitation for the continental United States (CONUS) illustrates that
the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) has the closest agreement
with a CPC rain gauge dataset for all seasons except winter. The European Centre for Medium-Range
Weather Forecasts (ECMWF) model performs the best of the modeling systems. The satellite-only products
[the Tropical Rainfall Measuring Mission (TRMM) Real-time Multi-satellite Precipitation Analysis and
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN)] suffer from a few deficiencies—most notably an overestimation of summertime precipita-
tion in the central United States (200–400 mm). CMAP is the most closely correlated with daily rain gauge
data for the spring, fall, and winter seasons, while the satellite-only estimates perform best in summer.
GLDAS land surface states are sensitive to different precipitation forcing where percent differences in
volumetric soil water content (SWC) between simulations ranged from �75% to �100%. The percent
differences in SWC are generally 25%–75% less than the percent precipitation differences, indicating that
GLDAS and specifically the Mosaic LSM act to generally “damp” precipitation differences. Areas where
the percent changes are equivalent to the percent precipitation changes, however, are evident. Soil tem-
perature spread between GLDAS runs was considerable and ranged up to �3.0 K with the largest impact
in the western United States.

1. Introduction

Over the past three decades, it has become clear that
the land surface exerts a significant impact on the at-
mospheric boundary layer via fluxes of momentum, en-
ergy, and water and therefore impacts weather and cli-

mate (Charney 1975; Charney et al. 1977; Shukla and
Mintz 1982; Sud and Smith 1985; Meehl and Washing-
ton 1988). Current weather and climate forecast models
can benefit from more accurate land surface states via
initialization of land surface boundary conditions (Ko-
ster and Suarez 2003). The evolution of key land sur-
face states such as skin temperature, soil moisture, and
snow that determine the critical fluxes above are largely
dictated by precipitation. The amount of water and/or
ice in the soil impacts the energy cycle by modulating
the partitioning of energy at the land surface between
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sensible and latent heat and also can affect the carbon
cycle through control of transpiration.

There have been many efforts to produce accurate
precipitation estimates for use as part of land surface
process studies and for weather and climate model pre-
dictions. These include rain-gauge-only estimates,
mainly model-based estimates as part of atmospheric
data assimilation systems, ground-based radar esti-
mates, satellite-only-based estimates using data from
both infrared and microwave retrievals, and merged
rain gauge and satellite estimates.

All of these estimates have pros and cons (Barrett
and Martin 1981; Arkin and Ardanuy 1989). Gauge
estimates are typically the most accurate available and
are generally taken to be the “truth” as they provide a
direct measure of precipitation at the surface and do
not rely on model parameterizations or remote sensing
methods. Rain gauges, however, can feature underesti-
mates due to wind and evaporation as well as instru-
ment and human errors (Neff 1977; Sevruk 1982;
Legates and Willmott 1990). Model-based precipitation
estimates represent synoptic-scale precipitation pro-
cesses well but often err under convective regimes at
the mesoscale (Sperber and Palmer 1995). In addition,
many of the model-based products provide estimates at
a coarser resolution than observation-based estimates
as a result of computational constraints. Ground-based
radar estimates provide excellent spatial and temporal
resolution but suffer from error associated with eleva-
tion angle, ground clutter, virga (precipitation evapo-
rating before reaching the ground), and anomalous
propagation (Fulton et al. 1998). Satellite estimates
based on infrared retrievals provide excellent temporal
coverage but are dependent on cloud-top temperatures
and can very often mistake high-level (cold) cloud tops
for precipitation (Griffith et al. 1981; Wylie 1979; Arkin
and Meisner 1987; Arkin and Xie 1994; Arkin et al.
1994). Microwave precipitation estimates are more
physically based and can provide more accurate instan-
taneous measures of precipitation but are hampered by
poor temporal sampling (mounted on polar-orbiting
satellites) and complexities in the retrieval due to cloud
microphysics and land surface characteristics (Wilheit
et al. 1991; Spencer 1993).

Xie and Arkin (1995) compared infrared and micro-
wave satellite estimates with gauge observations and
found good spatial agreement during the warm season
over the tropical Pacific Ocean but poor continental
results during the cold season, especially those based on
IR retrievals. Kondragunta and Gruber (1997) showed
that merged satellite/gauge products were more realis-
tic in the depiction of the annual and interannual cycles
as compared to model-based assimilation systems. Jan-

owiak et al. (1998) compared the Global Precipitation
Climatology Project (GPCP; Huffman et al. 1997)
merged gauge and satellite precipitation estimates with
the National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) reanalysis precipitation product and found
comparable large-scale features but substantial regional
differences. Moreover, Gruber et al. (2000) compared
the GPCP and the Climate Prediction Center (CPC)
Merged Analysis of Precipitation (CMAP; Xie and Ar-
kin 1997; Xie et al. 2003) merged gauge and satellite
precipitation datasets and found that although the spa-
tial and temporal correlations were high, significant dif-
ferences did exist as a result of slightly different input
data. The Third Precipitation Intercomparison Project
(PIP-3; Adler et al. 2001) analyzed many products and
found that the model-based precipitation estimates are
poor in the Tropics but comparable over midlatitude
continental areas.

The Global Land Data Assimilation System (GLDAS)
is a global, high-resolution, offline (uncoupled to the
atmosphere) terrestrial modeling system that incorpo-
rates satellite and ground-based observations in order
to produce optimal fields of land surface states and
fluxes in near–real time (Rodell et al. 2004). More de-
tails about the GLDAS system are provided in section
2. Because precipitation is one, if not the most critical,
atmospheric forcing variable, a comprehensive com-
parison is being conducted to determine the best pre-
cipitation forcing for GLDAS real-time simulations.

Many of the precipitation-related studies cited above
have evaluated datasets at coarse spatial and temporal
resolution and within coupled global modeling systems.
Since GLDAS runs in near–real time and at high global
resolution (1/4°), it is important to analyze products of
higher temporal and spatial resolution. This paper is
unique in that it aims to evaluate multiple higher-
resolution precipitation datasets (in both time and
space) and conduct land surface model simulations off-
line in order to evaluate the impact on land surface
states. The land modeling section of this paper focuses
on the impacts and range of sensitivity for GLDAS land
surface states when using different precipitation forcing
as opposed to validation of the states themselves with
ground truth measurements.

This paper presents the current state of work in the
analysis of precipitation datasets available to GLDAS.
Section 2 describes the precipitation datasets, outlines
the GLDAS framework including descriptions of the
Mosaic land surface model (LSM), and identifies the
types of experiments that are used to diagnose the im-
pacts on GLDAS land surface states. Section 3 provides
results in two forms: 1) an offline comparison of pre-
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cipitation datasets for the continental United States
(CONUS) and 2) analysis of the sensitivity of land sur-
face states to different precipitation datasets. Section 4
discusses the results and implications from this study
and outlines future plans.

2. Methods

a. Offline precipitation analysis

The precipitation datasets are evaluated over the
CONUS domain only. Table 1 illustrates the datasets
used, their relevant specifications, and important prod-
uct specific details. These include rain gauge estimates
from the Climate Prediction Center (CPC) (Higgins et
al. 2000), model-based estimates from data assimilation
systems, namely the National Aeronautics and Space
Administration’s (NASA) Goddard Modeling and As-
similation Office (GMAO) Goddard Earth Observing
System (GEOS; Pfaendtner et al. 1995), NCEP’s Glob-
al Data Assimilation System (GDAS; Derber et al.
1991), and that from the European Centre for Medium-
Range Weather Forecasts (ECMWF; Persson 2001), a
merged ground-based radar/rain gauge estimate [Next-
Generation Weather Radar (NEXRAD); Baldwin and
Mitchell 1997], satellite-derived products such as the
Tropical Rainfall Measuring Mission (TRMM) Real-
time Multi-satellite Precipitation Analysis from
NASA’s Goddard Space Flight Center (GSFC)
(HUFFMAN; Huffman et al. 2003), Precipitation Esti-
mation from Remotely Sensed Information using Arti-
ficial Neural Networks (PERSIANN) from the Univer-
sity of California, Irvine (Hsu et al. 1997; Hsu et al.
1999), and the CMAP rain gauge/satellite product.

The CPC rain gauge dataset is considered “truth” in
the analysis described in section 3a and includes ap-
proximately 5500 stations per day from the River Fore-
cast Center (RFC) and Climate Anomaly Database.
The Higgins product utilizes a modified Cressman
scheme and makes use of a number of quality control
measures to produce a 1⁄4° CONUS product. Figure 1
illustrates the density of gauges used in developing the
Higgins gauge product. It is important to note, how-
ever, that the Higgins gauge dataset does not correct for
systematic bias resulting from some of the deficiencies
mentioned earlier (e.g., underestimates from wind and
evaporation or instrument errors). Impacts of this are
mentioned later in the discussion. The satellite-derived
products listed above are chosen to not only evaluate
estimates using varying methods (see Table 1) but also
and more importantly these products are available in
real time and at high resolution—two main require-
ments of GLDAS.

The time period of analysis ranges from March 2002
through February 2003. Although most of the products
above are available before spring 2002, the authors
wished to compare time periods only when all the
datasets used in this study were available. The TRMM
Real-time Multi-satellite precipitation analysis
(HUFFMAN) only came online in late January 2002.
The purpose of this study was to evaluate most of the
real-time precipitation datasets available to GLDAS on
a “level playing field”—during equivalent time periods.
Seasonal sums are calculated only for time periods
when data files for all precipitation estimates are avail-
able. All precipitation products are continuous over the
CONUS domain (e.g., no missing data). Table 2 shows
the data availability for all precipitation products for
the four seasons. The sums are calculated for each pre-
cipitation estimate on the native grid of the dataset then
interpolated (budget bilinear method) to the Higgins
rain gauge grid. All datasets are taken in their original
resolution except CMAP, which originally is a pentad
2.5° � 2.5° product. To fully utilize this data in real-
time GLDAS runs, the CMAP dataset is disaggregated
in time and interpolated in space using GDAS data,
which results in a product with specifications that are
shown in Table 1. The CMAP disaggregation is accom-
plished through the following steps. First, pentad sums
are calculated for the GDAS data. Next, using the in-
dividual 6-hourly and the pentad totals of the GDAS
estimates, the ratio of the total precipitation at 6-hourly
intervals is calculated. Finally, these 6-hourly ratios are
applied to the CMAP pentad totals to produce 6-hourly
CMAP precipitation estimates.

b. Land surface modeling

1) GLDAS

The GLDAS project is an extension of the existing
and more mature North American LDAS (NLDAS)
project (Mitchell et al. 2004). Quality land surface
states from GLDAS are important for accurate land
surface model initialization and can lead to improve-
ments in weather and climate seasonal forecasts (Ko-
ster and Suarez 2003). Table 3 shows the available basic
options of the GLDAS interface. GLDAS runs at vary-
ing spatial and temporal resolutions, drives four LSMs,
and can be “forced” by both model- and observation-
based atmospheric forcing (adjusted to a consistent el-
evation definition). GLDAS utilizes a tiling approach
to represent subgrid variability based on the 1-km veg-
etation classification from University of Maryland
(UMD) (Hansen et al. 2000) [derived from data from
the Moderate Resolution Imaging Spectroradiometer
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TABLE 1. Specifications and important details of the precipitation products used in this study. All the listed datasets are currently
available.

Dataset
name

Dataset
type

Resolution
(spatial/

temporal)
Domain
(lat/lon) Source Start date Important product details

Higgins Gauge 0.25° � 0.25°,
daily

CONUS NOAA/CPC Jan 1996 Real-time version, utilizes a
Cressman analysis, �5500
stations per day, quality
assurance checks.

GEOS Model 1.0° � 1.25°,a

3 hourly
90°S–90°N,

180°
NASA GSFC Jan 2000 Utilizes conventional (rawinsondes,

dropsondes, buoys, ship reports,
surface weather obs, aircraft)
and satellite data (cloud-track
winds, TOVSb atmospheric
soundings, QuikSCAT sea
surface winds, SSM/I tropical
precipitable water, solar
backscatter ultraviolet
instrument (SBUV) ozone,
Reynolds SST.

GDAS Model �0.4°,c

6 hourly
90°S–90°N,

180°
NOAA/Environ-

mental Modeling
Center (EMC)

Long history,
Jan 2000 for
equivalent
files

Utilizes conventional (rawinsondes,
dropsondes, buoys, ship reports,
Costal-Marine Automated
Network (C-MAN) platforms,
surface weather obs, aircraft),
satellite (cloud-track winds,
GOES radiances, SSM/I, and
TRMM rain rate, SSM/I and
QuikSCAT sea surface winds,
SBUV ozone, TOVS
atmospheric soundings), and
ground radar data [NOAA
Profiler Network wind profilers,
Weather Surveillance Radar-1988
Doppler (WSR-88D) NEXRAD
velocity–azimuth display (VAD)
winds].

ECMWF Model �0.25°,
3 hourly

90°S–90°N,
180°

ECMWF Jan 1979 Utilizes conventional (rawinsondes,
dropsondes, ship reports, buoys,
aircraft, surface weather obs) and
satellite data (TOVS and SSM/I
atmospheric soundings, Meteosat
and GOES radiances, QuikSCAT
sea surface winds, SBUV ozone)

HUFFMAN Satellite 0.25° � 0.25°,
3 hourly

60°S–60°N,
180°

NASA GSFC Feb 2002 Utilizes 1) the Goddard Profiling
Algorithm (GPROF) (Kummerow
et al. 2001) applied to SSM/I and
TRMM Microwave Imager (TMI)
passive microwave measurements
and 2) the merged 4-km IR
brightness temperature dataset
from CPC (Janowiak et al. 2000)
converted to IR precipitation
estimates. The IR precipitation
estimates are calibrated to the
microwave data locally in time
and space. The final product is a
merging of these two estimates
(3B42RT).
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(MODIS)]. Soil information is based on a 5-min reso-
lution soil database described by Reynolds et al. (2000)
and includes porosity and the percentage of sand, silt,
and clay. Leaf area index (LAI) data from MODIS

[made available from the Department of Geography at
Boston University (BU)], is also incorporated in this
study (Myneni et al. 2002). This paper illustrates results
using the Mosaic LSM (Koster and Suarez 1996).

FIG. 1. An illustration of the typical density of the rain gauge network used in creating the
Higgins daily precipitation product.

TABLE 1. (Continued)

Dataset
name

Dataset
type

Resolution
(spatial/

temporal)
Domain
(lat/lon) Source Start date Important product details

PERSIANN Satellite 0.25° � 0.25°,
hourly

60°S–60°N,
180°

University of
California,
Irvine

Mar 2000 Utilizes neural network function classification/
approximation procedures. Uses the merged
4-km IR brightness temperature dataset
from CPC and converts to IR precipitation
estimates as the basis for the product. Passive
microwave measurements from TRMM TMI
are used to update neural network
parameters (Sorooshian et al. 2000).

CMAP Merged �0.4°,c

6 hourly
90°S–90°N,

180°
NOAA/CPC Jan 1979 Merged rain gauge, satellite (infrared and

microwave), and model-based product.
stimate produced in two-step process: 1) The
nongauge estimates are combined linearly
through the maximum likelihood estimation
method (linear combination coefficients are
inversely proportional to the squares of the
local random error of the individual sources).
Gauges are used to calculate the random
error: 2) the gauge data is blended with
output from the first step based on Reynolds
(1988).

NEXRAD Merged 4 km, hourly CONUS NOAA/NCEP May 1996 Merged ground radar, rain gauge product using
optimal estimation theory (Seo 1998a,b).

a GEOS4 resolution (spring/summer comparisons use GEOS3, 1.0° � 1.0° spatial resolution).
b TOVS: Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder.
c GDAS2 resolution (spring/summer comparisons use GDAS1, �0.7° spatial resolution).
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2) LAND SURFACE MODEL

Mosaic is a well-established and theoretically sound
LSM with roots in the Simple Biosphere model (SiB) of
Sellers et al. (1986) (Koster and Suarez 1996). The
model allows explicit vegetation control over the com-
puted surface energy and water balances with environ-
mental stresses acting to increase canopy resistance and
thus decrease transpiration. The scheme includes a
canopy interception reservoir and three soil reservoirs:
a thin layer near the surface, a middle layer that en-
compasses the remainder of the root zone and a lower
recharge layer for long term storage. Bare soil evapo-
ration, transpiration, and interception loss occur in par-
allel, and runoff occurs both as overland flow during
precipitation events and as groundwater drainage. A
complete snow budget is also included.

c. Simulation strategy

All GLDAS runs are global in domain, feature a 1⁄4°
spatial resolution, use a 15-min time step, cover a time
period from January 2002 through February 2003, and

use GEOS baseline atmospheric forcing. GEOS opera-
tional forecast model output uses the Physical-Space
Statistical Analysis System (Cohn et al. 1998) to assimi-
late data and utilizes observations from several plat-
forms (see Table 1). GEOS 3-hourly fields are pro-
duced on a 1° � 1.25° global grid, and GLDAS uses
incoming shortwave and longwave radiation, 2-m tem-
perature and specific humidity, 10-m zonal and meridi-
onal wind, total and convective precipitation, and sur-
face pressure from GEOS as atmospheric forcing. To
initialize the LSM, GLDAS is integrated for 10 yr at a
2.0° � 2.5° resolution using atmospheric forcing from
the year 2001 while running the Mosaic LSM. The land
surface state restart files are then interpolated to 1/4°
and each simulation is continued beginning on 1 Janu-
ary 2002. Five GLDAS runs are conducted:

1) GEOS precipitation replaced with Higgins precipi-
tation (Higgins)

2) GEOS precipitation (GEOS)
3) GEOS precipitation replaced with PERSIANN pre-

cipitation (PERSIANN)
4) GEOS precipitation replaced with HUFFMAN pre-

cipitation (HUFFMAN)
5) GEOS precipitation replaced with CMAP precipi-

tation (CMAP)

The rationale for these simulations is to demonstrate
the impact and range of sensitivity on land surface
states for distinct types of precipitation estimates—a
model-based dataset, two satellite-only datasets, and a
merged gauge/satellite dataset. The GEOS precipita-
tion product was chosen as the model-based dataset
because it showed some of the largest errors for
CONUS when compared to the Higgins gauge dataset.
Consequently, it was decided that it would be best in
order to study the range of impacts on land surface
states. For clarity and in order to directly link to the
offline CONUS comparisons, results are only shown for
the CONUS. The precipitation forcing is interpolated
to the GLDAS grid (budget-bilinear method) and re-
places the GEOS baseline precipitation.

3. Results

a. CONUS precipitation analysis

1) MARCH–MAY 2002

Figure 2 illustrates seasonal total precipitation (shad-
ing) for spring for all precipitation estimates. The ab-
solute differences between each product and Higgins
are shown by the contours. Figures 2i and 2j illustrate
the 1996–2003 average seasonal total precipitation and
standard deviation for reference in order to understand

TABLE 3. Basic options available in the GLDAS user interface.

Spatial resolution 0.25°; 0.5°; 1.0°; 2.0° � 2.5°
Temporal resolution Adjustable model time step and output

interval
Land surface model Mosaic; Community Land Model

version 2 (CLM2); Noah; Variable
Infiltration Capacity (VIC)

Forcing Various model and satellite-derived
products

Initialization None (constant value); restart file;
forcing data

Subgrid variability 1–13 tiles per grid cell (constant or
fractional cutoff)

Elevation adjustment Temperature; pressure; humidity;
longwave radiation

Data assimilation Surface temperature; snow cover
Soil classification Lookup table; Reynolds et al. (2000)
Leaf area index Lookup table; Advanced Very High

Resolution Radiometer (AVHRR)-
derived; MODIS-derived

TABLE 2. The percentage of data available for all precipitation
estimates for each season.

Dataset
Mar–Apr–

May
Jun–Jul–

Aug
Sep–Oct–

Nov
Dec–Jan–

Feb

Higgins 98.9 100.0 100.0 100.0
GEOS 100.0 100.0 100.0 100.0
GDAS 100.0 100.0 100.0 100.0
ECMWF 98.9 100.0 100.0 100.0
HUFFMAN 98.9 97.0 93.0 97.9
PERSIANN 100.0 99.3 100.0 99.5
CMAP 100.0 100.0 100.0 100.0
NEXRAD 100.0 100.0 100.0 100.0
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FIG. 2. CONUS total precipitation (mm) for Mar, Apr, and May 2002 for (a) GEOS, (b) GDAS, (c) ECMWF, (d) HUFFMAN,
(e) PERSIANN, (f) CMAP, (g) NEXRAD, and (h) Higgins gauge. Contours [white (�), blue (�)] depict the differences with Higgins
(i.e., GEOS-Higgins). The Higgins 8-yr seasonal average and standard deviation are shown in (i) and (j).
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1) where this season ranks compared to a longer-term
average (wet or dry season) and 2) how the differences
compare to normal interannual variability (over the
8-yr period).

The Higgins gauge data (Fig. 2h) shows a few main
features. These include a maximum area of precipita-
tion (500–1000 mm) in the central Mississippi and Ohio
River valleys, a dry region in the southwest (0–50 mm),
and another maximum in precipitation along the north-
west coast (up to 500–1000 mm). All products, in one
form or another, show this maximum area. The CMAP,
ECMWF, and NEXRAD estimates capture the loca-
tion, spatial variability, and magnitude the best while
the GEOS and PERSIANN datasets show a more
widespread maximum farther west and southwest. The
GDAS estimate elongates this area farther to the
northeast. Across the southwest, the model products
perform best with estimates generally ranging from 0 to
50 mm. There are large differences in the products
across the Rockies and interior west. Of the models,
ECMWF captures the location and spatial variability of
the overall pattern the best. The PERSIANN product
represents the area reasonably well, while the
HUFFMAN accumulation is very high (more than 500
mm greater than Higgins) across parts of the Rockies. It
is important to note that the CMAP product does not
capture the detail in the mountainous west because of
the low original resolution of the CMAP data, rela-
tively course resolution of GDAS data used in the tem-
poral disaggregation, and also due to the low number
of gauges in this area. Along the West Coast, the
ECMWF, NEXRAD, and HUFFMAN estimates per-
form the best while the other products underestimate
the precipitation, especially PERSIANN and GEOS
where differences from Higgins range from 2–5–300
mm and 25–200 mm, respectively.

The NEXRAD data shows the highest correlation
(Fig. 3) with the Higgins data especially across the east-
ern 2/3 of the United States and along the West Coast
where the correlation is consistently above 0.9. The cor-
relation of the CMAP product is high, and in the ab-
sence of the NEXRAD product it performs the best.
Also, it is evident that the model products offer greater
temporal agreement than the satellite-only estimates.
GDAS correlation values are above 0.7 for much of the
eastern United States and along the West Coast. The
PERSIANN and HUFFMAN satellite-only products
demonstrate lower values across the interior west and
southwest (0.0–0.5).

2) JUNE–AUGUST 2002

During the summer there are large differences be-
tween datasets when compared to the gauge data.

Figure 4 shows that the Higgins estimates are generally
200–400 mm across the eastern 2/3 of the United States
with maximums in the upper Midwest and along the
immediate Gulf Coast and Florida ranging from 500 to
1000 mm. The NEXRAD, CMAP, and ECMWF esti-
mates offer the best agreement in these areas with the
ECMWF showing the greatest accumulation. The
GEOS and GDAS model products do show similar pat-
terns of precipitation but produce accumulations sig-
nificantly larger (500–1000 mm and greater) and more
widespread, especially in the southeast United States,
than the Higgins gauge data. This finding is consistent
with errors typical of model-based precipitation under
convective regimes (e.g., Sperber and Palmer 1995)
such as that found during this time of year across the
southeast. PERSIANN and HUFFMAN show much
greater precipitation across the plains and upper Mid-
west (greater by 300 mm). A plausible explanation for
this positive bias is mentioned in section 4. This finding
is at odds with Xie and Arkin (1995), which docu-
mented good agreement of these types of products with
gauge observations during the warm season.

Correlation of daily precipitation (Fig. 5) during
summer is not as high as spring. The more convective
(and so variable) nature of precipitation during the
summer months does not make this a surprise. Once
again the NEXRAD estimate offers the best correla-
tion, with values ranging greater than 0.9 over most of
the eastern 2/3 of the United States and upper West
Coast. The satellite estimates show better correlation
(0.6–0.8) than the model products especially across the
plains and Midwest—the same region for which these
products showed the large precipitation accumulation
described above. Xie and Arkin (1995) also reported
high warm season correlations for midlatitude land ar-
eas (0.6–0.8). The correlation values for model esti-
mates are much lower ranging from 0.1 to 0.5 across
large areas of this region, with GDAS illustrating the
best correlation of the three products. This difference
between the satellite and model-based products is most
likely a result of the more convective nature of precipi-
tation during this time of the year. It is clear from this
figure that the satellite products seem to better diag-
nose the timing of organized precipitation events across
the central United States but tend to overestimate their
magnitude.

3) SEPTEMBER–NOVEMBER 2002

The difference in seasonal precipitation is the least
during the fall season (Fig. 6) and generally range be-
low �100 mm. The Higgins gauge data shows generally
300–400 mm of precipitation across the eastern 1/3 of
the United States with a maximum along the Gulf
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FIG. 3. CONUS correlation of daily precipitation with Higgins gauge data for Mar, Apr, and May 2002 for (a) GEOS, (b) GDAS,
(c) ECMWF, (d) HUFFMAN, (e) PERSIANN, (f) CMAP, and (g) NEXRAD.
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FIG. 4. CONUS total precipitation (mm) for Jun, Jul, and Aug 2002 for (a) GEOS, (b) GDAS, (c) ECMWF, (d) HUFFMAN,
(e) PERSIANN, (f) CMAP, (g) NEXRAD, and (h) Higgins gauge. Contours [white (�), blue (�)] depict the differences with Higgins
(i.e., GEOS-Higgins). The Higgins 8-yr seasonal average and standard deviation are shown in (i) and (j).
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FIG. 5. CONUS correlation of daily precipitation with daily Higgins gauge data for Jun, Jul, and Aug 2002 for (a) GEOS, (b)
GDAS, (c) ECMWF, (d) HUFFMAN, (e) PERSIANN, (f) CMAP, and (g) NEXRAD.
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FIG. 6. CONUS total precipitation (mm) for Sep, Oct, and Nov 2002 for (a) GEOS, (b) GDAS, (c) ECMWF, (d) HUFFMAN,
(e) PERSIANN, (f) CMAP, (g) NEXRAD, and (h) Higgins gauge. Contours [white (�), blue (�)] depict the differences with Higgins
(i.e., GEOS-Higgins). The Higgins 8-yr seasonal average and standard deviation are shown in (i) and (j).

584 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 6

Fig 6 live 4/C



Coast ranging from 500 to 1000 mm. There is a second-
ary maximum (300–400 mm) across the upper Missis-
sippi Valley. All of the products show these main fea-
tures in a similar way with the CMAP, ECMWF, and
HUFFMAN estimates (other than the interior west)
the closest to the gauge data. GEOS and GDAS indi-
cate greater accumulations along the Gulf Coast with
values ranging from 500 to 1000 mm across some of the
region. GDAS also produces greater and more uniform
precipitation across the interior west while the ECMWF
data represent the West Coast the best of the model
products. The PERSIANN satellite estimate does not
represent the West Coast maximum well where differ-
ences range from �25 to 100 mm.

The correlation of daily precipitation (Fig. 7) during
the fall is mixed. NEXRAD and CMAP show the best
correlation with the Higgins daily precipitation product
with values consistently ranging above 0.9 mainly
across the eastern United States and along the West
Coast. Of the model products, GDAS and ECMWF
show a greater correlation especially across the north-
east and West Coast. The two satellite products are
very similar in their values, which generally range from
0.5 to 0.9 in the east but are lower in the west.

4) DECEMBER 2002–FEBRUARY 2003

Figure 8 illustrates the wintertime total precipitation
for the Higgins gauge dataset and shows three interest-
ing features. These include a southwest-to-northeast
pattern of precipitation from the Gulf Coast into the
northeast (300–500 mm), a dry area in the upper Mid-
west (less than 50 mm), and a high accumulation along
the northwest coast (500–1000 mm). The ECMWF,
CMAP, NEXRAD, and GDAS datasets do very well
with these three features although the CMAP accumu-
lation is lower across the northwest coast. Both the
ECMWF and GDAS products accurately represent the
West Coast and eastern areas but overestimate the pre-
cipitation across the central United States (25–50 mm).
The PERSIANN and GEOS datasets do not depict the
northwest coast maximum well (underestimates of up
to �200–300 mm) but are comparable to the gauge data
in the other areas of the United States. On the other
hand, the other satellite-only product, the HUFFMAN
dataset, accurately captures the West Coast maximum.
A substantial positive bias is evident in the HUFFMAN
product across areas of the interior west and northern
plains and is discussed later in section 4.

The correlation of daily precipitation (Fig. 9) illus-
trates clear differences between the satellite-only pre-
cipitation estimates and the other products. The
NEXRAD, CMAP, ECMWF, GDAS, and GEOS cor-
relations values are comparable, with the highest in the

east and along the West Coast (0.7–0.9). The GEOS
values are the lowest of the five products. The
PERSIANN and HUFFMAN correlation ranges from
0.5 to 0.8 across the southeast United States, which is
similar to the other products although slightly less. The
correlation, however, is substantially lower (0.0–0.5) for
both of these estimates across the upper Midwest, the
Rockies, and the interior west. These results are con-
sistent with the findings of Xie and Arkin (1995) which
showed correlation values generally ranging from 0.0 to
0.5 for the cold season when comparing the Geostation-
ary Operational Environmental Satellite (GOES) pre-
cipitation index (GPI) infrared product (Arkin and
Meisner 1987) and a microwave product based on Spe-
cial Sensor Microwave Imager (SSM/I) data (Grody
1991) with the Global Precipitation Climatology Center
(Schneider et al. 1993) gauge dataset.

5) CONUS SUMMARY

Table 4 summarizes the results for the entire
CONUS domain and lists both the spatial root-mean-
square error (rmse) of seasonal totals and mean corre-
lation of daily precipitation between each product and
Higgins. The table shows that the CMAP product indi-
cates the least error (excluding NEXRAD) over all
times of the year except during the winter months. The
ECMWF precipitation demonstrates the least error of
the model products. The satellite products indicate the
largest errors during all seasons. The seasonal precipi-
tation totals and subsequent error statistics summarized
above match well the findings of PIP-3, which com-
pared 31 different model, satellite, merged, and clima-
tological precipitation products over a 12-month period
for 1992. Midlatitude land results showed the merged
satellite/gauge products had the lowest errors (10–20
mm), followed by the model-based products (25–50
mm), with the ECMWF model indicating the lowest
error (31 mm). The satellite product errors were
greater and generally ranged from 25 to 75 mm.

The CMAP product (excluding NEXRAD) shows
the highest correlation throughout the year except dur-
ing the summer months where it is comparable to the
satellite-only products. During the spring and winter,
respectively, the model products showed high correla-
tion while the satellite indicated the lowest correlation.
The satellite products, however, indicate the highest
correlation during the summer months. The encourag-
ing results shown in this study for the CMAP product
are consistent with improvement of precipitation esti-
mates when merged with gauge data as part of GPCP
(Krajewski et al. 2000). Moreover, correlation for
merged precipitation estimates were shown to be ex-
tremely high (0.9–1.0) as part of PIP-3. Model-based
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FIG. 7. CONUS correlation of daily precipitation with daily Higgins gauge data for Sep, Oct, and Nov 2002 for (a) GEOS, (b)
GDAS, (c) ECMWF, (d) HUFFMAN, (e) PERSIANN, (f) CMAP, and (g) NEXRAD.
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FIG. 8. CONUS total precipitation (mm) for Dec 2002, Jan 2003, and Feb 2003 over CONUS for (a) GEOS, (b) GDAS, (c) ECMWF,
(d) HUFFMAN, (e) PERSIANN, (f) CMAP, (g) NEXRAD, and (h) Higgins gauge. Contours [white (�), blue (�)] depict the
differences with Higgins (i.e., GEOS-Higgins). The Higgins 8-yr seasonal average and standard deviation are shown in (i) and (j).
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FIG. 9. CONUS correlation of daily precipitation with daily Higgins gauge data for Dec 2002, Jan 2003, and Feb 2003 for (a)
GEOS, (b) GDAS, (c) ECMWF, (d) HUFFMAN, (e) PERSIANN, (f) CMAP, and (g) NEXRAD.
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products indicated slightly lower correlation (0.7–0.8)
with the ECMWF, indicating the best correlation while
the satellite products illustrated a wider range of values
from 0.4 to 0.6.

b. GLDAS simulations

The results in this section focus on some important
GLDAS land surface states such as top 1-m volumetric
soil water content (SWC), soil temperature (Tsoil) (a
temperature in the deep soil unaffected by diurnal
variations), and snow water equivalent (SWE). These
are integrated quantities and represent important vari-
ables for land surface model process and initialization
studies. Monthly averaged outputs from the five simu-
lations outlined in section 2c are presented for August
2002 and February 2003 for CONUS.

Figure 10a illustrates average SWC (expressed as a
percentage) from the Higgins simulation (top row) and
the percent differences (shading) between Higgins and
the GEOS, PERSIANN, HUFFMAN, and CMAP runs
for August 2002 (next four rows). The contours show
the percent differences in seasonal precipitation be-
tween each precipitation product and Higgins taken
from results shown in section 3a. The Higgins simula-
tion shows that the greatest absolute SWC at the end of
the summer is in Florida and along sections of the Gulf
Coast (near 40%). Widespread moderate SWC is evi-
dent across much of the central United States and gen-
erally ranges from 16% to 32% while low SWC
(�12%) exists across most of the western United States.

The GEOS, PERSIANN, and HUFFMAN simula-
tions all show substantial differences (shaded areas)
from the observed precipitation (Higgins run). The pat-
tern of differences, however, varies considerably. For
instance, the GEOS simulation depicts a drier land sur-
face across the west (generally 10%–50% less) but a
much more wet southern and eastern United States
(greater than 100% in some areas). The PERSIANN
and HUFFMAN runs indicate generally a much more

moist land surface across the central United States and
most of the west with the exception of the immediate
northwest coast. This pattern is consistent with the
overestimation of summertime precipitation by the sat-
ellite products over the central United States (Fig. 4).
Also, these runs show greater SWC across the west
(especially HUFFMAN) than does the Higgins simula-
tion. The HUFFMAN SWC is high across the Rockies
and sections of the northern plains because of leftover
soil moisture as a result of the large overestimation of
precipitation during the spring (Fig. 2). The precipita
tion during this time, although frozen initially, later melts
during the late spring and summer. The CMAP simula-
tion, on the other hand, illustrates substantially less error
from the Higgins simulation where percent errors do not
exceed 5%–20% except along the immediate northwest
coast, and this is consistent with the offline precipita-
tion comparison findings in sections 3a(1) and 3a(2).

Soil moisture plays a major role in evapotranspira-
tion and in turn substantially impacts both surface and
deeper layer soil temperatures through modifications in
the surface energy budget. Consequently, it is impor-
tant to diagnose the magnitude of changes in Tsoil when
using different precipitation forcing. Figure 10b illus-
trates Tsoil output from the five GLDAS runs in an
equivalent format as Fig. 10a (except differences are in
absolute terms) and shows that the greatest differences
between the simulations are located in the western
United States. After the summer season, the GEOS
and CMAP runs indicate a warmer land surface, while
the PERSIANN and HUFFMAN runs indicate a cooler
land surface. In both cases the differences are large and
approach �3.0 K in some areas. In the eastern United
States, the differences from the Higgins land surface are
smaller for all simulations—generally less than �0.5 K.

Figure 11a illustrates how SWC evolves by the end of
February 2003. At this time, Higgins shows a more
moist eastern CONUS (up to 36%–40%) and West
Coast (�40%) while the northern plains was generally

TABLE 4. Spatial root-mean-square error of seasonal total precipitation (mm) and mean correlation of daily precipitation between
each product and Higgins for the entire CONUS domain. The lowest error and highest correlation for each season is highlighted in bold
(not including the NEXRAD product). MAM: Mar–Apr–May; JJA: Jun–Jul–Aug; SON: Sep–Oct–Nov; DJF: Dec–Jan–Feb.

CONUS rms error (mm) CONUS correlation

Dataset MAM JJA SON DJF MAM JJA SON DJF

GEOS 94 245 88 115 0.62 0.41 0.65 0.76
GDAS 95 168 78 66 0.72 0.53 0.77 0.82
ECMWF 69 108 66 56 0.66 0.41 0.68 0.80
PERSIANN 132 189 90 131 0.51 0.56 0.51 0.40
HUFFMAN 294 222 94 286 0.47 0.54 0.53 0.36
CMAP 69 75 60 90 0.72 0.55 0.78 0.82
NEXRAD 74 67 73 101 0.79 0.77 0.85 0.78
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FIG. 10. Monthly average (a) volumetric soil water content (%) and (b) soil temperature for Aug 2002. (top row) Higgins GLDAS
runs and (bottom four rows) differences between Higgins and GEOS, PERSIANN, HUFFMAN, and CMAP GLDAS runs. Contours
[black (�), red (�)] are the percent precipitation differences taken from sections 3a(1) and 3a(2).
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FIG. 11. Monthly average (a) volumetric soil water content (%) and (b) soil temperature for Feb 2003. (top row) Higgins GLDAS
runs and (bottom four rows) differences between Higgins and GEOS, PERSIANN, HUFFMAN, and CMAP GLDAS runs. Contours
[black (�), red (�)] are the percent precipitation differences taken from sections 3a(1)–(4).

OCTOBER 2005 G O T T S C H A L C K E T A L . 591

Fig 11 live 4/C



unchanged. The lowest SWC is evident across the
northern Rockies (�12%). Substantial differences re-
main between the other simulations and the states pro-
duced by Higgins. The GEOS run becomes more in line
with that shown by Higgins in the eastern CONUS
where differences now range from �5% to 50%. The
PERSIANN and HUFFMAN runs also indicate drier
conditions in the eastern United States from August
2002 and now indicate small negative differences (5%–
50%). Both simulations remain more wet across most
of the central United States and interior west. In addi-
tion, the PERSIANN run indicates a substantial area of
drier conditions along the West Coast, which is consis-
tent with the precipitation comparison during the win-
ter season (Fig. 8e). The CMAP simulation continues to
show the least error when compared to the Higgins run
but greater negative differences are evident across the
western United States as compared to August.

Substantial differences remain between the simula-
tions at the end of February for Tsoil. The GEOS run
illustrates several changes including a weakening of the
warmer temperatures in the interior west, a cooler land
surface across the northern plains, and generally com-
parable temperatures across the eastern United States.
The PERSIANN and HUFFMAN runs both show a
slightly warmer land surface in the eastern United
States with a cooler land surface in the west, especially
for HUFFMAN. The CMAP simulation indicates a
substantially warmer land surface in the western United
States (�3 K in some areas)—a signal enhanced from
August 2002.

Another important quantity predicted by land sur-
face models is SWE. Figure 12 illustrates SWE for the
Higgins simulation and the differences from Higgins of
the GEOS, PERSIANN, HUFFMAN, and CMAP
simulations during February 2003. The Higgins simula-
tion indicates higher SWE in the interior west (100–400
kg m�2) and also in the northeast United States (100–
200 kg m�2). The PERSIANN and CMAP simulations
both underestimate the SWE totals in the northeast
United States and Great Lakes by generally 25–100 kg
m�2 while the HUFFMAN and GEOS runs generally
overestimate this feature. A common feature of the SWE
values across much of the western United States is that
the GEOS, PERSIANN, and CMAP runs generally un-
derestimate SWE up to and greater than 100 kg m�2 in
some areas. The HUFFMAN run substantially over-
estimates SWE in this area and is a result of the over-
estimation of precipitation during the late fall and
winter—initiating by complications due to microwave
precipitation estimates in frozen surface areas (this idea
is discussed in section 4). Figure 12 illustrates SWE for the
month of February. The snowpack, however, generally

FIG. 12. Monthly average snow water equivalent (kg m�2) for Feb
2003. (top row) The Higgins GLDAS run and (bottom four rows)
differences between Higgins and GEOS, PERSIANN, HUFFMAN,
and CMAP GLDAS runs. Contours [black (�), red (�)] are
the percent precipitation differences taken from sections 3a(1)–(4).
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shows the greatest variability during the later spring-
time melt period. Therefore, it is important to note that
the evolution and sensitivity of the snowpack for dif-
ferent precipitation forcing may be greater during the
springtime melt period than that illustrated here.

Figures 10–12 can be used to link the differences in
precipitation described in section 3a quantitatively with
the subsequent impacts on land surface states evident
by the GLDAS simulations. Several main points can be
made by evaluating these figures. Focusing on SWC
(Figs. 10, 11a), it can be seen in both seasons that the
percent differences in GLDAS SWC typically are less
than the percent differences in precipitation (contours)
taken from section 3a. The implication of this is that the
GLDAS system, specifically the Mosaic LSM, generally
acts to “dampen” the imposed precipitation differ-
ences. There is, however, substantial variation in the
degree of damping over the CONUS, and in some areas
the percent differences in SWC are or nearly are
equivalent to the percent forcing differences. For ex-
ample, this can be seen with the GEOS simulation in
New England, with the PERSIANN simulation in the
mid-Atlantic and Northeast, and with the CMAP simu-
lation in the southeast and the northern Great Lakes.
The extent of damping is determined by both land sur-
face characteristics (vegetation type and soil type) and
surface meteorology (amount of precipitation, incom-
ing radiation, and low-level wind speed, temperature,
and humidity) as these variables impact the nonlinear
processes in the soil/canopy system.

For soil temperature during the spring and summer
months, negative differences in precipitation tend to
result in larger absolute increases in temperature than
do equivalent percent positive differences in precipita-
tion that result in absolute decreases in temperature
(Fig. 10b). By the end of the simulations in February
2003, however, there are some interesting changes,
brought on by cold-season processes. The precipita-
tion–soil temperature relationship seen in Fig. 10b dur-
ing the summer (greater precipitation, cooler tempera-
tures or less precipitation, warmer temperatures)
breaks down during the winter season in some areas,
and Tsoil is not as closely linked to precipitation as
SWC. An example of this is illustrated by looking at the
GEOS simulation in Fig. 11b where in the northern
plains, most of the region indicates a cooler Tsoil despite
areas of negative percent differences in precipitation.
During the winter, GEOS produces greater precipita-
tion than Higgins (contours in Fig. 8a) and since tem-
peratures are cold, most of this precipitation falls in the
form of snow (see Fig. 12b) and therefore results in a
cooler soil system despite less precipitation.

4. Discussion

a. CONUS precipitation comparison

The CONUS precipitation comparison outlined in
section 3a indicates a wide range of accuracies when
comparing several types of precipitation estimates with
the Higgins gauge dataset. These differences are depen-
dent not only on the types of products but also with
season. Excluding the NEXRAD ground radar, the
CMAP precipitation estimates agree most closely with
the Higgins gauge data. Average CONUS rmse shows
that the CMAP product performs the best for the
spring, summer, and fall periods. Moreover, compari-
sons of the correlation of daily precipitation illustrate
that the CMAP estimates are superior during all sea-
sons.

It is important to note that the CMAP and Higgins
gauge networks are independent. The Higgins dataset
includes approximately 5500 gauges from the River
Forecast Center and Climate Anomaly Database, while
the CMAP dataset utilizes far fewer (�1200) gauges
from the GTS network. Consequently, although it is
possible that these products may overlap to some de-
gree, they can be considered for all intents and pur-
poses independent. In this study, the comparison of
CMAP with gauge data is only conducted for CONUS
so that there may be a question as to whether the va-
lidity of the results can be extrapolated globally. As
seen in Fig. 13, the number of rain gauges in most areas
around the world is similar to that available in the
CONUS and sufficient for the authors to make the as-
sumption that the good performance demonstrated
over the CONUS domain applies in most areas globally.

There are important issues highlighted by these re-
sults that require further discussion. Although the Hig-
gins gauge data is used for verification in this study, as
mentioned in the introduction, there are nontrivial er-
rors due to “undercatch” of precipitation when using
rain gauge datasets. The Higgins gauge data does not
correct for these systematic errors as some other
datasets (Adams and Lettenmeier 2003). The findings
presented here would benefit from additional compari-
son using a dataset of this type. Since the majority of
the precipitation estimates are greater than the Higgins
product, it is reasonable to expect the errors presented
here to be less. Moreover, the CMAP and NEXRAD
estimates would also agree more closely with the other
products as they utilize gauge observations as well.

The good performance of the model-based assimila-
tion products, relative to the satellite methods, is an
important finding of this study. These precipitation es-
timates were, in general, more accurate (both in rmse
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and correlation) than the satellite-derived products,
with the ECMWF data showing the greatest accuracy
of the three models. The good performance of the
ECMWF models highlights an important implication—
that assimilating atmospheric observations (those as
part of the ECMWF product for CONUS), under cer-
tain circumstances, appears to rival the ingesting of
ground gauge measurements as part of the CMAP
product. The ramifications of this are clear and note-
worthy for land surface modeling as limitations as a
result of rain gauge density may be lessened.

Although the model products generally perform well
relative to the satellite estimates, there are some excep-
tions, however. First, during the fall season, the satellite
product and model estimate errors are comparable.
Second, the correlations of daily precipitation during
the summer across the central United States are greater
for the satellite estimates. The higher degree of tempo-
ral agreement during summer is important because it
shows that although these products overestimate the
total rainfall during the period, the timing of intra- and
interdaily areas of precipitation associated with meso-
scale convective systems are more accurately repre-
sented by the satellite estimates as opposed to the
model-based products. Along these lines, these findings

warrant further investigation as they have implications
in GLDAS land surface modeling by positively impact-
ing the simulation of surface runoff during the warm
season where precipitation often exists over a limited
area with greater daily variability.

The satellite-only products suffer from two important
biases for CONUS when compared to the other pre-
cipitation estimates in section 3a. These are 1) an over-
estimate of precipitation for the central United States
during the summer and 2) an overestimate of precipi-
tation in the northern central plains and mountainous
west during the spring and winter. The latter appears
limited to the HUFFMAN precipitation estimate. The
summertime overestimation of precipitation by the sat-
ellite-only products is a result of utilizing geostationary
IR data and detecting cold cloud-top temperatures
from high cloudiness. High cloud tops from convective
systems (e.g., anvils, etc.) during the summer season are
most likely responsible for this widespread area of
greater precipitation for these two products. Figure 14a
depicts cirrus reflectance from MODIS for the June–
August 2002 time period and shows a local maximum in
the central United States as compared to the rest of
North American land areas. Although the extent and
magnitude of this cirrus area is smaller than that for

FIG. 13. The number of gauges in each 2.5 � 2.5 grid used in the generation of the CMAP precipitation
estimate.
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deep convection in the Tropics, it nonetheless indicates
the presence of mid–high, cold cloud tops in the central
United States. The CMAP estimate does not suffer
from this bias since its estimates are constrained using
available rain gauge data.

The second bias, mainly affecting the HUFFMAN
estimate, is a result of the application of passive remote
sensing techniques (Table 1) in the presence of frozen
surfaces. Passive microwave precipitation retrieval
schemes falter and then fail near regions of frozen,
snowy, or icy surfaces. Under these circumstances, for
the HUFFMAN product, the microwave estimate is not
used, but in order to provide a continuous precipitation
field, the IR estimate at the same location must be
calibrated by a microwave estimate from a nearby lo-

cation through interpolation (G. J. Huffman, NASA
GSFC, 2004, personal communication). Unfortunately,
it is often the case that the clouds and land surface are
much colder than the surrounding areas that were used
as part of the interpolation process, and this produces
large precipitation estimates (G. J. Huffman, NASA
GSFC, 2004, personal communication). Figure 14b il-
lustrates the percentage of snow cover for December
2002 and January and February 2003 for North
America and illustrates greater than 90% snow cover
across areas of the northern plains, the Rockies, and
near the Great Lakes. These areas match very well,
especially for January 2003, with coincident areas of
high wintertime precipitation totals indicated by the
HUFFMAN dataset in section 3a (Fig. 8d). This bias is

FIG. 14. (a) Cirrus reflectance for Jun, Jul, and Aug 2002 from MODIS (red circles highlight the North American land area) and
(b) percentage of snow cover for Dec 2002 and Jan and Feb 2003. (From Rutgers University Global Snow Laboratory; red circles
indicate the highest frequency of snow cover coincident with the high HUFFMAN precipitation estimates.)
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expected to be removed with the upcoming reprocess-
ing of the TRMM Real-time Multi-satellite Precipita-
tion Analysis (G. J. Huffman, NASA GSFC, 2004, per-
sonal communication).

The differences between precipitation estimates in
many cases throughout this study are greater than that
shown by normal interannual variability. In general, the
standard deviation of seasonal precipitation does not
exceed 200 mm except during the winter along the West
Coast. The highest values are across the southeast
United States and along the West Coast except during
the summer when higher values are also prevalent
across the central United States. For instance, the dif-
ferences of the satellite-only estimates during the sum-
mer in the central plains are 2–5 times greater and
clearly indicate the negative potential impact on land
surface states over longer-term GLDAS simulations.

b. GLDAS land surface states

The GLDAS simulations indicate that there is a con-
siderable impact on land surface states when using dif-
ferent precipitation forcing. The percent differences in
SWC ranged from �75% to �100% for both summer
and winter seasons and changes in Tsoil ranged up to
�3.0 K. The greatest differences generally are located
over the western CONUS, especially for Tsoil. Gener-
ally speaking, the percent differences in SWC are 25%–
75% less than the percent differences in precipitation
forcing, indicating a considerable “damping” of initial
precipitation differences. There are instances, however,
where the land surface state differences are of equiva-
lent magnitude to that of the precipitation forcing.

The range of differences cited above are large and
most likely will produce considerable impacts on sea-
sonal weather and climate forecasts when used for land
surface model initialization. Rind (1982) found that a
75% decrease in soil moisture led to substantially
higher surface temperature and decreased precipita-
tion. Oglesby and Erickson (1989) showed that a de-
crease in soil wetness from 0.11 to 0.01 (90% decrease)
produced an increase in surface temperature, increased
ridging aloft, and a northward shift of the jet stream. A
better simulation of anomalous rainfall in 1993 was de-
scribed by Beljaars et al. (1996) when moving from soil
moisture initialized with 25%–100% field capacity
(75% range). Schär et al. (1999) reported that precipi-
tation was heavily dependent on soil moisture when
conducting experiments of anomalies 50% below and
100% above the control. Koster and Suarez (2003)
found that when using “realistic” soil moisture (char-
acteristic ensemble anomalies of 10% saturation) a sub-
stantial and statistically significant impact on summer-

time precipitation for some continental regions, includ-
ing the CONUS domain, was evident.

One can interpret the percent differences between
the different GLDAS simulations as “pseudoanoma-
lies” where the Higgins GLDAS simulation is taken to
be the standard or climatological land surface state. In
this case, the “anomalies” shown here range from
�75% to �100% and are well within or above the
range of cited values above that resulted in substantial
and statistically significant impacts on monthly and sea-
sonal weather forecasts. The findings of the above stud-
ies in combination with the results presented here in-
dicate the importance of using the most accurate pre-
cipitation forcing, as large differences often are directly
translated into equally large percent differences in land
surface states such as SWC, Tsoil, and SWE, which in
turn result in extensive changes in seasonal weather
prediction through modification of precipitation and
surface temperature—among other variables.

Based on the findings from this study, the GLDAS
group plans to use the disaggregated CMAP precipita-
tion data described here for its precipitation forcing. A
comprehensive evaluation of the representation of the
diurnal cycle and distribution of precipitation rate for
the products described in this study is ongoing. If nec-
essary, the authors plan to adjust the temporal disag-
gregation methods when using the pentad CMAP pre-
cipitation data based on these findings.

The GLDAS team plans to address a number of the
shortcomings of this study in the near-term. First, we
plan to extend the CONUS analysis of precipitation
totals and correlation to additional years of data. We
plan to also utilize the recently released CPC morphing
precipitation dataset (CMORPH) made available by
the National Oceanic and Atmospheric Administration
(NOAA)/CPC in future comparisons. Second, the
problems with the HUFFMAN precipitation over land
areas during the cold season makes comparison of its
estimates difficult for some areas and we plan to adjust
our analysis when the reprocessed product is available.
Third, in this paper the use of observations to validate
the precipitation estimates are limited to the CONUS.
We plan to utilize other rain gauge networks across the
globe in order to more fully measure the reliability of
all of these products.

In the long term, a research goal that the GLDAS
team plans to proceed toward is to objectively classify
precipitation statistics (i.e., totals, daily correlation, di-
urnal cycle, etc.) based on the meteorological environ-
ment in order to understand in a quantified manner
which product(s) perform the best under a given me-
teorological environment. Armed with this informa-
tion, simulations can be performed wherein different
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precipitation estimates are “switched on and off” de-
pending on the current meteorological situation in a
given geographical location during a given season. An
evaluation would then be performed as to the impacts
of using this combination of precipitation datasets as
compared to using each individual dataset alone.
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