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ABSTRACT

In this study, based on the number of modes, the original three-dimensional Lorenz model (3DLM) is

generalized with two additional modes [five-dimensional Lorenz model (5DLM)] to examine their role in the

predictability of the numerical solutions and to understand the underlying processes that increase the solution

stability. As a result of the simplicity of the 5DLMwith respect to existing generalized Lorenz models (LMs),

the author is able to obtain the analytical solutions of its critical points and identify the role of the major

nonlinear term in the solution’s stability, which have previously not been documented in the literature. The

nonlinear Jacobian terms of the governing equations are analyzed to highlight the importance of selecting

newmodes for extending the nonlinear feedback loop of the 3DLMand thus effectively increasing the degree

of nonlinearity (i.e., the nonlinear mode–mode interactions) in the 5DLM. It is then shown that numerical

solutions in the 5DLM require a larger normalized Rayleigh number r for the onset of chaos and are more

predictable than those in the 3DLM when r is between 25 and 40 and the Prandtl number s is 10. The

improved predictability is attributable to the negative nonlinear feedback enabled by the new modes. The role

of the (negative) nonlinear feedback is further verified using a revised 3DLM with a parameterized nonlinear

eddy dissipative term. The finding of the increased stability in the 5DLM and revised 3DLMwith respect to the

3DLM is confirmed with the linear stability analysis and the analysis of the Lyapunov exponents using different

values of r and s. To further understand the impact of an additional heating term, results from the 5DLM and

a higher-dimensional LM [e.g., the six-dimensional LM (6DLM)] are analyzed and compared.

1. Introduction

Since the 1960s, when Lorenz presented the sensitive

dependence of numerical solutions on initial conditions

(ICs) with simplified governing equations describing

a two-dimensional, forced, dissipative Rayleigh–Benard

convection, it has been widely recognized that perfect

deterministic weather predictions are impossible. In his

breakthroughmodeling study where three spatial Fourier

modes were used to represent the streamfunction and

temperature perturbations of the convection, Lorenz

(1963a) showed that numerical results become chaotic,

with sensitivities to ICs, when a normalized Rayleigh

number r exceeds a critical number (e.g., rc 5 24.74 for

a constant Prandtl number s 5 10). This model is

referred to as a three-dimensional Lorenz model (3DLM)

in the present study. Lorenz associated the chaotic be-

havior with the inclusion of the nonlinearity. Subsequent

to his follow-up presentation in 1972 (Lorenz 1972),

the term ‘‘butterfly effect’’ was introduced to describe the

sensitive dependence on ICs; later this became a meta-

phor (or symbol) for indicating that small-scale pertur-

bations can make a huge impact on large-scale flows. In

this study, the former and latter definitions are referred

to as the butterfly effect of the first and second kind, re-

spectively. The studies by Lorenz laid the foundation for

chaos theory, which was viewed as the third scientific

revolution of the twentieth century after relativity and

quantum mechanics and is being applied in various fields

including earth science, mathematics, philosophy, and

physics (e.g., Gleick 1987; Anthes 2011).

Since the publications of Lorenz (1963a, 1972), views

regarding the predictability of weather and climate have

been significantly influenced by the butterfly effect (of

the first and second kinds) or chaos theory (Solomon

et al. 2007, 96–97; Pielke 2008). It is well accepted that

weather is chaotic with only a finite predictability, and it
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is believed that the source of chaos in the 3DLM is the

nonlinearities. Based on this understanding, one might

expect that solutions to the equations with more non-

linear modes would become more chaotic, equivalent to

stating that the appearance of small-scale features and

their nonlinear effects, resolved by the additional modes,

maymake the systemmore chaotic. Since high-resolution

global modeling approaches (e.g., Atlas et al. 2005; Shen

et al. 2006a,b), which require tremendous computing re-

sources, have become a current trend for weather pre-

diction and climate projection, it becomes important

to understand the role of the increased resolutions in

the solution’s stability (or predictability) of the models.

Three kinds of predictability that were proposed by

Lorenz (1963b) include 1) intrinsic predictability that is

dependent only on a flow itself, 2) attainable predict-

ability that is limited by the imperfect initial conditions,

and 3) practical predictability that shows dependence on

(mathematical) formulas. The last type is discussed in this

study by deriving a generalized Lorenz model (LM) and

comparing its predictability with that of the 3DLM. In the

literature, the term ‘‘a generalized LM’’ has been used to

refer to the model that has modes more than the 3DLM.

Previous studies with the inclusion of additional Fourier

modes have suggested that a larger r is required for the

onset of chaos in generalizedLMs [e.g., rc of approximately

43.5 in the generalized LM with 14 modes (Curry 1978)].

As compared to the aforementioned studies, a more sys-

tematic study for examining the resolution dependence of

chaotic solutionswas conducted numerically byCurry et al.

(1984). They observed an irregular change in the degree of

chaos as the resolution increased froma low resolution (i.e.,

three Fourier modes) and obtained a steady-state solution

with sufficiently high resolution. However, as the resolu-

tion of the numerical weather models is finite and has al-

ways been increasing incrementally, it is important to

understand the role of the incremental degree of non-

linearity in the solution’s stability. The term ‘‘degree of

nonlinearity’’ is loosely defined as the degree of mode–

mode interactions and is introduced to emphasize that the

nonlinearities in numerical models such as the 3DLM are

truncated (or finite) as a result ofmode truncation.Amore

specific definition is given in section 3a. In a recent study of

the routes to chaos in generalized LMs, Roy andMusielak

(2007a) emphasized the importance in selecting modes

that can conserve the system’s energy in the dissipationless

limit. Furthermore, by analyzing the onset of chaos in the

3DLM and different generalized LMs with five and up to

nine modes, Roy and Musielak (2007a,b,c) reported that

some generalized LMs required a larger r (rc; 40) for the

onset of chaos, but others displayed a comparable (e.g., rc
; 24.74 in one of their LMs with six modes) or even

a smaller rc (e.g., rc ; 22 in their LM with five modes).

The aforementioned studies give an inconclusive answer

to the question of whether higher-dimensional LMs are

more stable (predictable). A possible reason for this

discrepancy among existing generalized LMs is pre-

sumably related to the various truncations of modes,

leading to different degrees of nonlinearity. This is ad-

dressed using the following question in this study: under

which conditions could the increased degree of non-

linearity improve solution stability?We will address this

question with generalized LMs in this study.

In this study, we extend the 3DLM to the five-

dimensional LM (5DLM) by including two additional

Fourier modes with two additional vertical wavenumbers.

In a companion paper (B.–W. Shen 2013, unpublished

manuscript), we extend the 5DLM to the six-dimensional

LM (6DLM) with an additional mode. Although the

nonlinear mode–mode interactions in the 5DLM (6DLM)

are still much less complicated than those in global

weather models (e.g., Shen et al. 2006a,b) or the model

used by Curry et al. (1984), they can be analyzed ana-

lytically to trace their impact on solution stability, il-

lustrating the importance of proper selection in the new

modes that can effectively increase the degree of non-

linearity. For example, we will discuss how additional

nonlinear and damping terms, which are introduced in the

5DLM, can provide negative nonlinear feedback for im-

proving the solution stability. The term ‘‘improvement of

solution stability’’ is defined as the disappearance of a pos-

itive Lyapunov exponent (LE; e.g., Wolf et al. 1985) or

appearance of a stable nontrivial critical point in a gener-

alized LM that has the same system parameters (e.g., the

normalized Rayleigh number) as the 3DLM. In a compan-

ion paper (B.-W. Shen 2013, unpublished manuscript) with

the 6DLM, we further examine the competing impact of an

additional heating term as compared to the dissipative and

nonlinear terms that are first introduced in the 5DLM. In

sections 2a and 2b of this study, we describe the governing

equations and present the derivations of the 5DLM. In

section 2c, we propose a revised 3D Lorenz model with

a ‘‘parameterized’’ term (denoted 3DLMP) that can ef-

fectively emulate the impact of the negative nonlinear

feedback that is explicitly resolved in the higher-di-

mensional (5D) LMs. In section 2d, we present the ana-

lytical solutions of the critical points in the 5DLM, 3DLM,

and 3DLMP. Numerical approaches for the integrations

of these models and the calculations of the Lyapunov

exponents are discussed in section 2e. In sections 3a and

3b, we use mathematical equations to illustrate the non-

linear feedback loop in the 3DLM and discuss how the

feedback loop can be extended with proper selection of

new modes in the 5DLM. We then refer to the degree of

the extension of the feedback loop, which depends on the

number of modes and their hierarchical-scale interactions
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(i.e., interconnectivity or interactions of interactions) in

the LMs, as the degree of nonlinearity. Then, we present

the numerical results of the 3DLM, 5DLM, and 3DLMP

in sections 3c and 3d. In section 3e, we discuss the de-

pendence of the solution’s stability on the Prandtl number

in the (s, r) space. Conclusions appear at the end.

2. The generalized Lorenz models and numerical
methods

a. The governing equations

By assuming 2D (x, z) Boussinesq flow, the following

equations were used in Saltzman (1962) and Lorenz

(1963a):

›

›t
=2c52J(c,=2c)1 n=4c1 ga

›u

›x
, (1)

›u

›t
52J(c, u)1

DT

H

›c

›x
1 k=2u , (2)

wherec is the streamfunction that gives u52cz andw5
cx, which represent the horizontal and vertical velocity

perturbations, respectively, u is the temperature pertur-

bation, and DT is the difference in temperature between

the top and bottom boundaries. The constants g, a, n,

and k denote the acceleration of gravity, the coefficient

of thermal expansion, the kinematic viscosity, and the

thermal diffusivity (or thermal conductivity), respectively.

The Jacobian of two arbitrary functions is defined as

J(A,B)5
›A

›x

›B

›z
2

›A

›z

›B

›x
, (3)

=4c5
›

›x

�
=2›c

›x

�
1

›

›z

�
=2›c

›z

�
. (4)

For the reader’s convenience, we use the same symbols

as those in Lorenz (1963a).

b. The 5D Lorenz model

To derive the 5DLM,we use the following five Fourier

modes (which are also listed in Table 1):

M15
ffiffiffi
2

p
sin(lx) sin(mz),

M25
ffiffiffi
2

p
cos(lx) sin(mz),

M35 sin(2mz) , (5)

M55
ffiffiffi
2

p
cos(lx) sin(3mz), M65 sin(4mz) , (6)

Here l andm are defined as pa/H and p/H, representing

the horizontal and vertical wavenumbers, respectively,

and a is a ratio of the vertical scale of the convection

cell to its horizontal scale, (i.e., a 5 l/m). The term H is

the domain height, and 2H/a represents the domain

width. An additional mode M4 5
ffiffiffi
2

p
sin(lx) sin(3mz) is

included to derive the 6DLM, and a comparison of the

6DLM with the 5DLM will be made to examine the im-

pact of an additional heating term (B.-W. Shen 2013,

unpublishedmanuscript). With the five modes in Eqs. (5)

and (6), c and u can be represented as

c5C1(XM1) , (7)

u5C2(YM22ZM31Y1M52Z1M6) , (8)

C15 k
11 a2

a
, C25

DT

p

Rc

Ra

,

Rc 5
p4

a2
(11 a2)3, R21

a 5
nk

gaH3DT
, (9)

where C1 and C2 are constants, Ra is the Rayleigh

number, and Rc is its critical value for the free-slip

Rayleigh–Benard problem. With Eqs. (7) and (8), so-

lutions in the 5DLM are represented by the five spatial

modes M1–M3 and M5–M6 and their corresponding

time-varying amplitudes (X, Y, Z, Y1, Z1), respectively.

In the original 3DLM, only three modes (M1, M2, M3)

with their amplitudes (X, Y, Z) were used. While the

3DLM and 5DLM have one horizontal wavenumber,

they have two and four vertical wavenumbers, re-

spectively. With these modes, the partial differential

equations [Eqs. (1) and (2)] can be transformed into or-

dinary differential equations with only ›/›t retained. Note

TABLE 1. The six modes and their derivatives. Here l andm, representing the horizontal and vertical wavenumbers, are defined aspa/H

and p/H, respectively. Also,H is the vertical scale of the convection, and a is a ratio of the vertical scale to the horizontal scale. The term

›*/›x indicates that the outcome is expressed in terms of the selected modes. Mode M4 is used only in the 6DLM of Shen (2013).

Mode

›

›x

›*

›x

›

›z

M1 5
ffiffiffi
2

p
sin(lx) sin(mz)

ffiffiffi
2

p
l cos(lx) sin(mz) lM2

ffiffiffi
2

p
m sin(lx) cos(mz)

M2 5
ffiffiffi
2

p
cos(lx) sin(mz) 2

ffiffiffi
2

p
l sin(lx) sin(mz) 2lM1

ffiffiffi
2

p
m cos(lx) cos(mz)

M3 5 sin(2mz) 2m cos(2mz)

M4 5
ffiffiffi
2

p
sin(lx) sin(3mz)

ffiffiffi
2

p
l cos(lx) sin(3mz) lM5 3

ffiffiffi
2

p
m sin(lx) cos(3mz)

M5 5
ffiffiffi
2

p
cos(lx) sin(3mz) 2

ffiffiffi
2

p
l sin(lx) sin(3mz) 2lM4 3

ffiffiffi
2

p
m cos(lx) cos(3mz)

M6 5 sin(4mz) 4m cos(4mz)
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that an implicit limitation of this approach is that the

nonlinear interactions among the selectedmodes cannot

generate (impact) any new (other) modes that are not

preselected, suggesting limited (spatial)-scale interac-

tions. In other words, nonlinear mode–mode interactions

are predetermined and limited by the finite number of

selected modes. The impact of additional modes (Y1, Z1)

on the improvement of nonlinear interactions and nu-

merical solutions is discussed in section 3.

To transform Eqs. (1) and (2) into the phase space, a

major step is to calculate the nonlinear Jacobian func-

tions. As a result of J(M1, M1) 5 0, there is no explicit

term associated with J(c, =2c) in the 3DLM or 5DLM.

In contrast, the Jacobian term of Eq. (2) can be approx-

imated by four Jacobian terms with selected Fourier

modes, which will be analyzed in detail in section 3a.

Similarly, we use the five Fourier modes to rewrite the

rest of the terms in Eqs. (1) and (2). After collecting the

coefficients corresponding to each of the five modes, we

obtain the 5DLM with the following five equations:

dX

dt
52sX1sY , (10)

dY

dt
52XZ1 rX2Y , (11)

dZ

dt
5XY2XY1 2bZ , (12)

dY1

dt
5XZ2 2XZ12 doY1 , (13)

dZ1

dt
5 2XY12 4bZ1 . (14)

Here t5 k(11 a2)(p/H)2t (dimensionless time), s 5 n/k

(the Prandtl number), r5Ra/Rc (the normalized Rayleigh

number or the heating parameter), b 5 4/(1 1 a2), and

do 5 (91 a2)/(11 a2). The 3DLM can be obtained from

the first three equations of the 5DLMwith no inclusion of

the nonlinear term XY1 and are written as

dX

dt
52sX1sY , (15)

dY

dt
52XZ1 rX2Y , (16)

dZ

dt
5XY2 bZ . (17)

Alternatively, Eqs. (10)–(12) can be viewed as a 3DLM

with the feedback processes that are from the two ad-

ditional modes. In this study, unless otherwise stated,

the term ‘‘feedback’’ refers to the nonlinear process that

involves the amplitude (Y1 and/or Z1) associated with

the modes (M5,M6), respectively. Thus, the 5DLMmay

be viewed as a coupled system that consists of a forced

dissipative system with low-wavenumber modes [i.e.,

Eqs. (10)–(12)] and a (nonlinear) dissipative-only sys-

tem with high-wavenumber modes [i.e., Eqs. (13) and

(14)]. Note that the higher-wavenumber mode Y1 in

Eq. (13) [Z1 in Eq. (14)] has a larger dissipative rate than

the lower-wavenumber mode Y in Eq. (11) [Z in Eq.

(12)]. As compared to the 5DLM proposed by Roy and

Musielak (2007b), our 5DLM applies different mode

truncation, has a different feedback term (i.e., XY1) in

dZ/dt, and does not introduce an additional heating

term (which involves r) in dY1/dt. Our 5DLM is the

lowest-dimensional generalized LM and its simplicity

enables us to obtain the analytical solutions, which has

never been documented before. In appendix A, we show

that the domain-averaged total energy in the 5DLM is

conserved in the dissipationless limit and the nonlinear

terms may involve the conversion between kinetic and

potential energy or between potential energy at differ-

ent scales. Detailed discussions on the uniqueness of the

5DLM can be found in section 2d and section 3.

c. A revised 3DLM with parameterized feedback

The 3DLM contains only two nonlinear terms (2XZ

and XY). These two terms form a nonlinear feedback

loop, which is discussed in section 3a. A comparison

between the 3DLM and Eqs. (10)–(12) of 5DLM shows

that the only difference between them is the nonlinear

feedback term2XY1, where Y1 is missing in the 3DLM.

Onemaywonder if it is possible to emulate the impact of

2XY1 by representing Y1 with the existing modes (i.e.,

resolved modes) of the 3DLM. Indeed, this can be

achieved by comparing the solutions of the lower- and

higher-dimensional LMs (i.e., the 3DLM and 5DLM),

namely, the coarser- and finer-resolution models. Based

on the analysis of the critical point solutions in the next

section and the calculation of the ratio of Y1 to X from

numerical results (not shown), we assume Y1 to be lin-

early proportional to X. As shown in appendix A, that

potential energy may cascade from mode M3 to mode

M6 and dissipate subsequently [e.g., Eqs. (A7) and (A8)],

we therefore propose to emulate (or approximate) the

feedback processes associated with 2XY1 using an eddy

dissipation term2qX2, where q is a tunable nonnegative

parameter (q $ 0). Mathematically, we can express q as

a function of time.However, to illustrate the nature of the

negative feedback without the loss of generality, we

simply assume q to be a constant. The procedure of em-

ulating the unresolved term XY1 using the resolved term

X2 is indeed parameterization, per se. Therefore, Eq. (17)

[or Eq. (12)] is modified to become
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dZ

dt
5XY2 qX22 bZ . (18)

Equations (15), (16), and (18) form the revised 3DLM

with the parameterized feedback term. To facilitate the

discussions below, the revised 3DLM with a reasonable

value of q is referred to as revised 3DLM, revised

3DLMP, or 3DLMP. The choice of q is to improve the

solution’s stability as well as to produce ‘‘reasonable’’

results, which are discussed in section 3d.

d. Analytical solutions of critical points

Critical points are defined as the solutions to the set

of the simultaneous algebraic equations derived from

Eqs. (10)–(14) or (15)–(17) with no time-dependent

terms (Bender and Orszag 1978). Critical points are also

called equilibrium points or fixed points in the literature.

Three kinds of critical points are categorized, including

a stable node, an unstable node, and a saddle node. The

solution of an LM is called a trajectory in the phase

space. For a stable (unstable) node, all trajectories con-

verge toward (diverge away from) the critical point. For

a saddle node, some trajectories may move toward the

critical point, while others may move away from it. A

nonlinear system with an unstable (nontrivial) critical

point may show a sensitive dependence of solutions on

initial conditions and thus are less predictable than the

system with only stable critical points. As a trajectory

approaches a stable critical point, the solutions, which

are normalized or rescaled by the values at a critical

point, should eventually become positive (or negative)

one. Therefore, the evolution of the differences between

the normalized solution and the unity can be a good

indicator of whether the solution reaches a steady state.

This criterion is potentially useful for examining the

time evolution of a system over a wide range of values in

the r, as to be illustrated in section 3. To calculate the

normalized solution, we need first to solve for the critical

point(s) analytically or numerically. It has been chal-

lenging to achieve this because of the following. First, in

general, it is not easy to obtain the analytical solutions of

the critical points in a nonlinear generalized LM con-

tainingmore equations than the original 3DLM. Second,

critical points are usually a function of multiple param-

eters (such as r and b) and thus cannot be determined

numerically prior to time integration. In other words,

given a specific set of parameters, (stable) critical points

can be obtained only after the completion of the in-

tegration that eventually leads to steady-state solutions.

However, it still remains challenging to obtain the so-

lutions of unstable critical points numerically. Although

the 5DLM contains two additional modes and is indeed

more complicated than the 3DLM, its mathematical

simplicity with respect to the existing generalized LMs

makes it easier to obtain the analytical solutions of the

critical points as follows:

Zc 5 r2 1, (19a)

Z1c5
2do 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2o1 4Z2

c

p
4

, (19b)

Xc5Yc 56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bdoZ1c

Zc2 2Z1c

s
56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(Zc 1 2Z1c)

q
, (19c)

Y1c 5
Xc

do
(Zc2 2Z1c) , (19d)

which can be used to normalize solutions. Note that the

sign of Z1c determines whether the solution of Xc is real

or imaginary. In the above, only positive Z1c in Eq. (19b)

is chosen to have two real roots forXc. In caseswith larger

r and comparable domain height and width [namely, a5
O(1)], we can assume d2o 1 4Z2

c ; 4Z2
c , leading to

Z1c ;2do/41Zc/2 , (20a)

Xc 5Yc ;6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4bZ1c

q
;6

ffiffiffiffiffiffiffiffiffiffiffi
2bZc

q
, (20b)

Y1c;Xc/2 . (20c)

The last approximation was used in a simple parame-

terization scheme in section 2c.

Used as normalization scales in section 3, the non-

trivial critical points of the original 3DLM (Lorenz

1963a) are

Z3d
c 5 r2 1, (21a)

X3d
c 5Y3d

c 56
ffiffiffiffiffiffiffiffiffiffiffi
bZ3d

c

q
. (21b)

When the parameterized feedback term 2qX2 is in-

cluded, the critical points in the revised 3DLM (i.e.,

3DLMP) are changed to

Zr3d
c 5 r2 1, (22a)

Xr3d
c 5Yr3d

c 56

ffiffiffiffiffiffiffiffiffiffiffiffi
bZr3d

c

12 q

s
. (22b)

Note that while a critical point for Z in the 3DLM, re-

vised 3DLM, and 5DLM has the same mathematical

form, the critical points for X and Y are different. A

choice of q between 0 and 0.5 leads to X3d
c #Xr3d

c #Xc,
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as shown in Eqs. (19c), (21b), and (22b). The differences

between X3d
c and Xr3d

c can be small when a small q is

used, which will be discussed in section 3d.

Based on the previous discussions, one may wonder if

a four-dimensional LM (4DLM) can be obtained with

additional simplifications. By ignoring Z1 (i.e., XZ1) in

Eq. (13), the nontrivial critical point solution of Xc for

Eqs. (10)–(13) can be obtained: X2
c 52bdo(r2 1)/

(r2 do 2 1). The term X2
c becomes negative when do 1

1 , r, and thus Xc has no real root. In addition, the

domain-averaged total energy of the 4DLM is not con-

served, which is discussed in appendix A. Therefore,

the 4DLM is not discussed in this study as a result of the

choice with do 5 19/3 and r . 20.

e. Numerical approaches

The 3DLM, 3DLMP, and 5DLM are integrated for-

ward in time with the fourth-order Runge–Kutta

scheme. Since our main goal is to understand the impact

of the additional modes on the representation of the

advection of the temperature perturbation and the

subsequent nonlinear interaction, we vary the value of r

with other parameters kept constant, including s 5 10,

a5 1/
ffiffiffi
2

p
, and b 5 8/3, as commonly used in previous

studies with the 3DLM. The choice of a5 1/
ffiffiffi
2

p
gives

a minimum value for Rc 5 27p4/4 and do 5 19/3. Note

that d only appears in the 5DLM. The dependence of

solution stability on s will be discussed in section 3e. A

dimensionless time interval Dt of 0.0001 is used, and

a total number of time steps is 500 000, giving a total

dimensionless time t of 50. A larger t is used to measure

the chaotic behavior of the numerical solutions, as dis-

cussed in the next paragraph. [In Figs. 3–6 and 9, the

initial value ofY is one (Y5 1) and the initial conditions

for the rest of the modes (X, Z, Y1, Z1) are set to zero.]

All of the solutions for the 5DLM, 3DLM, and 3DLMP,

unless stated otherwise, are rescaled (or normalized)

using the solutions of the critical points in Eqs. (19), (21),

and (21), respectively.

To quantitatively evaluate whether the system is

chaotic or not, we calculate LE, which is a measure of

the average separation speed of nearby trajectories on

the critical point. The mathematical definition of the LE

(lLE) is defined as

lLE 5LE5 lim
T/‘

1

T
log

����ds(T)ds(0)

���� , (23)

for a system

dsi
dt

5 fi(s1, s2, . . . , sn), i5 1, 2, 3, . . . , n , (24)

where n represents the dimensions of the LM (i.e.,

number of variables), the integration time T 5 NDt, s
is a column vector representing the solution [e.g., s 5
(s1, s2, . . . , sn) and s5 (X, Y, Z) for the 3DLM], and f is

a vector consisting of the terms on the right-hand side in

each of the LMs. The value jdsj represents the distance

between the perturbed and unperturbed trajectories,

and jds(0)j is an initial distance. Note that to examine the

predictability in weather predictionmodels, a finite-time

(FT) LE is calculated (e.g., Nese 1989; Eckhardt and

Yao 1993; Kazantsev 1999; Ding and Li 2007; Li and

Ding 2011), and it is defined as

lFTLE[s(kDt)]5
1

Dt
log

����ds[(k1 1)Dt]

ds(kDt)

���� , (25)

which depends on Dt, a starting point (or an initial

point), and an initial perturbation. The relationship

between the LE and FT LE is shown as follows:

lLE 5 lim
N/‘

�
N21

k50

lFTLE[s(kDt)] . (26)

Over the past few decades, different numerical schemes

have been proposed to calculate ds and thus the LE

(e.g., Froyland and Alfsen 1984; Wolf et al. 1985). For

example, ds can be calculated by solving the 5DLM and

the following equation (e.g., Nese 1989; Eckhardt and

Yao 1993):

d
ds

dt
5

›fi
›sj

ds, i, j5 1, 2, 3 . . . . n . (27)

Equation (27) is called the variational equation with

additional n2 equations. In this study, the following two

methods are used: 1) the trajectory separation (TS or

orbit separation) method (e.g., Sprott 2003) and 2) the

Gram–Schmidt reorthonormalization (GSR) procedure

(e.g., Wolf et al. 1985; Christiansen and Rugh 1997). The

differences between these two schemes are briefly dis-

cussed as follows. The TS scheme determines an LE by

directly solving Eq. (24) to measure the distance of two

trajectories with tiny differences (i.e., 1029 in this study)

at the location of the starting points, while the GSR

method calculates an LE by simultaneously solving

Eqs. (24) and (27), that is, the LM and its variational

equation. In both schemes, renormalizations are re-

quired during the time integrations. Using the given ICs

and a set of parameters in the LMs, the TS scheme

calculates the largest LE, and theGSR scheme produces

n LEs. Since our interest is to understand whether the sys-

tem is chaotic with a positive LE, we only analyze the

leading (largest) LE with Dt 5 0.0001 andN5 10000000,
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giving the t 5 1000. To minimize the dependence on

ICs, 10 000 ensemble (En 5 10 000) runs with the same

model configurations but different ICs are performed

and an ensemble-averaged LE (eLE) is obtained from

the average of the 10 000 LEs. The 10 000 different ICs

are produced as Gaussian white noise with the center at

the trivial critical point (i.e., with a mean value of zero

for the ICs) using a method described by Press et al.

(1992). For a given r, it takes approximately 20.5 (10.5)

wall-time hours to obtain an eLE with the 5DLM

(3DLM). To reduce the wall time to obtain eLEs over

a wide range of r, a simple task-level parallelism is im-

plemented to perform parallel calculations using multi-

ple computing processors on National Aeronautics and

Space Administration (NASA) supercomputers (e.g.,

Biswas et al. 2007; Shen et al. 2011). Each of the parallel

runs is responsible for the eLE calculation for a given r.

The details of the computational issues, the implemen-

tation, and further improvement are being documented

in a separate paper.

Note that smallDt and largeN and En are used simply

because our goal is to understand the long-term-averaged

behavior of the solutions of the LMs. Unless stated

otherwise, in this study, the eLEs as a function of r are

discussed. Here we mainly analyze the results from the

TS scheme (in Figs. 7, 8, 10) and use the results with

the GSR scheme for verification (in Fig. 7a). To verify

the performance of the GSR scheme, its leading eLEs

are being used to estimate the Kaplan–Yorke fractal

dimension (Kaplan and Yorke 1979). For a given r5 28

and s 5 10, the estimated fractal dimension with the

GSR scheme is 2.061 272 08, which is very close to the

2.063 reported in Nese et al. (1987, p. 1957), and close to

the 2.062 reported by Professor Sprott (http://sprott.

physics.wisc.edu/chaos/lorenzle.htm). Additional exper-

iments indicate that a larger Dt and smaller N and En

could also produce similar results with no impact on the

conclusions of this study.

3. Nonlinear feedback of additional modes and
their impacts on system stability

In the following sections, we discuss the impact of

additional modes on the degree of nonlinearity and so-

lution stability. We analyze the Jacobian term J(c, u) to

illustrate the nonlinear feedback loop of the 3DLM in

section 3a and discuss how the feedback loop is extended

by the proper selection of the M5 and M6 modes in

section 3b. Then, we present numerical results from the

5DLM to examine the impact of the nonlinear feedback

processes enabled by the two new modes in section 3c.

The results of the revised 3DLMP with a parameterized

term are analyzed in section 3d to verify the role of the

negative feedback in improving solution stability.

a. The nonlinear feedback loop in the 3DLM

In this section, we first discuss the characteristics of

nonlinearity in the partial differential equation [Eq. (2)],

which can be written in terms of Jacobian terms or

Fourier models as follows:

J(c, u)5C1C2[XYJ(M1,M2)2XZJ(M1,M3)

1XY1J(M1,M5)2XZ1J(M1,M6)] (28)

or

J(c, u)5mlC1C2(XZM21XYM3 2XY1M3

2XZM51 2XZ1M5 1 2XY1M6) . (29)

The outcome for each of the four Jacobian terms on the

right-hand side of Eq. (28) is listed in Table 2. Only the

first two Jacobian terms are included in the 3DLM.

The four nonlinear terms J(M1, Mj), where j 5 2, 3, 5,

and 6, may involve downscale and/or upscale transfer

processes, as described by Eqs. (B2) and (B3) in ap-

pendix B, which are briefly summarized. The nonlinear

interaction of twowavemodes via the Jacobian term can

TABLE 2. The Jacobian functions for the nonlinear interactions of the six modes. Coef indicates the coefficient corresponding to the

specific Jacobian function. The crossed-out symbol indicates the negligence of a term that involves the crossed-out term. For example,

cos(2lx)= means that anymultiplications of the cos(2lx) are neglected as a result of mode truncation.ModeM4 is used only in the 6DLMof

Shen (2013).

Jacobian Outcome Coef 6DLM 5DLM 3DLM

J(M1, M2) mlM3 XY As in 6DLM As in 5DLM

J(M1, M3) ml(M5 2 M2) XZ As in 6DLM M5 is missing

J(M1, M5) 2mlM6 2 mlM3 XY1 cos(2lx)= As in 6DLM N/A

J(M1, M6) 22mlM5 XZ1 sin(5mz)= As in 6DLM N/A

J(M4, M2) 2mlM6 2 mlM3 X1Y cos(2lx)= N/A N/A

J(M4, M3) mlM2 X1Z sin(5mz)= N/A N/A

J(M4, M5) 3ml sin(6mz)= X1Y1 All missing N/A N/A

J(M4, M6) 22mlM2 X1Z1 sin(7mz)= N/A N/A

J(M1, M4) } sin(2lx) . . .= XX1 sin(2lx)= N/A N/A
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generate or impact a third wave mode through a down-

scale (or upscale) transfer process; its subsequent upscale

(or downscale) transfer process can provide feedback to

the incipient wave mode(s). The downscale and upscale

transfer processes form a nonlinear feedback loop, which

can be continuously extended as long as newmodes could

be continuously generated. This suggests that a numerical

model should include an infinite number of Fourier

modes. However, practically, all of the available numer-

ical models have a finite number of modes and thus the

extension of their nonlinear feedback loop is finite (and

incomplete). The degree of nonlinearity was previously

defined as the degree of mode–mode interactions in the

introduction, and it indeed refers to the degree of the

extension of the nonlinear feedback loop. We discuss

the nonlinear feedback loop of the 3DLM below and its

extension in the 5DLM in section 3b.

The degree of nonlinearity is discussed below and is

briefly summarized in Fig. 1 where for a given J(M1,Mj)

term, the associated downscale and upscale transfer

processes are indicated by a downward arrow and an

upward arrow, respectively. In the 3DLM, the nonlinear

terms J(M1,M2) and J(M1,M3) form a feedback loop as

a result of the following:

J(M1,M2)5mlM3 , (30)

J(M1,M3)52mlM2 . (31)

The loop with M2 / M3 / M2 is enabled by the in-

clusion of theM3 and is indicated by two pink arrows in

Fig. 1. We now illustrate the role of the nonlinear

feedback loop in the 3DLM. Without the inclusion of

the nonlinear terms 2XZ and XY, the 3DLM, that is,

Eqs. (15)–(17), reduces to

dX

dt
52sX1sY , (32)

dY

dt
5 rX2Y , (33)

dZ

dt
52bZ . (34)

Equations (32) and (33), which are decoupled with

Eq. (34), form a forced dissipative systemwith only linear

terms. Equations (32)–(34) also represent the original

Lorenz system linearized at the trivial critical point. The

system has only a trivial critical point (X 5 Y 5 0) and

produces unstable normal-mode solutions (i.e., exponen-

tially growing with time) as r. 1. While Eq. (33) contains

one heating term (rX) and one dissipative term (2Y),

Eq. (34) has one dissipative term (2bZ). Therefore, our

analysis indicates that the inclusion of M3 introduces

Eq. (34) and the enabled feedback loop [i.e., Eqs. (30)

and (31)] couples Eq. (34) with Eqs. (32) and (33) to form

the (nonlinear) 3DLM [Eqs. (15)–(17)] that enables the

appearance of convection solutions. From a perspective

of total energy conservation, the inclusion of the M3

mode can help conserve the total energy in the dissipa-

tionless limit, which is discussed in appendix A. Mathe-

matically, the feedback loop with the nonlinear terms in

Eqs. (16) and (17) leads to the change in the behavior of

the system’s solutions; the (nonlinear) 3DLM system

produces nontrivial critical points, which may be stable

(e.g., for 1, r , 24.74) or ‘‘unstable’’ (chaotic) (e.g., for

FIG. 1. A schematic diagram of the feedback loop that consists

of the downscale and upscale transfer processes associated with

J(M1, Mj), where j 5 2, 3, 5, or 6. For a given Mj mode, J(M1, Mj)

may lead to a downscale transfer process indicated by a downward

arrow and an upscale transfer process indicated by an upward ar-

row. While scale interactions in the 3DLM forms a feedback loop

(pink arrows), additional interactions in the 5DLM extend the feed-

back loop (blue arrows). The original feedback loop (pink arrows)

and extended feedback loops (blue arrows) may be viewed as the

main trunk andbranches, respectively.Anumber in parentheses is the

coefficient of the specific mode. The M3(ml) in the leftmost column

represents that the M3 mode with a coefficient of ml is generated or

influenced by a downscale transfer process from J(M1,M2). The terms

2XZ and 2XY1, which appear in Eqs. (11) and (12), are associated

with the upscale transfer process of the J(M1,M3) (by the pink upward

arrow) and J(M1, M5) (by the blue upward arrow), respectively. The

characters 53D and 55D indicate the end of downscale transfer due

to mode truncation in the 3DLM and 5DLM, respectively.
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r . 25). Note that Eq. (17) has one nonlinear and one

dissipative term. Similarly, Eqs. (13) and (14) in the

5DLM, which are introduced by the new modes, contain

only nonlinear and dissipative terms (e.g., with no addi-

tional heating terms). Their collective impact on the so-

lution stability is examined in sections 3c and 3e. Next, we

discuss how the new modes are selected in the 5DLM to

extend the feedback loop of the 3DLM.

b. The extended nonlinear feedback loop in the
5DLM

Physically, the two modes (M5 and M6) with higher

vertical wavenumbers are added to improve the pre-

sentation of vertical temperature gradients and, therefore,

the accuracy of the vertical advection of temperature.

From the nonlinear perspective, the inclusion of M5 is to

improve the representation of J(M1, M3), a critical non-

linear term in the original 3DLM. This is illustrated as

follows. J(M1, M3) in the 5DLM is written as

J(M1,M3)5
ffiffiffi
2

p
ml cos(lx)[sin(3mz)1 sin(2mz)]

5ml(M52M2) , (35)

which is proportional to Eq. (B2) with (p, q)5 (m, 2m).

Equation (35) indicates the route of the energy transfer

to both theM5 andM2 modes from J(M1,M3), leading to

the appearance of 2XZ and XZ in Eqs. (11) and (13),

respectively, in the 5DLM. More importantly, the in-

teraction of the M1 andM5 modes provides feedback to

the M3 mode through

J(M1,M5)5 2mlM62mlM3 . (36)

The above equation, which shares the similarity with

Eq. (B3) as (p, q) 5 (m, 2m), adds the 2XY1 term into

dZ/dt in Eq. (12) for the 5DLM. The processes in

Eqs. (35) and (36) extend the (existing) feedback loop

(e.g., M2 / M3 / M2) of the 3DLM with a new loop

(e.g., M3 / M5 / M3). The former and latter may be

viewed as the main trunk and branch, respectively. Note

that the term ‘‘extension of the nonlinear feedback loop’’

indicates the linkage between the existing loop and the

new loop and thus suggests the importance in the proper

selection of newmodes. It was reported that the inclusion

of new modes could produce additional equations that

are not coupled with the 3DLM, leading to a general-

ized LM with the same stability as the 3DLM [e.g.,

Eqs. (11)–(16) of Roy andMusielak (2007a)]. In this case,

the original nonlinear feedback loop (of the 3DLM) is not

extended with the new modes.

Equations (31) and (35) indicate the differences in the

representation of the nonlinear J(M1,M3) for the 3DLM

and 5DLM. The missing M5 in Eq. (31) is equivalent to

replacing the [sin(3mz) 1 sin(2mz)] by sin(2mz). As

indicated by a simple comparison between the two terms

in Fig. 2, the inclusion of the new mode leads to finer

representation of J(c, u) near the top and bottom

boundaries. Specifically, the solutions in Eqs. (31) and

(35) have different signs in layers of (0 , z ,H/4) and

(3H/4 , z , H), suggesting opposite phases. The dif-

ferences are presumably related to the rapid changes in

the sign of the solutions in the presence of chaos, which,

however, is beyond the scope of the present study.

Mathematically, Eqs. (35) and (36) collectively repre-

sent a ‘‘forcing’’ term, J[M1, J(M1, M3)], in d2Z/dt2 that

FIG. 2. A comparison between [sin(3mz) 1 sin(2mz)] (blue curve) and sin(2mz) (red curve).

The first represents the interaction of M1 and M3 via J(M1, M3), and the second provides an ap-

proximation to J(M1,M3) by neglecting sin(3mz) in the original 3DLM. The areas shaded with blue

lines indicate opposite phases between these two modes at 0 # z # H/4 and 3H/4 # z # H.
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can be derived by taking the time derivative of Eq. (2).

With the inclusion of M5, J(M1, M5) provides not only

upscaling feedback to theM3 mode but also a downscale

energy transfer to a smaller-scalewavemode that, in turn,

requires the inclusion of theM6mode (Fig. 1; Table 2).As

discussed in appendix A, the M6 mode is required to

conserve the total energy in the dissipationless limit. The

term XY1 is responsible for the transfer of the domain-

averaged potential energy at different scales (between the

M3 andM6modes). The feedback loop is further extended

toM5 /M6 /M5 through J(M1,M5) and J(M1,M6). In

summary, while the inclusion ofM3 forms a feedback loop

by introducing Eq. (17) in the 3DLM, the inclusion ofM5

and M6 extends the feedback loop by introducing Eqs.

(13) and (14) where additional dissipative terms are in-

cluded. In the next section, we examine whether the

feedback of the aforementioned nonlinear processes is

positive or negative and show that the 2XY1 term can

provide the negative feedback to stabilize solutions.

c. Numerical results of the 5DLM

Figure 3 shows the normalized solutions of (Y, Z) and

(Y1,Z1) using the 3DLMand 5DLMwith three different

values of r. The scales for normalization are the critical

points (e.g., Yc and Zc) as defined in Eqs. (19) and (21)

for the 5DLMand 3DLM, respectively. As first shown in

Lorenz (1963a), when the 3D system (in the 3DLM)

becomes chaotic at a large r (r . rc, rc 5 24.74), the

solution never reaches a steady state but oscillates ir-

regularly with time around the nontrivial critical points.

This feature can be seen in Fig. 3a from the 3DLM with

r5 25. It has been shown that the solution is sensitive to

initial conditions, which are referred to as the butterfly

effect (of the first kind). As compared to the 3DLM, the

5DLM with the same r value of 25 produces a steady-

state solution, as indicated by the converged trajectory

that approaches a critical point at (Y/Yc,Z/Zc)5 (21, 1)

in Fig. 3b. The 5DLM continues to generate steady-state

solutions until r is beyond 43 (which will be discussed in

Fig. 7). For an r value of 43.5, the 5DLM produces a

chaotic solution with a butterfly pattern in the Y–Z space

(Fig. 3c). The corresponding solutions for Y1 and Z1 are

shown in Fig. 3d and have low values when Y rapidly

changes its signs.

Numerical results that display temporal fluctuations

near the critical points are analyzed in Figs. 4 and 5. For

FIG. 3. Phase space plots in the (a) 3DLM and (b)–(d) 5DLM. (a) (Y/Y3d
c ,Z/Z3d

c ) plot with r 5 25. It shows the

Lorenz strange attractors. (b) (Y/Yc, Z/Zc) plot with r 5 25. (c) A (Y/Yc, Z/Zc) plot with r 5 43.5 with strange

attractors. (d) (Y1/Y1c, Z1/Z1c) plot with r 5 43.5. All of the solutions are normalized by the corresponding critical

points, namely, Eq. (21) for the 3DLM and Eq. (19) for the 5DLM.
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stable cases in both the 3DLM and 5DLM (Figs. 4a,c),

the solutions oscillate at small time scales and their en-

velopes decay at large time scales. The decay rate that

leads to steady states is larger in the 5DLM than in the

3DLM. For chaotic cases shown in Figs. 4b and 4d, from

the 3DLM with r 5 25 to the 5DLM with r 5 43.5, re-

spectively, the solutions oscillate in the beginning and

gradually grow with time. Chaos appears subsequently;

its onset can be identified by rapid changes in the signs of

X (or Y).

By calculating the numerical solutions of the 5DLM

over a wide range of r and normalizing them using the

corresponding critical points in Eq. (19), we show that

the r–time diagram of the normalized solutions is useful

in displaying stable and chaotic regions, providing a

qualitative method of determining the rc for the onset of

chaos. In Fig. 5 where (Z/Zc,Z1/Z1c,2Y/Yc, and2Y1/Y1c)

are shown, white areas display the normalized values of

1 6 0.01. For r 5 25–43, the appearance of stable critical

points is indicated by the white areas with a sufficient long

period of time. In contrast, a chaotic regime can be iden-

tified as r. rc (where rc; 43) by rapid changes in both the

sign and magnitude of the normalized solutions. This crit-

ical value is consistent with the analysis of the Lyapunov

exponent (discussed later with Fig. 7b). Other than the

above, this figure is able to monitor the transient pro-

cesses and suggests a longer time for solutions to become

steady (chaotic) when r gets closer to rc, consistent with

the analysis of the eLEs that are close to zero as r ; rc.

To examine the improved stability of the solutions in

the 5DLM, we analyze the time evolution of each term

on the right-hand side of Eqs. (10)–(12). Results from

Eq. (12) are compared with those from Eq. (17) to il-

lustrate the major difference between the 5DLM and

FIG. 4. Time series plots for the (a),(b) 3DLM and (c),(d) 5DLM. The X, Y, and Z plots are in orange, green,

and black, respectively. The Y1 and Z1 plots are in purple and blue, respectively. The three modes in the 3DLMwith

(a) r 5 20 and (b) r 5 25. The five modes in the 5DLM with (c) r 5 25 and (d) r 5 43.5.
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3DLM. For a stable case in the 3DLM (e.g., r 5 20 in

Fig. 6a), a steady-state solution exists in association with

a balance between the nonlinear term (XY) and the

dissipative term (bZ). However, at a large r (e.g., r5 25

in Fig. 6b), both of the terms evolve with time at a dif-

ferent growth rate and the solutions appear chaotic. The

analysis seemingly supports the understanding that the

source of chaos is the nonlinearity, as XY appears as

a forcing term with respect to the other term bZ for the

M3 mode in Eq. (17). However, by contrast, the 5DLM

using the same normalized Rayleigh number (r 5 25)

produces a steady-state solution that corresponds to the

balanced state achieved by the three terms XY, bZ, and

XY1 (Fig. 6c). The second nonlinear term (XY1) has a

magnitude comparable to bZ but is missing in the

3DLM.A similar balanced state can be found in the case

with r 5 35 (Fig. 6d). The comparison between Figs. 6b

and 6c suggests the importance of XY1 in stabilizing the

solution with r 5 25, indicating the importance of an in-

creased degree of nonlinearity. As discussed earlier, the

feedback ofXY1 to the dZ/dt for theM3 mode [Eq. (12)]

can bemathematically illustrated using a pair of Jacobian

functions, J(M1, M3) and J(M1, M5), depicting the non-

linear processes of downscale transfer and subsequent

upscale transfer that extend the feedback loop. From a

macroscopic view discussed in appendix A, XY is re-

sponsible for the transfer of the domain-averaged kinetic

energy and potential energy; XY1 is responsible for the

transfer of the domain-averaged potential energy at dif-

ferent scales, which provides a path for dissipation via the

4bZ1 term in Eq. (14).

To quantitatively measure the degree of chaotic re-

sponses in the LMs with the goal of understanding the

system’s predictability, we calculate the eLE using the

TS and GSR numerical methods that were discussed in

section 2e. Figure 7a shows the eLEs of the 3DLM and

5DLM as a function of r with 20 # r # 120 and an in-

crement of one (Dr5 1), while Fig. 7b shows the eLEs of

the 5DLMwith 35# r# 50 andDr5 0.1. For the 3DLM,

the eLEs using the TS scheme, as shown in a pink curve,

suggest the appearance of chaos as r . rc, and rc is ap-

proximately 23.7. This rc is slightly smaller than the

FIG. 5. The r–time diagram of the normalized numerical solutions from the 5DLM. The term r ranges from 25 to 50

withDr5 0.5. (a)Z/Zc, (b)Z1/Z1c, (c)2Y/Yc, and (d)2Y1/Y1c. The termsZc,Z1c,Yc, andY1c are defined inEqs. (19a)–

(19d), respectively. The black line indicates the constant value of r 5 43, which is close to rc 5 42.9 for the 5DLM.
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(linear) theoretical value of 24.74 proposed by Lorenz

(1963a) using the stability analysis of the linearized

3DLM. Note that the accuracy of the rc depends onmany

factors, including the values of the system’s parameters

(e.g., s, b, and/or do), different initial conditions, nu-

merical schemes, and so on. As our goal is to illustrate the

(negative) nonlinear feedback associated with the new

modes in the generalized LM, we made no attempt at

searching for a precise rc. We use Dr 5 0.1 to identify

the rc, which is defined as the lowest value of r when the

eLE becomes positive from negative. In addition to the

transition from stable regions (eLEs , 0) to chaotic re-

gions (eLEs . 0), two of the so-called window regions

where the LEs are nearly zero can be identified in the

vicinity of r 5 93 and r 5 100 in the pink curve. The re-

sults of the 3DLM, which display a relatively smaller rc

and indicate the appearance of windows, are in good

agreement with previous studies [e.g., Fig. 1 of Froyland

and Alfsen (1984)]. To understand the sensitivity of the

eLE calculations to a specific scheme, a comparison of

the eLEs using the TS procedure and GSR scheme (e.g.,

the orange circle in Fig. 7a) was made, showing insig-

nificant differences except near the window regions (e.g.,

the green curve in Fig. 7a).

As compared to the 3DLM, the eLEs of the 5DLM

(the black curve in Figs. 7a and 7b) indicate the following:

(i) that a larger r (rc; 42.9) is required for the onset of the

chaos; (ii) that one window exists but appears at a slightly

larger r (i.e., r5 107); and (iii) that eLEs are comparable

to the corresponding ones of 3DLM for 44, r , 80 and

display large differences when r , 44 and r . 80 (e.g.,

near window regions).

FIG. 6. Forcing terms of dZ/dt, which are from Eq. (17) of the 3DLM and Eq. (12) of the 5DLM. Results from the

3DLM with (a) r5 20 and (b) r5 25. Results from the 5DLM with (c) r 5 25 and (d) r5 35. The black and orange

lines representXY and bZ, respectively, while the blue line representsXY1. In the 3DLM,XY and bZ are balanced to

reach a steady state. In the 5DLM, the additional term XY1 is required to reach a steady state.
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d. Results of the revised 3DLM

The previous discussions indicated that the XY1 plays

a role in stabilizing the solutions in the 5DLMwith 25#

r # 40, and the XY1 is the only difference between the

first three equations of the 5DLM [Eqs. (10)–(12)] and

the 3DLM [Eqs. (15)–(17)]. In section 2c, we proposed

to emulate theXY1 using qX
2 with a tunable parameter q

in the revised 3DLM, as shown in Eqs. (15), (16), and

(18). The range ofqwithin 0–0.5 can be roughly estimated

by the following relation Y3d
c #Yr3d

c #Yc, which repre-

sents the analytical solutions of the critical point Y [e.g.,

Eqs. (21b), (22b), and (19c)] in the 3DLM, 3DLMP, and

5DLM, respectively. To pin down the range of q that can

FIG. 7. The largest eLEs as a function of r in different LMs. (a) The eLEs of the 3DLMwith

Dr 5 1 using different numerical schemes, including the TS scheme (pink) and the GSR pro-

cedure (orange). The green line represents the 5-times differences of the results from the two

schemes, and the black line indicates the eLEs of the 5DLM. (b) The eLEswithDr5 0.1 for the

5DLM. The appearance of chaotic solutions is indicated by positive eLEs. Note that the the-

oretical critical value of r for the onset of chaos in the original 3DLM is 24.74.
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effectively provide similar negative feedback, we con-

duct a limited number of runs using selected values of q.

The eLEs of four runs with q 5 0.15, 0.17, 0.19, and 0.36

are discussed below. For the case with q5 0.36, eLEs over

the range of r 5 20–120 are negative and thus suggest

stable solutions (not shown). However, its critical point

deviates from the corresponding one of the 3DLM by

approximately 25% as a result of the relationXr3d
c /X3d

c 5
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/(12 q)

p
561:25 [see Eqs. (21b) and (22b)]. Unless

stated otherwise, we mainly discuss the revised 3DLM

with q5 0.15, 0.17, or 0.19 in the following. Figures 8a and

8b show the eLEs of the three cases for 20# r# 120 and

35 # r # 50, respectively. Each of these cases displays

a transition region between 38 , r , 46, where the eLE

turns from negative to positive (Fig. 8a). As compared to

the original 3DLM, the transition regions for the three

cases with the revised 3DLMP appear at a larger r.Within

these transition regions, critical numbers for the onset

of chaos can be determined as 38.5, 41.8, and 45.6 for

cases with q5 0.15, 0.17, and 0.19, respectively (as shown

Fig. 8b). For 50 # r # 80, the eLEs of the revised

3DLMPs are comparable to those of the 3DLM (Fig. 8a).

FIG. 8. As in Fig. 7, but for 3DLMP with q 5 0.15 (green), 0.17 (red), or 0.19 (orange).
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Among these three runs, the case for q 5 0.17 provides

the most comparable results to those of the 5DLM. This

case is further analyzed below.

In addition to the long-term-averaged behavior of the

solutions represented by the eLEs, we examine the time

evolution of the solutions (X, Y, Z) from the revised

3DLM, normalized by the critical points of the original

3DLM [Eq. (21)]. Figure 9a displays the normalized

solutions for the case using r 5 35 and q 5 0.17 that

initially oscillate and later approach a steady state after

t5 40. The steady-state solutions of the nondimensional

X/X3d
c andY/Y3d

c are approximately21.098, consistent

with the calculation using the relation Xr3d
c /X3d

c 5
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/(12 q)

p
. Figure 9b shows the r–time diagram of

the normalized solution (2Y/Y3d
c ) when 25 # r # 50.

Areas shaded in white display the normalized solutions

between 1 and 1.1 and suggest steady-stage solutions as

r , 40 with a maximum deviation of 10% from the

critical point Y3d
c of the 3DLM.

The above experiments suggested that although the

3DLM becomes chaotic at 25 # r # 40, an additional

nonlinear dissipative term that emulates the negative

feedback, explicitly resolved in a higher-dimensional

(5D) LM, can effectively and realistically stabilize the

solutions of the revised 3DLM, leading to a (stable)

steady-state solution. Using a given set of system para-

meters, the critical points (steady-state solutions) in a re-

vised 3DLMP are not exactly the same as those in the

original 3DLM. However, the differences between the

former and the latter can be remained within 10% if a

value of q is properly selected (i.e., q # 0.19).

e. Stability analysis in the (s, r) space

The previous sections discussed the stability problem

by varying r. Here we examine the dependence of so-

lution stability on s and address the question of whether

the 5DLM still requires a larger r for the onset of chaos

when different values of s are used. Although a task-

level parallelism was implemented in the schemes for

the eLE calculation, it is still computationally intensive

for obtaining eLEs over a wide range of values for both

s and r (i.e., 5 # s # 25, 20 # r # 50). Therefore, to

achieve our goal efficiently, we begin with the stability

analysis of the linearized LMs at a nontrivial critical

point and conduct the eLE analysis using selected values

of s. The former is to examine the local predictability,

while the latter is to give a measure of the total pre-

dictability of the system.

Numerical procedures for the local (or linear) stability

analysis in the (s, r) space are discussed in appendix C

and briefly summarized as follows. To perform a stabil-

ity analysis of the 3DLM, 3DLMP, or 5DLM, we line-

arize each of these LMs with respect to one of its

nontrivial critical points [e.g., Eqs. (C2)–(C6)], obtain its

characteristic or eigensystem [i.e., Eq. (C8)], and solve

for their eigenvalues. The analytical solutions of critical

points for the 5DLM [Eq. (19)], 3DLM [Eq. (21)], and

revised 3DLMP [Eq. (22)] are used for the analysis. An

eigenvalue l can be a real or complex number, and its

real part is denoted Re(l). The appearance of a positive

Re(l) suggests an unstable solution near the critical

point. In the following, we examine the solution stability

by checking whether the largest Re(l) is positive or

negative.

FIG. 9. (a) Time series plots for the revised 3DLMP with r 5 35

and q 5 0.17. The orange, green, and black lines show X/X3d
c 1 1,

Y/Y3d
c 1 1, andZ3d

c 2 1, respectively. (b) The r–time diagram of the

numerical solution 2Y/Y3d
c from the revised 3DLMP with a pa-

rameterized feedback term (2qX2). The term r ranges from 25 to

50 with Dr5 0.5. The termsX3d
c ,Y3d

c , andZ3d
c are the critical points

in the original 3DLM [e.g., Eq. (21)]. The black line indicates the

constant value of r 5 43.
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Figure 10a shows the contour lines of the Re(l)5 0 in

the (s, r) space, each of which describes the critical value

rlc as a function of s, where the superscript l indicates the

local (or linear) analysis. The pink, red, and black lines

show the contour lines of Re(l) 5 0 for the 3DLM,

3DLMP, and 5DLM, respectively. Solid circles with the

same color scheme indicate the rc determined using the

eLE analysis, as discussed in the next paragraph. The

contour line of Re(l) 5 0 for the 3DLM is identical

to the curve describing the relation r 5 s(s 1 b 1 3)/

(s 2 b2 1), which was solved analytically to meet l5 0

by Lorenz (1963a) (as shown with green multiplication

signs in Fig. 10a). Following each of these contour lines in

the direction of the increasing s, its right (left)-hand side

contains areas with negative (positive) values of Re(l),

suggesting stable (unstable) solutions. In general, given

a fixed s in each of these LMs, the larger the value of r is,

the larger Re(l) is (e.g., Fig. 10b). Thus, unstable so-

lutions [Re(l). 0] appear as r lc , r. When s5 10, the r lc
values for the 3DLM, 3DLMP, and 5DLM are 24.74,

43.54, and 45.94, respectively (Fig. 10b and Table 3). As

compared to the eLE analysis in the previous sections,

the linear stability analysis produces comparable but

slightly larger critical values. Such a feature was pre-

viously documented using the 3DLM by Froyland and

Alfsen (1984).

In realizing the stability dependence on s from the

linear analysis, we perform additional eLE calculations

using our LMswiths5 13, 16, 19, 22, and 25 and plot the

rc values as solid circles. In each of the selected runs, the

eLE analysis produces a slightly smaller critical value

with respect to the linear stability analysis, that is,

rc , rlc, as shown in Fig. 10a. As s increases from 10, the

tendency of the increasing rc in the 3DLM could be seen

in both of the linear and eLE analyses (as shown with

pink lines and pink solid circles). By comparison, the

linear analysis on the revised 3DLMP and 5DLM shows

information that rc first decreases and then increases,

and the eLE analysis produces a similar tendency. It is

clearly shown in Fig. 10a that when a s is given (e.g., over

the range 5–25), the 5DLM (and 3DLMP) requires a

larger r for the onset of chaos than the 3DLM, suggesting

improved stability over a wide range of s.

4. Concluding remarks

In this study, we derived the generalized 5D Lorenz

model (LM) to investigate the impact of two higher-

wavenumber modes on the numerical predictability. The

domain-averaged total energy of the 5DLM is conserved

in the dissipationless limit. Distinct from other studies

with generalized LMs, we provided physical justification

for the choices of additional modes that can improve

solution stability and focused on the interpretation of

the nonlinear-scale interactions (i.e., increased degree of

nonlinearity) enabled by these additional modes.We first

illustrated the nonlinear feedback loop in the 3DLM and

emphasized the importance of properly selecting new

modes to extend the feedback loop and thus improving

the degree of nonlinearity in the 5DLM. By comparing

FIG. 10. Stability analysis of the linearized Lorenz models with

Ds 5 0.01 and Dr 5 0.01. (a) The leading eigenvalue Re(l) as

a function of s and r. The pink, red, and black lines indicate

a constant contour of Re(l)5 0 for the linearized 3DLM, 3DLMP,

and 5DLM, respectively. The solid circles with the same color

scheme indicate rc determined by the eLEs analysis withDr5 0.1 in

the corresponding nonlinear LM. The green multiplication sign

shows the relation r 5 s(s 1 b 1 3)/(s 2 b 2 1) for l 5 0 in the

linearized 3DLM. (b)Re(l) as a function of r and a givens5 10 for

3DLM (pink), 3DLMP (red), and 5DLM (black). It shows that the

critical value of r with Re(l) 5 0 is 24.74, 43.54, and 45.94 for the

linearized 3DLM, 3DLMP, and 5DLM, respectively.
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with other generalized LMs, we found that the 5DLM

might serve as the lowest-order generalized LM with in-

creased system stability. The inclusion of new modes in-

troduces both nonlinear terms and dissipative terms that

have collective impact on the increase of solution stabil-

ity. The additional nonlinear terms are mainly associated

with the improved vertical advection of temperature. The

mathematical simplicity of the 5DLM with respect to

existing generalized LMs makes it easier to obtain the

analytical solutions of its critical points, identify themajor

feedback process and its role in the solutions’ stability of

the generalized LMs (e.g., 5DLM and 6DLM), and per-

form (linear) local stability analysis near the critical points

over a wide range of parameters (s, r). The analyses

of both local stability and ensemble-averaged Lyapunov

exponents (eLEs) show that the 5DLM requires a larger

normalized Rayleigh number r for the appearance of

chaotic solutions than the 3DLM. While Lorenz dem-

onstrated the association of the nonlinearity with the

existence of the nontrivial critical points and strange at-

tractors in the 3DLM, we emphasized the importance of

the nonlinearity in both producing new modes and en-

abling subsequent negative feedback to improve solution

stability. More details are given below.

Through the mathematical analysis of the 3DLM, we

discussed the feedback loop that includes the nonlinear

terms J(M1,M2) and J(M1,M3) [Eqs. (30) and (31)]. The

inclusion of the M3 mode in the 3DLM enables the ap-

pearance of the stable nontrivial critical points when 1#

r , 24.74 but leads to chaotic solutions when r . 24.74.

In comparison, the inclusion of the M5 mode in the

5DLM can improve the representation of J(M1, M3) by

enabling a downscale transfer process and provide feed-

back to the M3 mode via an upscale transfer process

J(M1,M5), which adds the2XY1 term in dZ/dt [Eq. (12)].

Therefore, the nonlinear loop is extended through the

Jacobian terms J(M1,M3) and J(M1,M5) [Eqs. (35) and

(36)] and is further extended through J(M1, M5) and

J(M1, M6) in the 5DLM, as shown in Fig. 1. Based on

the eLE calculations, the critical value rc for the 5DLM

with s 5 10 is approximately 42.9. The rc value of the

5DLM is comparable to the one determined by the local

stability analysis of the linearized 5DLM that gives 45.94.

Both the eLE analysis and the local (or linear) stability

analysis suggest that the 5DLM still produces stable

steady-state solutions when r ranges from 25 to 42, while

the solution of the 3DLM becomes chaotic.

To understand the differences in the predictability

between the 3DLMand 5DLM, the competing impact of

the nonlinear term XY1 against other nonlinear and

dissipation terms was illustrated with the use of Eq. (12)

dZ/dt5XY2XY12 bZ. While the first nonlinear term

(XY) and the linear term (bZ) act as a forcing term and

dissipative term, respectively, the second nonlinear term

(XY1) may work as an additional dissipative term.

Therefore, chaotic responses that appear in the 3DLM

can be suppressed further by the additional modes in the

5DLM, producing stable solutions such as 1 # r , 42.9.

However, we would like to emphasize that the negative

feedback by the term 2XY1 comes from the collective

effects of the nonlinear and dissipative terms associated

with the new modes and that it is not trivial to separate

them.Amacroscopic view suggests thatXY1 enables the

transfer of domain-averaged potential energy at differ-

ent scales, which in turn enables the feedback associated

with the dissipation of theM6mode [i.e., 4bZ1 inEq. (14)].

Although chaos may appear in the presence of non-

linearity as well as a heating term in the 3DLM, the

increased degree of nonlinearity with additional dissi-

pative terms (i.e., the extension of nonlinear feedback

loop) in the 5DLM can reduce chaotic responses. Simply

speaking, the appearance of small-scale processes that

involve the nonlinear interactions with damping terms

may help stabilize solutions. The role of the negative

nonlinear feedback by2XY1 was further demonstrated by

parameterizing its effect into the revised 3DLMP. Based

on the analysis of the analytical solutions for the critical

points of the 5DLM, the negative nonlinear feedback

process through 2XY1 is emulated by a nonlinear eddy

dissipation term (2qX2, q $ 0). As the revised 3DLMP

produces stable solutions as 25# r# 40, it is suggested that

the predictability (or chaos) of the 3DLMcan be improved

(or suppressed) by the nonlinear dissipation term.

Since numerical solutions with the 5DLM display

sensitive dependence on ICs after r is greater than 42.9,

the butterfly effect of the first kind exists. As the 5DLM

TABLE 3. Numerical experiments with different Lorenz models. The column ‘‘5q5’’ indicates additional information in the equations.

The column ‘‘Figures’’ lists the figures that include the solutions from each of the Lorenz models. The rc and rlc columns are determined

based on the eLEs analysis and linear stability analysis, respectively. Solutions may be rescaled using the equation in the ‘‘Scaling factors’’

column. For the 3DLM, the ensemble-averaged LE is 1.2 3 1022 at r 5 23.7 and becomes 0.26 at r 5 24.

Case ID Equations 5q5 Figures rc rlc Scaling factors

3DLM Eqs. (15)–(17) N/A Figs. 3, 4, 6–8, and 10 23.7 24.74 Eq. (21)

3DLMP Eqs. (15), (16), and (18) q 5 0.17 Figs. 8–10 41.8 43.54 Eq. (21)

5DLM Eqs. (10)–(14) N/A Figs. 3–8 and 10 42.9 45.94 Eq. (19)
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(3DLM) contains only one horizontal and four (two)

vertical wavemodes, the predetermined nonlinear mode–

mode interactions among the selected modes cannot

generate any new modes and thus limit their spatial-scale

interactions and upscale energy transfer. In addition, the

inclusion of new modes could impact (i.e., increase) the

stability of solutions in the 5DLM. Therefore, it is sug-

gested that the appearance of the butterfly effect of the

first kind cannot directly lead to the conclusion that small

perturbations can alter large-scale structure, namely, the

butterfly effect of the second kind, because 1) it requires

further upscale transfer of energy by additional low-

wavenumber modes and 2) the inclusion of new modes

may have a significant impact on the solution stability (i.e.,

an extremely large r for the onset of chaos).

While chaotic solutions (associated with the butterfly

effect of the first kind) occur in the low-dimensional

LMs (e.g., 3DLM and 5DLM) that include very limited

nonlinear-scale interactions (i.e., limited degree of

nonlinearity), it was reported that stable solutions could

be obtained in the ‘‘sufficiently high-resolution’’ model

by Curry et al. (1984). Therefore, it is hypothesized that

solution stability in high-dimensional LMs can be fur-

ther increased through additional negative nonlinear

feedback with additional modes in numerical modeling.

However, the nonexistence of a nontrivial critical point

in the 4DLM (as r. do1 1)may indicate the importance

of proper mode truncation in improving the solution

stability of the nonlinear system that has a finite degree of

nonlinearity. Specifically, a comparison among the

3DLM, 4DLM, and 5DLM suggests that the inclusion of

only the M5 (e.g., Y1) mode cannot effectively improve

stability; while the inclusion of both theM5 andM6modes

can improve stability, the latter requires the former to

help provide its feedback to the 3DLM through the

new feedback loops, namely,M3/M5/M3 andM5/
M6 / M5. In addition, M6 is required to conserve the

domain-averaged total energy in the dissipationless limit.

Therefore, we suggest that an incremental change in the

degree of nonlinearity (e.g., with onlyM5 mode) may not

be a sufficient condition for improving stability particu-

larly in the low-dimensional LMs. We will continue to

examine this feature by incrementally increasing the

number of modes in generalized LMs.

To achieve the above goals, we have derived

a 6DLM with the inclusion of the M4 mode [M4 5ffiffiffi
2

p
sin(lx) sin(3mz)]. After finishing the derivations of

the 6DLM in the fall of 2011, we became aware of the

recent studies by Professor Z. E. Musielak and his col-

leagues who obtained the same 6DLM (Musielak et al.

2005). The 6DLMproduces a slightly smaller rc (541.1) for

chaotic solutions than the 5DLM. A comparison between

the two LMs has been made to investigate the impact of

an additional heating term associatedwith theM4mode on

the solution’s stability, which is in preparation for publi-

cation (Shen 2014,manuscript submitted to J. Atmos. Sci.).

To improve our understanding of the chaos dynamics and

thus the short-term predictability (e.g., Legras and Ghil

1985; Nese and Dutton 1993; Nese et al. 1996), we will

address if and how the changes of the critical points in the

revised 3DLMP and 5DLM, which have been solved ana-

lytically, can impact the transient evolution of chaotic so-

lutions with respect to the original 3DLM. For example, the

growth rate of the envelope of the numerical solutions (e.g.,

Fig. 4) from the nonlinear and linear systems in Eqs. (C2)–

(C6) (with FN 5 1 or 0) will be compared to the corre-

sponding finite-time LE (e.g., Nese 1989; Zeng et al. 1991;

Li and Ding 2011) and linear growth rate (e.g., Fig. 10).

Fractal dimension in different LMs will be analyzed with

different methods (e.g., Grassberger and Procaccia 1983;

Nese et al. 1987; Zeng et al. 1992) to understand the solu-

tion’s stability. Our ultimate goal is to apply these analysis

methods to examine the dependence of the solution’s

stability onmesoscale resolutions (e.g., 1/48 versus 1/128) and
onmodel physics (e.g., different moist processes) in global

weather and climate simulations (Shen et al. 2006b, 2012).
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APPENDIX A

Energy Conservation in the 5DLM

The domain-averaged kinetic energy (KE) and po-

tential energy (PE) are defined as follows (e.g., Treve

and Manley 1982; Thiffeault and Horton 1996):

KE5
1

2

ð2H/a

0

ðH
0
(u21w2) dz dx , (A1)
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PE52

ð2H/a

0

ðH
0
ga(zu) dz dx . (A2)

With Eqs. (7) and (9), Eq. (A1) becomes

KE5
p2

2
k2
�
11 a2

a

�3

X25
C3

2
X2 , (A3)

where C3 5p2k2[(11 a2)/a]3. Since the integral of the

M2 and M5 modes over the domain is equal to zero, PE

in Eq. (A2) is written as

PE5C2ga

ð2H/a

0

ðH
0
z(ZM3 1Z1M6) dz dx ,

and becomes

PE52p2nk

�
11 a2

a

�3�
Z1

Z1

2

�
52C3s

�
Z1

Z1

2

�
.

(A4)

From Eqs. (A3) and (A4), the time derivative of the

total energy is written as follows:

dKE

dt
1
dPE

dt
5C3

�
X

dX

dt
2s

�
dZ

dt
1

dZ1

2dt

��
. (A5)

To examine Eq. (A5) in the dissipationless limit (n 5
k5 0), we derive the following equations by multiplying

Eqs. (10), (12), and (14) of the 5DLM by X, 2s, and

2s/2, respectively,

X
dX

dt
52sX2= 1sXY , (A6)

2s
dZ

dt
52sXY1sXY11sbZ= , (A7)

2s
dZ1

2dt
52sXY11 2sbZ1

= . (A8)

Here the crossed-out symbol indicates a dissipative term

that is associated with either n=4c or k=2u in Eqs. (1)

and (2). The dissipative terms are neglected in the dis-

sipationless limit. The term sXY in Eq. (A6) is originally

from the linear term ga(›u/›x) in Eq. (1), while the other

nonlinear terms in Eqs. (A7) and (A8) are from the ad-

vection term J(c, u) in Eq. (2). Equation (A6) represents

the time derivative of the KE and Eq. (A7) [Eq. (A8)]

represents the time derivative of the PE. The nonlinear

term XY, which appears in Eqs. (A6) and (A7), is re-

sponsible for the conversion of KE and PE, while the

nonlinear termXY1 is responsible for the conversion of PE

at different scales. As the summation of Eqs. (A6)–(A8) is

zero when the crossed-out terms are excluded, we have

dKE/dt1dPE/dt5 0. Therefore, the total energy is con-

served. Note that in the 3DLM where both Y1 and Z1 are

missing in Eqs. (A7) and (A8), Eq. (A5) is still equal to

zero. However, Z has to be included to conserve the total

energy in the 3DLM. In comparison, when Z1 is not in Eq.

(A8) but only Y1 is included in Eq. (A7), Eq. (A5) is not

equal to zero, except for the trivial solution X 5 0. There-

fore, it is important to include bothY1 andZ1 (i.e., bothM5

andM6 modes) to conserve the total energy of the system.

When dissipation terms are included in Eqs. (A6)–

(A8), the time derivative of the total energy becomes

dKE

dt
1

dPE

dt
5C3s(2X21 bZ1 2bZ1) . (A9)

In the above equation, the nonlinear terms (XY and

XY1) are implicit while they are internally responsible

for the energy conversion.When a steady state is reached,

Eq. (A9) leads to Xc[56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(Zc 1 2Z1c)

p
], which is the

same as Eq. (19c). In addition, theM1 mode is associated

with dKE/dt, 0. When the mode M3 has a positive

(negative) amplitude, it is associated with negative (pos-

itive) potential energy [Eq. (A4)], but the corresponding

tendency [dPE/dt in Eq. (A9)] adds positive (negative)

potential energy to the system. The M6 plays a role sim-

ilar to the M3 mode.

APPENDIX B

Downscale and Upscale Transfer Processes in the
Nonlinear Feedback Loop: A Simple Illustration

In this section, we use trigonometric functions to dis-

cuss the downscale and upscale transfer associated with

the nonlinear Jacobian J(c, u) term, both of which may

form a nonlinear feedback loop. The Jacobian term can

be written asw›u/›z1 u›u/›x. The first and second terms

represent the nonlinear vertical and horizontal advection

of temperature, respectively. The four Jacobian terms

in Eq. (28) are briefly analyzed below. With no loss of

generality, we can assume two modes as sin(lx) sin(pz)

(e.g.,M1 orM4) and cos(lx) sin(qz) (e.g.,M2 orM5) (or

sin(qz), e.g., M3 or M6), respectively. Here p and q rep-

resent vertical wavenumbers: p 5 m or 3m and q 5 m,

2m, 3m, or 4m. Therefore, the corresponding Jacobian

becomes

lq cos2(lx) sin(pz) cos(qz)1 lp sin2(lx) cos(pz) sin(qz)

and is proportional to the following:

q sin(pz) cos(qz)1p cos(pz) sin(qz) , (B1)
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when cos2(lx) 5 [1 1 cos(2lx)]/2 ; ½ and sin2(lx) 5
[1 2 cos(2lx)]/2 ; ½ because of the truncation of the

horizontal wave modes. Equation (B1) is dominated by

the first part (i.e., w›u/›z) when p , q or by the second

part (i.e., u›u/›x) when p . q. Since we are mainly

concerned with the representation of J(M1, M3) and

subsequent nonlinear processes, we simply discuss the

Jacobian of the M1 and one of the other modes, which

is represented dominantly by sin(pz) cos(qz) because

p , q. Thus we have

sin(pz)3 cos(qz)5
1

2
fsin[(p1 q)z]

2 sin[(q2 p)z]g as p,q . (B2)

The above equation indicates that the nonlinear inter-

action could lead to the generation of two new wave

modes with wavenumbers (p 1 q) and (q 2 p) or to the

modification of these two modes if they already exist.

Therefore, downscale and upscale transfer processes may

occur. The appearance of the new mode at a higher

wavenumber (p 1 q) enables its subsequent interaction

with the M1 mode that leads to

sin(pz)3 cos[(p1 q)z]5
1

2
[sin(2p1 q)z2 sin(q)z] .

(B3)

Therefore, Eqs. (B2) and (B3) collectively suggest that

the ‘‘new’’ (or influenced) mode, sin[(p 1 q)z], gener-

ated (or modified) by the nonlinear downscale trans-

fer process associated with the incipient wave mode

[sin(qz)], can provide feedback to the incipient wave

mode via a subsequent nonlinear upscale transfer pro-

cess (as q , p 1 q). Thus, a feedback loop forms with

Eqs. (B2) and (B3). Although these equations represent

only the first part of the Jacobian function [e.g., Eq. (B1)],

they are representative for J(M1, Mj), where j 5 2, 3, 5,

and 6, that includes all of the nonlinear terms for the

5DLM as well as the major nonlinear terms for the

6DLM (B.-W. Shen 2013, unpublished manuscript). More

specific discussions are given sections 3a and 3b with the

calculation of the Jacobian.

APPENDIX C

Numerical Method of the Stability Analysis near
a Critical Point

The solutions with initial conditions near a nontrivial

critical point are analyzed as follows.We decompose the

total field into the basic part and perturbation, which can

be written as

A5Ac 1A0 , (C1)

where A represents (X, Y, Z, Y1, or Z1), Ac represents

the basic state that is from the solution of the critical

point, and A0 is a perturbation that measures the de-

parture from the critical point. With Eq. (C1), the 5DLM

[Eqs. (10)–(14)] becomes

dX 0

dt
52sX 0 1sY 0 , (C2)

dY 0

dt
5 (r2Zc)X

0 2Y 0 2XcZ
0 2FN(X 0Z0) , (C3)

dZ0

dt
5 (Yc 2Y1c)X

01XcY
02 bZ02XcY

0
1

1FN(X 0Y 02X 0Y 0
1) , (C4)

dY 0
1

dt
5 (Zc 2 2Z1c)X

0 1XcZ
02 dY 0

12 2XcZ
0
1

1FN(X 0Z0 2 2X 0Z0
1) , (C5)

dZ0
1

dt
5 2Y1cX

0 1 2XcY
0
12 4bZ0

11 2FN(X 0Y 0
1) . (C6)

Here the flag FN indicates if the system is fully nonlinear

(FN 5 1) or not (FN 5 0). The system with FN 5 0 is

linear with respect to the critical point. However, as the

solutions of the basic state (critical point) are from the

time-independent nonlinear 5DLM, the ‘‘linear system’’

with FN5 0 still poses the nonlinearity of the basic state.

Numerical solutions with FN 5 1 and FN 5 0 will be

compared to understand the evolution of solution’s

growth rates that are impacted by the nonlinearity. Here,

for local stability analysis, we only consider Eqs. (C2)–

(C6) with FN 5 0, which can be written as follows:

ds

dt
5As , (C7)

where s and A are a column vector and matrix, respec-

tively. The term s is (X, Y, Z, Y1, and Z1), and the matrix

A for the 5DLM, denoted A5d is written as follows:

A5d5

0
BBBBB@

2s s 0 0 0

r2Zc 21 2Xc 0 0

Yc 2Y1c Xc 2b 2Xc 0

Zc2 2Z1c 0 Xc 2d 22Xc

2Y1c 0 0 2Xc 24b

1
CCCCCA .

Similarly, the matrix A with the nontrivial critical point

for the 3DLM and 3DLMP are denoted A3d and Ar3d,

defined as follows:

MAY 2014 SHEN 1721



A3d5

0
B@ 2s s 0

r2Z3d
c 21 2X3d

c

Y3d
c X3d

c 2b

1
CA ,

Ar3d5

0
B@ 2s s 0

r2Zr3d
c 21 2Xr3d

c

Yr3d
c 2 2qXr3d

c Xr3d
c 2b

1
CA .

The critical points are analytically defined in Eq. (21) for

the 3DLM, in Eq. (22) for the 3DLMP, and in Eq. (19)

for the 5DLM. By assuming s 5 soe
lt, we obtain the

following characteristic equation:

As5 lIs , (C8)

where l is the eigenvalue of the system and I is the

identitymatrix. The number of eigenvalues is equal to the

number of the dimensions in these LMs, and each of these

eigenvalues can be a real or complex number. Let Re(l)

represent the real part of l, so the appearance of a posi-

tive Re(l) suggests an unstable solution near the critical

point. Given any pair of (s, r), we calculate the eigen-

values by solving Eq. (C8) using EISPACK (e.g., Smith

et al. 1976) (http://www.netlib.org/eispack/) and only an-

alyze the maximum value of Re(l). Figure 10 shows the

results of the Re(l) in the (s, r) space where 5 # s # 25

with Ds 5 0.01 and 20 # r # 50 with Dr 5 0.01. Discus-

sions are made in section 3e.
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