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ABSTRACT

Spatial variability of rainfall was studied through a gauge network on the Delmarva Peninsula. The gauge

network consists of 11 dual- or triple-tipping-bucket sites ranging from 1- to 150-km separation distances. The

time of the tip (0.254mm) was recorded to a datalogger, and a continuous dataset was available from all sites

for over 5 yr (May 2005–July 2010). A three-parameter exponential function was fitted to the paired corre-

lations and the resultant correlation distance was 8–13 km during summer and 51–85 km during winter. The

correlation distances showed pronounced year-to-year variability as being 8–43 km and 13–67 km during

spring and autumn, respectively. The airmass convection was the main weather system during summer while

nor’easters played an important role during winter. The 30-min integration and two-tip rain/no-rain threshold

was selected for the base of this study. The correlation distance increased with longer integration periods and

was 17 and 32 km for 30min and 1 h, respectively.

1. Introduction

Nonuniform beam filling within the instantaneous

field of view (IFOV) is one of the key uncertainties of

satellite-based precipitation estimates. It results from

the combination of variability of the precipitation in-

tensity and coverage within the IFOV. Tokay and
€Ozt€urk (2012, hereafter TO12) investigated the vari-

ability of rainfall and nonuniform beam filling effects

using a dataset of 2 yr of measurements from six dual

rain gauges, where the maximum gauge separation dis-

tance was 5 km. This maximum separation distance co-

incided with the approximate diameter of the footprint

of the National Aeronautics and Space Administration

(NASA) Tropical Rainfall MeasuringMission (TRMM)

precipitation radar. The TO12 study was based on rain

gaugemeasurements over a 2-yr span at theNASAWallops

Flight Facility, Wallops Island, Virginia. This rich

gauge dataset enabled the study of rainfall over sea-

sonal, 6-month, and annual periods, as well as under

different weather systems and different uniformity

conditions. The TO12 study pointed out that the vari-

ability of rainfall can only be determined within the

maximum gauge separation distance.

For microwave imagers, the IFOV at the surface is an

ellipse where the major axis is typically larger than 5 km.

For the TRMM Microwave Imager (TMI), after the

satellite boost in 2001, the minor and major axes, re-

spectively, are 4.7 and 7.7 km at 85GHz and 40 and

67 km at 10.65GHz. TheAdvancedMicrowave Scanning

Radiometer for Earth Observing Systems (AMSR-E) on

board Aqua, on the other hand, has IFOVs of 3.5 km 3
5.9 km at 89GHz and 43 km 3 75 km at 6.9GHz. The

Special Sensor Microwave Imager/Sounder (SSMIS) on

threeDefenseMeteorological Satellite Program (DMSP)

satellites has IFOVs of 13.2 km 3 15.5 km at 91.65GHz
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and 46.5 km 3 73.6 km at 19.35GHz. The upcoming

NASA Global Precipitation Measurement (GPM) Mi-

crowave Imager (GMI) will have IFOVs of 4.1 km 3
6.3 km at 166GHz and 19.4 km3 32.1 km at 10.65GHz.

It should be noted that the lower frequency channels,

which have larger IFOVs, are those that are primarily

used to retrieve the precipitation over the oceans.

Precipitation products that combine the precipitation

estimates from active radar and passive microwave

sensors have also been constructed over resolutions

greater than 5 km. The TRMM Multisatellite Pre-

cipitation Analysis (TMPA), for instance, is a 3-hourly,

0.258 3 0.258 precipitation product (Huffman et al.

2007). The Climate Prediction Center Morphing

Method (CMORPH), on the other hand, is a half-

hourly, 8-km (at the equator) resolution precipitation

product (Joyce et al. 2004). The Japan Aerospace Ex-

ploration Agency (JAXA) Global Satellite Mapping of

Precipitation (GSMaP) is another global product, which

is hourly at 0.18 resolution (Aonashi et al. 2009).

The spatial variability of rainfall has been mostly

studied over domains less than 40 km in linear extent

through ground-based and rain gauge networks. The

three-parameter exponential function has been fre-

quently employed to determine the correlation distance,

which depends on the storm and gauge network char-

acteristics (e.g., TO12, and references therein). Highly

variable convective precipitation events are character-

ized by shorter correlation distances than those for

widespread stratiform precipitation. The correlation

distances are sensitive to the number and distribution of

the gauges. While the close intergauge distances are

preferable, logistical challenges dominate the gauge

selection site. The correlation distances are also longer

for longer gauge and radar integration periods. Habib

andKrajewski (2002) used a dense gauge network where

the maximum separation distance was 8 km and re-

ported the correlation distance of 4.6 and 2.5 km for light

and heavy rain, respectively, at 15-min time integration.

The light versus heavy rain was determined through

gridded radar pixel rain intensity that was concurrent

with gauge observation. If the rain intensity was greater

than 10mmh21, it was considered as convective, while

the stratiform rain occurred at rain intensities less than

10mmh21. Gebremichael and Krajewski (2004) con-

ducted a similar study in determining the correlation

distance from a gauge network at 5- and 15-min in-

tegrations and snapshots of S-band radar rainfall esti-

mates. The radar-based correlation distances were

slightly lower than that of the gauge-based study. These

two studies were based on 2-month-long field campaigns

in central Florida and in the Amazon basin of Brazil.

Moreau et al. (2009), on the other hand, used 1-yr

observations of X-band radar and a gauge network

where the maximum separation distance was 10 km.

They found correlation distances of 4.5–6.1 km de-

pending on two different radar rainfall estimates and

gauge-based study.

Villarini et al. (2008) conducted a comprehensive

study of variability of rainfall over a 6-yr period using 50

rain gauge observations over a basin of approximately

135 km2 in southwest England, where the gauge sepa-

ration distances ranged from 0.5 to 15 km. They dem-

onstrated how the correlation distances and the other

parameters of a three-parameter exponential function

differed from a similar study in Oklahoma (Ciach and

Krajewski 2006). In addition to differences in pre-

cipitation characteristics, where the latter exhibits heavy

convective precipitation, the maximum gauge separa-

tion distance was about 4 km and the sample size was 14

months (mostly spring and summer) in the latter study.

The Ciach and Krajewski (2006) study used 25 double-

gauge stations, and the events with high and low spatial

variability resulted in correlation distances of 4.4 and

9.8 km. They also showed that the correlation distances

are longer when the rain rate is above 3mmh21. TO12

also pointed out that the variability within the TRMM

precipitation radar could be higher when the pixel is

partially covered by rain, which may occur in the pres-

ence of light rain.

Villarini (2010) evaluated the TMPA rain estimate at

its finest spatial and temporal scale over the metropoli-

tan area of Rome, Italy. He used gauge rainfall obser-

vations over a 4-month period that covered two TMPA

pixels where the maximum gauge separation was 25 km.

The correlation distance for 3-h gauge totals was 44.7 km

when an exponential function is applied to the paired

Pearson’s correlations.Mandapaka et al. (2009) used the

hourly rainfall from the Oklahoma Micronet rain gauge

network, where themaximum gauge separation distance

was less than 40 km. They found the correlation distance

of 40 km using 8 yr of warm-season observations.

The aforementioned studies focused on the spatial

variability of rainfall within ground-based radar pixel

and satellite footprint space for hydrological applica-

tions. The spatial variability of rainfall has also been

studied over monthly, seasonal, and yearly periods over

a region where the maximum gauge separation distance

is around 400 km. Berndtsson (1987) derived cross cor-

relations of daily rainfall from 5 yr of gauge observations

in northern Tunisia. There were significant differences

in correlations at a given distance between the different

months representing differences in rainfall characteris-

tics. Bewket and Conway (2007) looked at the correla-

tion in seasonal and yearly rainfall in 12 stations in

northwest Ethiopia based on 18 yr of gauge record.
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Rainfall was more spatially variable during dry periods

than wet periods.

This study addresses the spatial variability of rainfall

within the IFOV of the microwave sensors. This study

uses a similar methodology and experimental region as

the TO12. Nevertheless, the present study employs

a much longer dataset than did TO12 and many past

studies, which provides a way to examine spatial vari-

ability for multiple climatological periods and four dif-

ferent weather systems. Previous studies have relied

primarily on field campaign databases and therefore

were unable to offer conclusive remarks on the spatial

variability caused by a particular weather system. The

study area in the present case is also much larger than in

the TO12 study and most of the past studies, which is

vital in determining the spatial variability within the

IFOV of the microwave sensors. The experimental

setup and precipitation climatology can be found in

sections 2 and 3, respectively, while the data analysis is

outlined in section 4. Section 5 demonstrates the spatial

variability of rainfall over different time periods. The

variability based on specific weather events is also given

in section 5. The parameters of exponential fits are given

in section 6, followed by concluding remarks in section 7.

Future research is presented in section 8.

2. Experimental setup

A dual- or triple-tipping-bucket rain gauge network

was deployed on the Delmarva Peninsula, eastern Vir-

ginia, and northeast North Carolina in 2004–05 to eval-

uate NASA’s recently modified S-band polarimetric

radar. In addition, a dual-tipping-bucket gauge network

was deployed at Wallops Island, Virginia, to study the

small-scale variability of rainfall (TO12). The former

network was also used to evaluate the performance of

various operational gauge networks (Tokay et al. 2010).

The operation downsized in 2007 because of budgetary

limitations where only the gauges on the Delmarva

Peninsula continued to operate. This study used eight

triple gauge sites from the former and three dual gauge

sites from the latter network. A continuous record of

gauge observations was available from 15 May 2005 to

31 July 2010 at these 11 sites. The gauges were manu-

factured by Met One Inc., had a 20.3-cm diameter ori-

fice, and sat on a wooden box (Fig. 1). The time of the tip

where each tip corresponds to 0.254mm of rainfall was

recorded on a battery-operated data logger manufac-

tured by MadgeTech Inc.

The gauge network extends from Ocean City, Mary-

land, to Kiptopeke, Virginia, where the maximum and

minimum gauge separation distances are 150 and 1 km,

respectively (Fig. 2). The configuration of the gauge sites

FIG. 1. A picture of (top) dual and (bottom) triple rain gauge site.

FIG. 2. A map of the Eastern Shore rain gauge network. Triple

gauge sites aremarked by light gray circles, and dual gauge sites are

marked by dark gray circles.
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allowed at least one pair of gauges for every 10-km in-

crease in gauge separation distance. This is important

for the stability of the fitted exponential function. The

region is mainly flat and is subject to remnants of trop-

ical cyclones, sea breeze convection, nor’easters, and

frontal rainfall.

3. Precipitation climatology

The precipitation amount on the Delmarva Peninsula

varies little between seasons. Wallops Island, which re-

sides in the middle of the gauge network, received its

maximum amount (274mm) during summer and mini-

mum amount in autumn (223mm). At the same time,

the region is subject to 2-month-long droughts and

abundant rainfall during the passage of tropical cy-

clones. For the observation period, the minimum pre-

cipitation was observed during the winter of 2008/09 and

the maximum precipitation occurred during the autumn

of 2006, which coincided with the passage of Hurricane

Ernesto (2006; Fig. 3a). It should be noted that our

precipitation totals in winter months do not include the

snow water equivalent, and therefore, the climatology

may have higher precipitation in winter months. For the

five winter seasons studied here, frozen and mixed pre-

cipitation had 13% of total winter precipitation following

daily reports from the automated surface observation

system weighing bucket precipitation gauge at Wallops

Island, Virginia. Winter 2009/10 was subject to high

precipitation accumulation events, and therefore, the

rainfall exceeded the climatology. Winter 2009/10 had

also the highest amount (23%) of nonliquid precipitation

among the five winters. The cold-season rainfall totals

were less than the climatology, except in 2009/10, while

rainfall exceeded the climatology in the warm seasons,

except in 2007 (Fig. 3b). The year of 2007/08 was the

driest year and the year of 2009/10 was the wettest year

(Fig. 3c).

4. Data analysis

Five years of gauge observations have been summed

to 10 different rain accumulation periods ranging from

5min to 12 h. Four different rain/no-rain thresholds

were considered ranging from a single tip (0.254mm) to

eight tips (2.032mm). This studywas based on the 30-min

rain accumulation period with a two-tip (0.508mm) rain/

no-rain threshold, which resulted in 6870 observations

after the snowy days were removed from the dataset.

This rich dataset allowed us to study the spatial vari-

ability of rainfall for 35 different climatological periods,

consisting of 20 seasons, 10 warm/cold periods, and 5 yr.

The warm period includes the summer months plus May

and September, while the cold period covers the winter

months plus November and March. April and October

are considered to be transitional periods for this region.

Since the rainfall observations started in mid-May, the

FIG. 3. Five years of rainfall totals for (a) a season, (b) warm/cold

periods, and (c) a year at Wallops Island, VA. The climatology was

based on historical precipitation records at Wallops Island.
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annual totals were based on June through May. The

spatial variability was also studied for four physically

based events that included remnants of tropical cy-

clones, air mass convection, nor’easters, and frontal

(warm sector) rainfall. The minimum sample size was

145 observations, which occurred during the winters of

2006/07 and 2007/08 (Fig. 4). The sample size can be en-

hanced by selecting a single tip for the rain/no-rain thresh-

old, but a single tip can be the result of wind effects, and the

time of the tip will not represent a rainy period in the

presence of a partially filled bucket from a previous storm.

Pearson’s correlation coefficient is applied to 55 pairs

of gauge records. A three-parameter exponential func-

tion is then applied to the correlation r and distance

d pairs for each integration period and is expressed as

r5 r0 exp

�
2

�
d

d0

�s�
, (1)

where r0 is the nugget parameter, d is the distance be-

tween the two gauge sites, d0 is the correlation distance,

and s is the shape parameter.

The nugget parameter is the correlation between the

collocated gauges, and one of the sites at Wallops Flight

Facility (WFF), Wallops Island, Virginia, was used to

determine the nugget parameter. In an ideal case, the

collocated gauges should result in a correlation co-

efficient of 1, but the random measurement errors and

microscale variability of rainfall result in correlation

coefficients mostly between 0.95 and 0.99 (TO12). We

used these two predefined nugget parameters to in-

vestigate the importance of nuggets in determining the

correlation distance and shape parameter. The correla-

tion distance and shape parameter are determined by

minimizing the root-mean-square error (rmse) between

the correlations in Eq. (1) and those directly calculated

from a pair of observations. The shape parameter con-

trols the behavior of the exponential function at small

separation distances and was mainly between 0.5 and 1.0

in the TO12 study. A shape parameter of 1 results in

exponential decay of the correlation, while a shape pa-

rameter of 0.5 shows faster exponential decay at shorter

separation distances and slower exponential decay at

longer separation distances. At crossover between shorter

and longer separation distances, d 5 d0 and r 5 r0/e. We

used these two predefined shape parameters to in-

vestigate the role of the shape parameter in determining

correlation distance.

5. Spatial variability

For the entire observational period, the correlations

fell below 0.5, 0.2, and 0.1 at 10-, 40-, and 80-km distances,

respectively (Fig. 5). Most of the paired correlations

were between 20- and 60-km distance, and themaximum

difference in correlation at a given distance was less than

0.15. The nugget parameter calculated from collocated

gauges was 0.93. The correlation distance and the shape

parameter were 17.2 km and 0.57, respectively, for the

exponential fit. The rmse, which shows the goodness of

the fit, was 0.04.

For the seasons, the year-to-year variations of the

correlations were substantial during autumn and spring.

At 20-km distance, the correlations were between 0.3

and 0.6 during spring and between 0.3 and 0.52 during

autumn (Figs. 6a,c). The year-to-year variability was

relatively less during summer, and the correlations fell

below 0.1 at 50-km distance (Fig. 6b). The year-to-year

variability was also low during winter, but the correla-

tions remained higher than 0.1, even at 150 km (Fig. 6d).

The correlations were less than 0.2 and 0.1 at 40 and

80 km, respectively, during the warm period (Fig. 7a)

and higher than 0.2 and 0.1 at 90 and 150 km, re-

spectively, during the cold period (Fig. 7b). The drastic

differences in correlations between the cold and warm

periods show the dependence of rainfall variability on

the precipitation systems. On an annual basis, the cor-

relations were less than 0.4 and 0.2 at 20 and 60 km, re-

spectively (Fig. 7c).

Considering the variability of rainfall for different

precipitation systems, the correlations fell below 0.1 at

40-km distance in air mass convection. At the same

distance, the correlations were just below 0.3 in tropical

cyclones, 0.4 in frontal precipitation, and just above 0.5

in nor’easters (Fig. 8). The precipitation systems were

determined through synoptic charts on an event-by-

event basis. A close agreement in correlation distance

between air mass convection and summer season, and

between the nor’easters and winter season, shows the

dominance of weather systems on seasonal precipitation.

The integration period and rain/no-rain threshold has

a pronounced effect on the quantitative analysis of the

rainfall variability (Ciach and Krajewski 2006; Villarini

et al. 2008). At 40-km distance, a single- and an eight-

tip-based rain/no-rain threshold resulted in correlations

of 0.25 and 0.12, respectively (Fig. 9a). The higher rain/

no-rain thresholds eliminate the light rain and therefore

lower the correlations between the paired gauge mea-

surements. The correlations were 0.05 and 0.65 at 40-km

distance when 5-min and 12-h integration periods were

considered (Fig. 9b).

6. Parameters of exponential fit

The nugget parameter was mostly higher than 0.95 for

any given time period or weather system considered
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(Fig. 10a). At the same time, the nugget was 0.85, its

lowest value, during the spring of 2006. The shape pa-

rameter was usually between 0.4 and 1.0 but was as high

as 2.0 during the winter of 2008/09 and as low as 0.2

during the spring of 2010 (Fig. 10b). The predefined

nugget parameter-based exponential fits resulted in in-

significant differences in the shape parameter. The

maximum difference in shape parameter was 0.15, which

FIG. 4. Sample size for a given season, warm/cold periods, years, and specific weather types.
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occurred during the summer of 2007, when the best

nugget parameter was 0.88.

The correlation distances were less than 20 km during

summer and above 50 km during winter (Figs. 10c,d).

During spring, the correlation distances had a wide

range of year-to-year variability between 10 and 45 km,

while the variability was relatively less during autumn,

with a correlation distance range between 25 and 45 km.

The correlation distances were 20–30 km during warm

periods and at and above 50 km during cold periods. The

yearly correlations lay between 20 and 30 km. Consid-

ering all climatological periods, the shortest and the

longest correlation distances were 10 and 130 km, which

were observed during the spring of 2006 and the 2009/10

cold period. The correlation distances were 15 and

30 km during air mass convection and tropical cyclones,

respectively, while they were 55 and 80 km during

frontal rainfall and nor’easters, respectively. The cor-

relation distances are relatively less sensitive to the

nugget parameter than the shape parameter (Figs. 10c,d).

This demonstrates that a predefined nugget parameter

may be considered to determine the correlation distance

in the absence of collocated gauge. The shape parame-

ter, on the other hand, should be retrieved from three-

parameter exponential function.

The short correlation distance of air mass convection

also occurred during the summers of 2005, 2006, and

FIG. 5. Intergauge correlations (circles) and the fitted exponen-

tial function (curve) for 30-min time averaging. The parameters of

the exponential function and rmse are also given.

FIG. 6. Correlation of functional fit for five consecutive years for (a) spring, (b) summer, (c) autumn, and (d) winter

seasons.

APRIL 2014 TOKAY ET AL . 807



2007. Similarly, the correlation distances of tropical cy-

clones were observed during the autumns of 2005, 2008,

and 2009. The high correlation distances of nor’easters

were also examined during the winters of 2006/07, 2008/09,

and 2009/10. These observations show how a particular

weather system can dominate the spatial variability of

rainfall in a season. In particular, a season for which no

tropical cyclone is observed will result in a different

correlation distance than in a season where one or more

tropical cyclones occur. This shows the necessity of

a multiyear dataset to determine the spatial variability

where the region is subject to different weather systems.

Considering the entire observational period, the

nugget parameter increased with longer integration

periods, and the increase in nugget was relatively faster

at short integration periods (Fig. 11a). This shows that

the gauge-to-gauge variability was more pronounced at

shorter time periods. The shape parameter was between

0.52 and 0.56 up to 20-min integration, then increased

with longer integration periods from 0.59 at 30-min to

0.66 at 3-h integration andwas around 0.58 for 6- and 12-h

integration periods (Fig. 11b). The correlation distance

increased with longer integration period, first gradually,

from 2 km at 5-min integration to 38 km at 1-h in-

tegration, and then rapidly, from 58km at 2-h in-

tegration to 178 km at 12-h integration (Fig. 11c). The

rmse was less than 0.05 up to 30-min integration peri-

od but then increased up to 0.88 at 12-h integration

(Fig. 11d).

7. Conclusions

An experimental study of spatial variability of rainfall

was conducted using a high-quality rain gauge network

on the Delmarva Peninsula. This study is aimed at

quantifying the rainfall variability within the IFOV of

typical satellite microwave sensors. The variability

within the IFOV results in nonuniform beam filling,

which is one of key uncertainties in the microwave

FIG. 7. Correlation of functional fit for five consecutive years for

(a) warm period, (b) cold period, and (c) entire year.

FIG. 8. Correlation of functional fit for four different weather

systems.
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sensor–based precipitation estimate. Rain gauge obser-

vations over a 5-yr period provided the data to in-

vestigate the variability over different time periods and

four specific weather systems. The spatial variability was

more pronounced at smaller separation distances as the

correlations fell below 0.5 at 10-km distance for the

experiment period at 30-min time integration. The cor-

relations gradually decreased from 0.3 to 0.1 between 30

and 80 km and remained less than 0.1 for longer sepa-

ration distances.

A sharp decay in correlations at shorter separation

distances was particularly pronounced during summer

and warm periods while the correlations had a more

gradual decay during winter and cold periods. The cor-

relations had pronounced differences from one year to

the next during spring and autumn. Significant differ-

ences in correlations were also observed between the

four weather systems. The nor’easters hadmore uniform

precipitation followed by frontal precipitation. The

tropical cyclones and air mass convection exhibited high

spatial variability, resulting in lower correlations at

a given distance. The correlation distances during sum-

mers and during air mass convection were about the

same, indicating the dominance of air mass convection

during summer in this region. Similarly, nor’easters re-

sulted in higher correlation distances during winter. The

correlations increased with longer integration periods

and lower rain/no-rain thresholds.

The three-parameter exponential function had a very

good fit to the observed correlations. The differences

between observed correlations and the fitted curve were

very small, and there was at least one paired correlation

every 10 km of distance. The rmse was therefore 0.25 or

less for any season, warm/cold, and yearly periods. The

nugget parameter, which is the correlation of collocated

gauges, was higher than 0.95 inmost of the observational

periods, but it was as low as 0.85 during the spring of

2006. The gauge measurement errors and variability

between the collocated rain gauges contributed to the

deviation of nugget parameter from one. The shape

parameter of the exponential fit ranged mostly from 0.4

to 1.0. The correlation distance of the exponential fit had

a wide range but was between 8 and 13 km during

summer and between 51 and 67 km during winter. The

correlation distance showed more sensitivity to the

shape parameter than the nugget parameter.

8. Future research

The correlation distance is the measure of the spatial

variability of rainfall and is one of the key parameters in

designing a gauge network for validating satellite pre-

cipitation estimates. As shown in this study, the corre-

lation distance is sensitive to the integration period, rain/

no-rain threshold, precipitation characteristics, and the

size and gauge density of the domain. The microwave

sensors, for instance, have a wide range of IFOV

depending on their frequency of operation, and there-

fore, an additional rain gauge network is needed to de-

tect the rainfall variability at shorter distances.

To achieve these goals, six triple-gauge sites have

been added to the network, and a new network in

Pocomoke City, Maryland, where 25 dual gauges are

deployed within a 53 5 km2 array, will be used to study

the small-scale variability of rainfall. The new network

will replace the three gauge sites at Wallops Island. The

upgraded gauge network will provide additional paired

correlations at various distances. Thus, the shape pa-

rameter and correlation distance of the exponential

function will be more accurate. The upgraded network

FIG. 9. Correlation of functional fit for (a) four different rain/no-rain thresholds and (b) 10 different integration

periods.
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and the longer dataset will provide more robust esti-

mates of the correlation distances from the four major

weather systems in the mid-Atlantic region.

The upgraded gauge network will be used to evaluate

the satellite precipitation products, especially after

launch of the GPM satellite. The microwave sensor–

based precipitation estimates perform relatively poorly

over land and coastal regions. There have been efforts to

merge gauge rainfall with the satellite products. Vila

et al. (2009), for instance, showed an improvement in

TMPA over South America when daily gauge reports

merged with this product. The upgraded gauge network

on the Delmarva Peninsula will serve as an excellent

dataset to develop merged gauge satellite precipitation

products at the time resolution of the satellite product.

It should be added that the dense gauge networks are

not the only resource that can be used to investigate

spatial variability within the IFOV. The National Oce-

anic and Atmospheric Administration National Severe

Storm Laboratory’s ground-based National Mosaic

FIG. 10. Parameters of exponential fit and rmse for 20 seasons, 10 warm/cold periods, 5 yr, and for tropical

cyclones, air mass convection, nor’easters, and frontal systems: (a) nugget parameter; (b) shape parameter;

(c) correlation distance for the best and selected nugget parameters; (d) as in (c), but for selected shape parameters;

(e) rmse for the best and selected nugget parameters; and (f) as in (e), but for selected shape parameters.
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and Multi-Sensor Quantitative Precipitation Estima-

tion (NMQ/Q2) system (Zhang et al. 2011) produces

gauge-adjusted, radar-based precipitation products at

0.018 spatial resolution over the continental United

States. This product was recently used to evaluate the

TRMM precipitation radar rainfall estimate (Kirstetter

et al. 2013). The gauge network used in this study is not

part of the NMQ/Q2 product and therefore can be used

to evaluate the NMQ/Q2 product. The NMQ/Q2 prod-

uct itself is a candidate to determine the spatial vari-

ability across the United States.
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