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ABSTRACT

Understanding and quantifying satellite-based, remotely sensed snow cover uncertainty are critical for its

successful utilization. The Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover errors have

been previously recognized to be associated with factors such as cloud contamination, snowpack grain sizes,

vegetation cover, and topography; however, the quantitative relationship between the retrieval errors and these

factors remains elusive. Joint analysis of the MODIS fractional snow cover (FSC) from Collection 6 (C6) and in

situ air temperature and snowwater equivalentmeasurements provides a unique look at the error structure of the

MODIS C6 FSC products. Analysis of the MODIS FSC dataset over the period from 2000 to 2005 was un-

dertaken over the continental United States (CONUS) with an extensive observational network. When com-

pared to MODIS Collection 5 (C5) snow cover area, the MODIS C6 FSC product demonstrates a substantial

improvement in detecting the presence of snow cover in Nevada [30% increase in probability of detection

(POD)], especially in the early and late snow seasons; some improvement over California (10% POD increase);

and a relatively small improvement over Colorado (2% POD increase). However, significant spatial and tem-

poral variations in accuracy still exist, and a proxy is required to adequately predict the expected errors in

MODIS C6 FSC retrievals. A relationship is demonstrated between the MODIS FSC retrieval errors and

temperature over the CONUS domain, captured by a cumulative double exponential distribution function. This

relationship is shown to hold for both in situ and modeled daily mean air temperature. Both of them are useful

indices in filtering out the misclassification of MODIS snow cover pixels and in quantifying the errors in the

MODIS C6 product for various hydrological applications.

1. Introduction

In the mid- to high-latitude and alpine regions, the

seasonal snowpack can dominate the surface energy and

water budgets because of its high albedo, low thermal

conductivity, high emissivity, considerable spatial and

temporal variability, and ability to store and then later

release a winter’s cumulative snowfall (Cohen 1994; Hall

1998). With this in mind, the snow drought across the

United States has raised questions about impacts on water

supply, ski resorts, and agriculture. Knowledge of various

snowpack properties is crucial for short-term weather

forecasts, climate change prediction, and hydrologic

forecasting for producing reliable daily to seasonal fore-

casts. One potential source of this information is the

multi-institution North American Land Data Assimila-

tion System (NLDAS) project (Mitchell et al. 2004). Real-

timeNLDASproducts are used for droughtmonitoring to

support the National Integrated Drought Information

System (NIDIS) and as initial conditions for a future

National Centers for Environmental Prediction (NCEP)

drought forecast system.Additionally, efforts are currently

underway to assimilate remotely sensed estimates of land

surface states, such as snowpack information, into
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NLDAS. It is believed that this assimilation will not only

produce improved snowpack states that better represent

snow-evolving conditions, but will directly improve the

monitoring of drought.

In the western United States, over half of the water

supply is derived frommountain snowmelt (Stewart et al.

2005). In many midlatitude, high-elevation regions, the

snowpack delays runoff and thus provides much-needed

water in the spring and summer, which can mitigate ag-

ricultural droughts through irrigation when water is

needed most. However, little is known about the spatial

and temporal variations of critical processes like snow-

melt and runoff in these mountainous areas. As both the

model predictions and passive microwave snow water

equivalent (SWE) observations contain large errors at-

tributable to land surface complexities and temporally

frequent snowmelt processes in thewesternUnited States

(e.g., Tait and Armstrong 1996; Rodell et al. 2004; Foster

et al. 2005; Dong et al. 2005; Tong et al. 2010), the 500-m

daily Moderate Resolution Imaging Spectroradiometer

(MODIS) Collection 5 (C5) snow cover area (SCA)

product has been widely used as an important constraint

on snowpack processes in land surface and hydrological

models. Assimilation experiments with MODIS SCA

(Rodell and Houser 2004; Andreadis and Lettenmaier

2006; Molotch and Margulis 2008; Liu et al. 2013) or

synthetic data (Liston et al. 1999; Clark et al. 2006) have

demonstrated some improvements in the accuracy of

both streamflow and SWE simulations spatially and

temporally. Yatheendradas et al. (2012) used MODIS

fractional snow cover (FSC) to perform assimilation ex-

periments over the Distributed Model Intercomparison

Project, phase 2 (DMIP 2) western basin domain and

achieved large improvements judged against the control

run, but degraded the simulated streamflow when com-

pared against the calibrated run because of a lack of

below-canopy measurements. To attain the optimal es-

timate of snowpack state, it is essential that the assimi-

lation scheme accounts for the relative uncertainty of

both model predictions and observations. For example,

direct replacement of the modeled snow states with ob-

servations by assuming that the observations are error-

free can often yield degradedmodel predictions in certain

situations (e.g., Liston et al. 1999; Rodell and Houser

2004). Users need to know when and where the data are

most reliable and account for uncertainty when ingesting

satellite information into models (Dong et al. 2007; Dong

and Peters-Lidard 2010).

A snowpack is an integrated response to climate,

weather, and land surface complexity. Understanding

and quantifying MODIS FSC retrieval errors are critical

for successful utilization of the FSC product. A time se-

ries comparison performed by Klein and Barnett (2003)

between MODIS C5 SCA retrievals and the in situ SWE

measurements at 15 Snowpack Telemetry (SNOTEL)

stations in the Upper Rio Grande basin over one entire

snow season from 13 October 2000 to 30 March 2001

showed an overall high accuracy (94%). However, an

extended comparison of MODIS against SNOTEL sites

from 1 October 2000 to 9 June 2002 showed a slightly

lower overall classification accuracy of 88% (Klein and

Barnett 2003). As summarized in Parajka and Bl€oschl

(2012), most of the MODIS accuracy assessments re-

ported the overall accuracy to be between 85% and 99%

during clear sky conditions. Potential sources of mis-

classification in MODIS-derived standard snow cover

products have been previously identified as a thin snow-

pack (Klein and Barnett 2003; Shreve et al. 2009), clouds

(Maurer et al. 2003), patchy snow (Parajka and Bloschl

2006), and forest cover (Hall et al. 1998; Simic et al. 2004;

Roy et al. 2010; Parajka et al. 2012).Hall andRiggs (2007)

review these potential sources and conclude that lower

accuracy is found in forested areas and complex terrain

and when snow is thin and ephemeral.

A number of recent studies have focused on improv-

ing MODIS fractional snow cover detection. MODIS

Snow Covered Area and Grain Size (MODSCAG) is

a physically based and geographically consistent model

that accounts for the spatial and temporal variation in

surface reflectance of snow and other surfaces (Dozier

et al. 2008; Painter et al. 2009). Rittger et al. (2013) gives

a quantitative analysis of the MODIS/Terra snow cover

daily level 3 (L3) global 500-m grid (MOD10A1) binary

and fractional snow cover errors, along with those of the

MODSCAG algorithm. MODSCAG has the ability to

detect the fraction of a snow-covered area down to

values of 10%–15% and is able to detect snow cover at

lower elevations near the snow line where snow is not

the dominant surface cover. Parajka et al. (2012) used

a 2-day temporal filter that led to a significant reduction

in the number of days with prohibitive cloud coverage

and to an increase in overall snow mapping accuracy. In

particular, the 2-day temporal filter decreases the num-

ber of cloudy days from 61% to 26% and increases the

snow mapping accuracy from 91.5% to 94%. Dong and

Peters-Lidard (2010) compared the 500-m dailyMODIS

C5 SCA product to the in situ SWEmeasurements from

SNOTEL and the U.S. Historical Climatology Network

(USHCN) in two distinct climatic regions (California

and Nevada versus Colorado) in the western United

States from 2000 to 2005. The region encompassing

California and Nevada differs significantly from the

Colorado area in its proximity to the ocean, topography,

warmer climate, and wetter snow. Dong and Peters-

Lidard (2010) demonstrated for the first time that

MODIS C5 SCA retrieval errors can be predicted by
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simultaneous MODIS-based land surface temperature

or in situ–based daily mean air temperature measure-

ments. This study will use the methodology from Dong

and Peters-Lidard (2010) to assess the errors associated

with the MODIS Collection 6 (C6) FSC product over

a continental United States (CONUS)-wide domain.

Accordingly, the purpose of this paper is ultimately to

make the MODIS C6 FSC product more useful to the

hydrologic and drought communities.

2. Observational data

a. Satellite observations

MODIS is a multispectral instrument with 36 bands,

featuring nominal spatial resolutions of 250m (two

bands), 500m (five bands), and 1 km (29 bands).MODIS

data have been available on Terra since 24 February

2000 and on Aqua since 24 June 2002. In this study, we

focus on the Terra MODIS level-3 500-m C5 SCA and

C6 FSC data (Hall et al. 2002; Riggs and Hall 2012).

MODIS snow cover data are based on a snow mapping

algorithm that employs a normalized difference snow

index (NDSI; Valovcin 1976; Crane andAnderson 1984;

Dozier 1989; Hall et al. 1995; Salomonson and Appel

2004, 2006) and other criteria tests. The binary value in

the C5 (MOD10A1) product returns a positive result if

the NDSI is 0.4 or above, which corresponds to about

50% snow coverage (Riggs et al. 2006). The MODIS

FSC algorithm for C6 is the same as in C5; however, the

screens applied to alleviate snow detection errors of

commission and omission have been changed (Riggs

and Hall 2012). The surface temperature screen for

snow commission errors has been deleted from the al-

gorithm in C6 because it was discovered that the screen

has a detrimental impact on mapping snow cover on

mountains in the spring and summer, consistent with the

results reported in Dong and Peters-Lidard (2010). One

of the largest problems affecting MODIS SCA products

is false detection of cloud cover; however, the false de-

tection of snow and land under clear sky conditions is also

recognized as another potentially significant issue be-

cause of land surface complexity and frequent weather

variations (e.g., Hall and Riggs 2007).

b. In situ observations

The Natural Resources Conservation Service (NRCS)

installs, operates, andmaintains the extensive, automated

SNOTEL system to collect snowpack and related climatic

data in thewesternUnited States. The systemevolved from

NRCS’s congressional mandate in the mid-1930s to mea-

sure snowpack in the mountains of the western United

States and forecast the water supply. The programs began

with manual measurements of snow courses; since 1980,

SNOTEL has reliably and efficiently collected the data

needed to produce water supply forecasts and to support

the resource management activities of the NRCS (Crook

1977; Natural Resources Conservation Service 2014). Basic

SNOTEL sites feature a pressure-sensing snow pillow,

a storage precipitation gauge, and an air temperature sen-

sor. A pressure pillow 3.66m in diameter can provide an

accurate measurement of snow water equivalent, its re-

sponse time to new snow is on the scale of minutes, and

snowfall rates as low as 0.762mmh21 can be observed

(Beaumont 1965). However, it should be noted that a small

increase or decrease in SWEvaluesmay not be attributable

to snowfall or snowmelt. Rather, these fluctuations may

reflect effects such as drifting, wind scour, sublimation,

blowing snow, and foreign material being deposited on the

snow pillow, especially in areas of low snow cover (Serreze

et al. 1999). The 670 available SNOTEL stations in our

study area are predominantly located in high mountainous

regions with a mean elevation of about 2272m (Fig. 1).

Molotch and Bales (2006) showed that SNOTEL sites

poorly represent a region with respect to spatial distribu-

tion of snow persistence, introducing a bias. Additionally,

SNOTEL sites do not adequately represent high-elevation

regions, and therefore, their use introduces yet another

bias by not addressing patchy, high-elevation snow cover.

Although they are limited in their spatial representa-

tiveness, ground-based SWE observations from the

SNOTEL network have been widely used to evaluate,

initialize, and update grid-element SWE estimates within

spatially distributed snowmelt models (e.g., Carroll et al.

2001), develop the remotely sensed SWE detection al-

gorithms (Chang et al. 1991), and evaluate the spatial

distribution of remotely sensed SWE using statistical

models (Klein and Barnett 2003). Although SNOTEL

locations may not represent the full range of physiographic

and snowpack conditions found within the watersheds in

which they are located, they are placed in areas intended to

be representative of the water-producing regions of a wa-

tershed (U.S. Soil Conservation Service 1972).

Previouswork has suggested that SNOTELSWEvalues

are inherently biased toward overestimating mean basin-

wide SWE (e.g., Daly et al. 2000). In this study, we also use

the USHCN daily temperature, precipitation, and snow

dataset containing daily observations of maximum and

minimum temperature, precipitation, snowfall amount,

and snow depth (Williams et al. 2006). Most station re-

cords are essentially complete for at least 50 years, and

the most recent station start date is 1948. Data from 1005

of a total of 1062 observing stations extend through 2000,

while 920 station records extend through 2005. The

USHCN stations are located in relatively flat regions

scattered across the CONUS and feature a mean eleva-

tion of about 520m (Fig. 1).
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c. NLDAS forcing

The NLDAS project has produced over 30 years of

retrospective and real-time forcing from 1979 to the

present to support its land surface modeling activities

(Cosgrove et al. 2003; Xia et al. 2012). NLDAS forcing

features a 1/88 spatial resolution and an hourly temporal

resolution and is based on spatially and temporally

interpolated 3-hourly North American Regional Re-

analysis (NARR) model output (Mesinger et al. 2006)

along with precipitation and shortwave observations.

An elevation adjustment has been applied in the gen-

eration of NLDAS air temperature, pressure, longwave

radiation, and humidity fields from the 32-km NARR

output grid, which adjusts for the significant differences

in the NARR and NLDAS topography fields. Addi-

tionally, NARR shortwave radiation has been bias

corrected via the use of Geostationary Operational En-

vironmental Satellite (GOES) shortwave data. Luo et al.

(2003) used observed forcing data at Oklahoma Mesonet

stations and Atmospheric Radiation Measurement

(ARM)/Cloud and Radiation Testbed (CART) stations

over the southern Great Plains to evaluate NLDAS

downward solar radiation, downward longwave radi-

ation, 10-m wind speed, specific humidity, 2-m air

temperature, surface pressure, and precipitation. The

results indicated good agreement between NLDAS

forcing data and observations for all meteorological

variables except for hourly precipitation. The hourly

NLDAS air temperature data will be used in this study.

3. Collection 6 update to previous results

The overall estimate of MODIS snow retrieval accu-

racy limits its usefulness in many hydrologic applications,

including drought monitoring, as it displays significant

spatial and temporal variability. Thus, the investigation of

spatial and temporal sampling representativeness is im-

portant before its successful use. The quality of MODIS-

retrieved SCA and FSC relative to the in situ observations

described above is evaluated using a confusion matrix,

which appears to provide an excellent summary of two

types of thematic error that can occur, namely, omission

and commission (Foody 2002). Similar to Dong and

Peters-Lidard (2010), we chose to use the probability of

detection (POD) and false alarm ratio (FAR) in the fol-

lowing contexts. The probability of detection, POD5 SS/

(SS1 NS), measures the fraction of observed snow cover

cases that were correctly detected by MODIS, and the

false alarm ratio, FAR 5 SN/(SN 1 NN), measures the

fraction of observed snow-free land cases that were in-

correctly detected as snow covered cases byMODIS. The

SS denotes that snow cover is detected in MODIS and it

does occur, theNS denotes that snow cover is not detected

in MODIS but it does occur, the SN denotes that snow

FIG. 1. Spatial distribution of in situ SWE andmeteorological stations including 670 SNOTEL

(dots) and 1062USHCN (plus signs) stations over the CONUS. The background colors show the

mean elevation at 4-km resolution derived from the U.S. Geological Survey (USGS) 1 arc-s

National Elevation Dataset.
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cover is detected inMODIS but it does not occur, and the

NN denotes that snow cover is not detected in MODIS

and it does not occur. Table 1 illustrates the confusion

matrix for assessing MODIS SCA retrieval accuracy, in-

cluding the aforementioned four categories in this study.

A perfect sample occurs when SN and NS are zero.

Dong and Peters-Lidard (2010) used the binary part of

the MOD10A1 product (snow covered equals 1 or snow-

free equals 0) in their study. Tomatch this use, theMODIS

C6 FSC (varying from full snow coverage equals 1.0 to

snow-free equals 0.0) and in situ–measured SWE are

transformed into a binary snow cover product (FSC 5 0

and SWE5 0 for snow-free land or FSC. 0 and SWE. 0

for snow cover). While this is not a proper evaluation of

the fractional snow cover and snow water equivalent, it

serves as a means of achieving the important match with

the MODIS C5 binary estimates. We consider only clear

sky days at the study sites, andMODIS snow cover results

are compared to data from SNOTEL and the USHCN.

Comparison of MODIS C5 binary and C6 FSC monthly

climatologies is made for three states: California, Nevada,

and Colorado, for each month over 2000–05 (Fig. 2).

The PODof snow cover usingMODIS improves in C6

relative to C5 for all cases, with the exception of the

month of June in the California study area. The im-

provement in snow cover detection is especially sub-

stantial in Nevada in the months of March–June.

Improvement using C6 is less dramatic in the Colorado

study area. The overall POD increase is about 2% (from

82% to 84%) for Colorado, 10% (from 76% to 86%) for

California, and 30% (from 54% to 84%) for Nevada. The

difference in snow cover betweenNevada andColorado is

likely because of the deletion of the temperature screen in

the C6 product and possible warmer temperatures over

the mountains in Nevada than in Colorado. The surface

temperature screen for snow commission errors was re-

moved from the algorithm inC6because it was discovered

that the screen has a detrimental impact onmapping snow

cover on mountains in the spring and summer when

temperatures are close to freezing point. The mean air

temperature over snow cover surfaces in Colorado

(248C) is much lower than the freezing point, but it is

close to the freezing point in California (20.248C) and

Nevada (21.248C) during the snow season. Therefore,

removing the surface temperature screen did not have

a large impact in Colorado, but it did lead to a substantial

impact in Nevada and, to some extent, in California. The

FARof theC6 fractional snow cover product is equal to or

lower than that of the C5 product in all months (with the

TABLE 1. Illustration of a confusion matrix for MODIS snow

covered area retrievals relative to the field measurements.

Field measurement

Snow Nonsnow

MODIS Snow SS SN

Nonsnow NS NN

FIG. 2. Comparison of (top) POD and (bottom) FAR for MODIS C5 (black bars) binary (from Dong and Peters-Lidard 2010) and C6

(gray bars) FSC results, 2000–05. The three selected states are (left) California, (middle) Nevada, and (right) Colorado. MODIS snow

cover results are compared to data from SNOTEL and the USHCN daily temperature, precipitation, and snow data.
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exception ofMay and June in the Nevada study area), but

again, mixed results are shown in the Colorado study area.

Building on this analysis, the study was expanded to

include all SNOTEL and USHCN stations in the

CONUS. The POD and FAR results over the CONUS

are shown in Fig. 3. The lower POD in autumn and spring

could stem from the challenges of comparing 500-m

satellite pixel data to point measurements at geo-

graphically fixed stations because of the occurrence of

patchy snowpacks. Uncertainty in the geolocation of

MODIS pixels within the data processing system may be

a factor to consider in comparisons to ground station

data. For the CONUS, the MODIS C6 FSC product

demonstrates a strong ability to detect the presence of

snow cover (over 90% from December to March), and

the FAR is less than 1.5%over all four seasons.While not

shown here, large spatial variability exists in the POD of

MODIS C6 FSC retrievals compared with coincident

ground truth station data.

The length of the evaluation period for SCA retrievals

must be long enough to provide an unbiased estimate of

the true product accuracy. This is supported by Klein

and Barnett (2003), which confirmed that analysis pe-

riods of different lengths produce significant differences

in accuracy estimates. In our study, we address this

concern by investigating the MODIS SCA retrieval er-

rors in each month during the multiyear period from

2000 to 2005. There are significant temporal variations in

accuracy from less than 60% in October to 94% in

January and February. Generally, MODIS shows a strong

ability to detect snow presence during the snow season

with POD above 80% fromNovember toApril and snow-

free land with FAR below 1.5% all year round (Fig. 3).

However, in months from May to October, MODIS cor-

rectly detects the presence of snow cover less than 60% of

the time under cloud-free conditions, which may result

from a combination of patchy snow and land surface

complexity.

Such significant spatial and temporal variations in

MODIS SCA retrieval accuracy suggest that adequately

predicting the MODIS SCA retrieval errors can be im-

portant for hydrological applications including drought

monitoring. In the following section, we revisit and ex-

tend the temperature-based proxy approach of Dong

and Peters-Lidard (2010) to the C6 data for theCONUS.

4. Factors affecting MODIS snow cover detection

Uncertainty inMODISC6–retrieved FSC relative to in

situ observations is investigated using the above-defined

POD statistics and their relationships to snowpack mass

and air temperature. POD statistics are calculated for

MODIS 500m 3 500m cloud-free pixels having co-

incident in situ observations over the snow season

(October–June) during the period from 2000 to 2005. As

shown in Fig. 4, the POD for MODIS to detect snow

cover shows a steady increase with increasing snow

amount, with a FAR of about 3%. The POD increases

from about 50% in shallow snowpacks, with SWE values

less than 1 cm, to about 85% in deep snowpacks, with

SWE values above 5 cm (Fig. 4). As the SWE ap-

proaches zero, it would be expected that there would be

a more patchy distribution within a 500m 3 500m

MODIS pixel, as discussed by Klein and Barnett (2003).

When the fractional snow product is characterized by

the most issues, that is, more patchy distribution during

the snowmelt season, the assimilation of snow cover

information is at its most important (Clark et al. 2006).

However, the MODIS FSC product provides only a mi-

nor benefit via assimilation during the snowmelt season

due to the lower POD statistics and a relatively low 50%

accuracy value. In addition, the POD statistics are in-

sensitive to increasing snow water amounts over 5 cm.

As SWE is only partially effective in demonstrating the

uncertainty in theMODIS FSC product, we need to seek

an alternative index to better predict the uncertainty

FIG. 3. POD (black bars) and FAR (gray bars) for MODIS C6 FSC in each month over the

SNOTEL and the USHCN stations shown in Fig. 1 from February 2000 to December 2005.
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and to make the MODIS FSC product more useful to

the hydrologic and drought communities.

We further investigate the relationship between POD

and SWE for three different daily mean air temperature

groups calculated using in situ data: (i) temperatures less

than258C, (ii) temperatures between 258 and 08C, and
(iii) temperatures above 08C. Each of these groups is

illustrated as different color bars in Fig. 4. As this figure

shows, the strong positive relationship between POD

and SWE is also a function of daily mean air tempera-

ture. For daily mean air temperatures below 258C, the
MODIS SCA retrievals are reliable at all values of SWE

(i.e., POD greater than 80% for all SWE values and

greater than 95% for SWE amounts over 3 cm, indicated

as green bars), and therefore the FSC retrieval accuracy

is insensitive to the snowpack depth in the colder climate

with less snowmelt. However, for warmer temperatures,

the POD changes significantly from about 30% for SWE

values less than 1 cm, to above 85% for SWE values

greater than 50 cm, thus confirming the strong relation-

ship between snowpack thickness and the MODIS FSC

retrieval error.

At any given SWE, the POD consistently decreases

with increasing temperature, and there is a large dif-

ference in the POD between the depth-groups with av-

erage temperatures above 08C (red bars) and below 08C
(blue and green bars).When the snowpack is thin, the

POD difference is large among the three temperature

groups, with a POD of just 30% for temperatures above

08C and over 80% for temperatures below 258C. When

the snowpack is deeper, the POD appears to be less

a function of temperature, supporting the intuitive

concept that colder, deeper packs are less patchy and

easier to detect. In particular, when the SWE value is

larger than 100mm, the POD shows little difference

between the .08C and the ,258C temperature groups

(red versus green bars). Across all three temperature

groups, the FAR increases from 0.6% for temperatures

above 08C to about 14% for temperatures below 258C
because of more mixed snow and land contamination.

This statistic measures the fraction of observed snow-

free land cases that were incorrectly detected as snow-

covered cases. There are more opportunities for the

observed snow-free land pixels to be covered with

patches of snow in cold temperatures below 258C than

in warm temperatures above 08C.
Based on these findings, temperature can be used as

a proxy to predict MODIS FSC retrieval errors across

regions and at times that feature large spatial and tem-

poral variability. This approach is conceptually grounded

in the fact that land surface factors contribute toMODIS

FSC retrieval errors. These factors include patchy snow

in regions of high topographic roughness, tree crown

exposure in forested regions, dirty snow in regions with

significant dust, and complex terrain, and each of these

factors has a strong relationship to temperature. This

temperature-based approach is further aided by the fact

that temperature data are easy to obtain and of rela-

tively high accuracy, making them convenient to use as

a dynamic index to quantify the uncertainty in MODIS

SCA retrievals.

5. Error quantification and mitigation

In this study, we select temperature data from two

independent sources. One is the in situ daily mean air

temperature, and the other is daily mean air tempera-

ture from NLDAS. Both datasets can capture the cu-

mulative diurnal temperature variation. The error in

MODIS FSC retrieval is simply defined as err 5 100 2
POD. We further investigate the retrieval error relative

to temperature by matching the defined errors to their

FIG. 4. POD for MODIS snow cover relative to in situ SWE (black bars) for snow season

(October–June) from February 2000 to December 2005 and for three given daily mean air

temperature groups: above 08C (red bars), between 258 and 08C (blue bars), and below 258C
(green bars). Left end shows the FAR with three air temperature groups.
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mean temperatures in each temperature group for snow

cover and snow-free land retrievals.

We calculate theMODIS FSC retrieval error over the

CONUS for cloud-free pixels at times when all data,

including MODIS FSC, in situ SWE, and daily mean air

temperature, are available. The results of this temper-

ature versus MODIS FSC retrieval error investigation

for the period 2000–05 are shown in Fig. 5. For the

MODIS FSC retrievals, error levels trend larger as the

daily mean temperature increases, with the largest rate

of increase occurring at temperatures above 08C (Fig. 5).

It is perhaps not surprising that the potential error

sources in the MODIS FSC product are related to dif-

ferential snow melting processes in the early and late

snow seasons. The error is estimated at nearly 80% for

daily mean temperatures above 128C and less than 20%

for temperatures below 28C. The retrieval errors are

relatively insensitive to temperatures below 228C and

are generally below 10% in magnitude.

There is a clear nonlinear relationship between the

MODIS retrieval error and daily mean temperature

(Fig. 5). We use the cumulative double exponential dis-

tribution function given in Eq. (1) to represent this non-

linear relationship between retrieval error (err) and daily

mean air temperature T (8C) for MODIS snow cover re-

trievals over the CONUS. Using a slightly different

methodology from Dong and Peters-Lidard (2010), with

a fixed Coeff at a value of 90, three parameters (Coeff, Tf,

and b) are allowed to change:

err5 1002POD5 2:7181
Coeff

11 e2(T2T
f
)/b

, (1)

where e is the base of the natural logarithm, Tf (8C) is the
reference temperature as a location parameter, b is a scale

parameter, and Coeff is a derived constant. We obtained

the parameters for the CONUS study area based on

a least squares fitting approach, using values of Coeff

from 0 to 200 at an increment of 1, of Tf from 0 to 20 at

a 0.1 increment, and of b from 0 to 10 at a 0.1 increment.

These optimal parameters (Coeff, Tf, and b) are listed in

Table 2. The parameters derived from using the MODIS

C5 SCA product over Colorado and California/Nevada

from Dong and Peters-Lidard (2010) are also included in

the table for the purpose of comparison. There are neg-

ligible statistical errors in the fitting by using the double

exponential distribution function. The fitting bias is 0.6%

when using in situ temperature and 20.05% when using

NLDAS temperature and their RMS errors are 3% and

0.5%, respectively.

Inserting these numbers into Eq. (1) reveals that both

the MODIS C5 SCA and C6 FSC products have very

similar error ranges (minimum error of 2.7% to maxi-

mum error of 92.7% for C5 and 91.7% for C6) when the

in situ 2-m air temperature data is used. When the air

temperature equals the reference temperature (T5 Tf),

the errors reach their midpoint values (err 5 2.718 1
Coeff/2). We have processed the hourly NLDAS 2-m air

temperature data into daily mean temperature values for

consistency with the in situ daily mean air temperature

FIG. 5. MODIS SCA retrieval error relative to in situ daily mean air temperature for all in situ sites over the

CONUS (plus signs). The cumulative double exponential distribution function is used to construct the nonlinear

relationship between the errors and temperature (solid line).

TABLE 2. Statistical parameters for reference temperature (Tf)

and scale factor (b) in Eq. (1) for FSC retrievals in California and

Nevada (CA/NV), Colorado (CO) and over the continental US

(CONUS) domain.

Study

region

MODIS

snow

Temperature

data Tf (8C) b Coeff

CA/NV C5 In situ 4.5 5.0 90

CO C5 In situ 6.5 3.5 90

CONUS C6 In situ 7.8 3.7 89

CONUS C6 NLDAS 7.8 4.2 98
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measurements.When daily mean air temperature is used

from both in situ and NLDAS data sources, the derived

Tf is the same (7.88C) for both temperature data sources

and b varies little (3.7 for in situ temperature and 4.2 for

NLDAS temperature). However, the Coeff shows a large

increase from 89 when using in situ temperature to 98

when using NLDAS temperature. This results from the

regrouping ofMODISpixels by theNLDAS temperature

data. In this case, some previous pixels with missed de-

tection of snow have been reassigned from the low in situ

temperature group to the high NLDAS temperature

group. In practical applications, either the in situ daily

mean temperature or the modeled 2-m daily mean air

temperature could be used. Using calibrated parame-

ters from different temperature data sources and a

user-defined error tolerance level, this approach can be

applied to any given time and cloud-free pixel to guide

the decision of whether or not to use the MODIS snow

cover product for a given application.

As discussed above, MODIS C5 SCA and C6 FSC

estimates derived when the temperature is relatively

high are characterized by large detection errors. Thus,

eliminating these pixels using a temperature threshold

will help to avoid assimilating unreliable data into land

surface and hydrological applications. As illustrated in

Fig. 6, if the pixels with temperatures above 108C are

eliminated, the POD will increase about 2% when using

NLDAS 2-m air temperature data and about 1.5%when

using in situ 2-m air temperature. The use of modeled

2-m temperatures to define a temperature threshold leads

to a slightly better increase in POD than does using in situ

temperature, and a comparison using both temperature

data sources shows similar results in the number of

pixels retained (98% when using in situ air temperature

and 97% when using NLDAS temperature at a defined

temperature threshold of 108C). If the temperature

threshold is set at 08C, the POD increases approximately

10% when using either temperature data source. How-

ever, this also leads to the elimination of over 30% of

MODIS pixels (not shown here). Thus, there is a need to

coordinate the POD increase and the pixels eliminated

so that more reliable MODIS data can be used in the

data assimilation practices. With this in mind, a tem-

perature threshold of 68C—leading to a 4% increase

in POD and approximately 90% of MODIS pixels

retained—is recommended.

6. Summary and discussion

This study has investigated remotely sensed MODIS

snow cover estimation uncertainty for the new C6 prod-

ucts. In this study, we find significant improvements in C6

POD and FAR relative to C5 for California and Nevada

and, to a lesser extent, Colorado. We have also extended

the previous error analysis of Dong and Peters-Lidard

(2010) by analyzing all USHCN and SNOTEL data for

the CONUS. This analysis demonstrates thatMODIS C6

shows a strong ability to detect snow presence during the

snow season with POD above 80% from November to

April and snow-free land with FAR below 1.5% all year

round.

For cloud-free pixels, the MODIS C6 FSC retrieval

errors can be quantitatively predicted using temperature

data and a calibrated set of parameters over the CONUS.

Generally, both in situ– and model-based NLDAS daily

mean air temperature data are good proxies for predict-

ingMODIS FSC retrieval errors. It is shown thatMODIS

FSC errors may be reliably predicted from temperature

using a cumulative double exponential distribution

function with parameters that are a function of temper-

ature over the CONUS.

The in situ daily mean air temperature data represent

cumulative diurnal temperature variations. These mea-

surements are limited in their spatial representativeness

and by their spatial and temporal availability in moun-

tainous regions. Model-based 2-m air temperature data

are of relatively high accuracy (Luo et al. 2003) and so

could replace the in situ air temperature in successfully

classifying the error-prone pixels in the MODIS FSC

product for land surface hydrological data assimilation

FIG. 6. Percent changes in POD of MODIS snow cover (thin

solid line for using in situ air temperature and thick solid line for

using NLDAS air temperature) and percent changes in pixels of

MODIS snow cover retrievals (thin dashed line for using in situ air

temperature and thick dashed line for using NLDAS air temper-

ature) eliminated for daily mean air temperature greater than

given temperature thresholds.
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applications. The quantitative nonlinear relationship of

MODIS snow cover retrieval error versus temperature

will enable end users to merge MODIS snow cover in-

formation into various hydrological applications in a

more informed and beneficial fashion.

The high-spatial-resolution Landsat snow cover product

provided an alternate capability to validate the model

for estimating the MODIS FSC (Painter et al. 2009)

and evaluating the FSC product (Rittger et al. 2013).

Landsat Enhanced Thematic Mapper Plus (ETM1) is

available at a 30-m spatial resolution, and the Landsat

systems, in particular, are a source of data for hydro-

logical and glaciological research at the drainage basin

scale. Using Landsat images to validate MODIS re-

trieval does assume that errors in the MODIS retrieval

derive mostly from spatial effects. The less frequent

(16-day interval) Landsat snow cover mapping provides

less assimilation benefit in the spring when melt fre-

quently occurs. Saturation in some of the Landsat ETM1
bands makes the sensor an imperfect source of valida-

tion data, and even at a 30-m resolution, many ETM1
pixels are mixed. Therefore, a future, more complete

approach may combine the in situ field measurements

and fine resolution Landsat imagery in the validation

and verification of model simulations and remote sensing

estimates to characterize the MODIS fractional snow

cover over moderate-resolution scales.

MODSCAG performs the most consistently through

the accumulation, midwinter, and melt stages as assessed

by comparing 172 images spanning a range of snow

classes and vegetation types, including the Colorado

Rocky Mountains, the Upper Rio Grande, California’s

Sierra Nevada, and the Nepal Himalayas (Rittger et al.

2013). Snow class and forest factors are considered as the

key inputs of the MODSCAG [and the future GOES-R

Snow Covered Area and Grain Size (GOESRSCAG)]

spectral library and have been shown to impact snow

cover estimation accuracy (Painter et al. 2009). The snow

class indicates the snow crystal size by climate and season,

which shows differences in the spectral reflectance of

snow. We note that the defined recall and F score in

Rittger et al. (2013) still show some temperature effects

in the early snow season (October and November) and in

the late snow season (June and July). It should be also

noted that MOD10A1 is a global, automated algorithm

that is not tuned to any particular area. To properly un-

derstand and be able to predict the relationship between

the MODIS SCA retrieval error and temperature for

different land surface characteristics, future work will

investigate the relationships between the parameters

of the error model and known sources of FSC error,

such as elevation, topographic roughness, land cover,

and forest fraction. As in the investigation of Dong and

Peters-Lidard (2010), each of these land surface factors

result in modifications to the relationship between

MODIS FSC retrieval errors and temperature. These

modifications could be represented by slightly adjust-

ing the parameters (Coeff, Tf, and/or b) in Eq. (1).
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