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ABSTRACT

Offline simulations over the conterminous United States (CONUS) with a land surface model are used to

address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors

in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in

the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to

a soil moisture initialization field is found to lead to a nearly proportional reduction in large-scale seasonal

streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the

increase in streamflow forecast skill achievable through improved soil moisture estimation, for example,

through the assimilation of satellite-based soil moisture measurements. An increase in the resolution of

precipitation is found to have an impact on large-scale seasonal streamflow forecasts only when evaporation

variance is significant relative to precipitation variance. This condition is met only in the western half of the

CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface–

modeling system as a tool for addressing the science of hydrological prediction.

1. Introduction

Because of the importance of accurate streamflow

forecasts for water resources planning (e.g., Yao and

Georgakakos 2001; Hamlet et al. 2002), the develop-

ment of approaches for producing useful streamflow

forecasts and the evaluation of these approaches over

time has a rich history, going back to at least the 1930s

(Pagano et al. 2004). Operational streamflow forecasts

generally rely on statistical techniques (e.g., Garen 1992).

Using various quantities describing the current state of

a system (e.g., snow amount, soil moisture, and climate

indices), calibrated regressions are applied that transform

these quantities into streamflow forecasts.

The historical use of these statistical techniques is

arguably a reflection of historical limitations in our

ability to model accurately the physical processes that

generate streamflow—in particular our ability to pro-

vide the high-resolution forcing and boundary condition

data needed to support the physical modeling. The ad-

vent of improved observational networks in recent

decades, however, has supported the growth of the

physical-modeling approach. A now common forecast

strategy involves the use of spatially distributed land

surface modeling: realistic snow and soil moisture fields

are used to initialize the models, which are then inte-

grated into the forecast period with atmospheric forcing,

producing streamflow forecasts along the way (Day

1985). The atmospheric forcing can take the form of

historical time series at the site in question (e.g., Wang

et al. 2011), sometimes modified depending on the needs

of the study (e.g., Hamlet and Lettenmaier 1999); al-

ternatively, it can be derived from the forcing produced
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by a full numerical Earth systemmodel running seasonal

forecasts (e.g., Wood et al. 2002). The land surface

models used are generally distributed, physically based

representations of surface water and energy budget pro-

cesses that take advantage of the information content of

a wide variety of observations. Wood and Lettenmaier

(2006) outline strong arguments for the expectation that

the land-modeling strategy will, in time, eclipse the re-

gression approach as the preferred means of providing

streamflow forecasts.

Recent work has provided important insights into the

science of predicting streamflow with the land-modeling

strategy. For example, a number of studies have used

such systems to examine the relative contributions of

state initialization and forecasted meteorological forcing

to streamflow forecast skill (e.g., Wood and Lettenmaier

2008;Mahanama et al. 2008, 2012; Bierkens and vanBeek

2009; Li et al. 2009). Luo andWood (2008) demonstrated

the effectiveness of a Bayesian approach for producing

high-resolution land model forcing for streamflow fore-

casts, an approach that combines information from mul-

tiple coarser-resolution meteorological forecasts and

historical data. Yuan andWood (2012) examined the skill

levels achieved through bias correction in the atmo-

spheric forcing prior to its application in the offline (land-

only) system versus those achieved with bias-corrected

streamflow products from the original seasonal forecast

system.

As these examples demonstrate, a given offline-

modeling system can serve as a powerful test bed for

addressing the science underlying streamflow predic-

tion. Given the potential societal benefits of accurate

streamflow predictions, and given the fact that many

aspects of the science underlying the predictions still

require clarification, the systems have considerable un-

tapped value for basic research. In the present paper, we

tap into some of this unmet potential—we use a specific

land-modeling system to address two distinct and relatively

unexplored facets of the streamflow prediction problem.

In the first exercise, we address the impact of soil

moisture initialization error on streamflow forecast skill.

Specifically, we add artificial, prescribed levels of error

to the realistic soil moisture initializations employed by

Mahanama et al. (2012) in their forecast experiments

and then quantify the resulting degradation of the

streamflow forecasts. The degradation is then interpreted

in terms of the increase in skill attainable from improve-

ments in soil moisture initialization, improvements that

are expected from the assimilation of data from current

and upcoming satellite-based soil moisture missions [viz.,

the Soil Moisture and Ocean Salinity (SMOS; Kerr et al.

2010) and SoilMoistureActive Passive (SMAP; Entekhabi

et al. 2010b) missions].

Our second exercise focuses on precipitation down-

scaling and its relationship to streamflow forecasts. A

number of studies have addressed the issue of down-

scaling, focusing on the statistical or dynamical ap-

proaches used to achieve it (e.g., Luo et al. 2007; Yuan

et al. 2012) and on the application of the downscaled

data to offline hydrologic systems (e.g., Luo and Wood

2008; see Schaake et al. 2010 for a summary of some

outstanding issues). Here, we focus on a specific aspect

of downscaling, namely, the increase in the spatial res-

olution of the precipitation data applied to the distrib-

uted offline forecast system; we do not address here the

additional step of correcting the higher-resolution data

for local biases and other errors. Through careful joint

analysis of lower resolution (18 3 18) and higher reso-

lution (0.1258 3 0.1258) offline simulations, we examine

an essentially unanswered question: under what climatic

conditions can increasing the spatial resolution of pre-

cipitation add value to forecasts of large-scale stream-

flow totals? The potential for added value is indeed

found to depend strongly on climate regime.

The two applications of the land-modeling system,

discussed separately in sections 2 and 3, are fully inde-

pendent; the second does not build on the first. The two

studies nevertheless have a key unifying theme: both use

an offline distributed land-modeling system to address

an important yet still unresolved issue in streamflow

forecasting. By presenting the two studies together, we

aim to demonstrate the power and efficiency of such

systems for basic hydrological analyses.

2. Impact of soil moisture initialization error
on streamflow forecast skill

a. Overview of basic forecast experiment

Our simulation experiments were performed with the

catchment land surface model (LSM) (Koster et al.

2000; Ducharne et al. 2000). This LSM is a state-of-the-

art model designed for use with global atmospheric

models, with detailed treatments of a full range of pro-

cesses (stomatal conductance, interception, baseflow,

snow, etc.) serving to determine the fluxes that make up

the surface water and energy budgets. The model’s

unique feature is its explicit treatment of the impacts of

subgrid soil moisture variability on the computed evap-

oration and runoff fluxes. The subgrid variability is keyed

to topography and to the model’s internal soil moisture

prognostic variables, which respond (through mass con-

servation) both to variations in precipitation forcing and

to variations in the computed evaporation and runoff.

The catchment LSM has been tested in a number of

settings (e.g., Boone et al. 2004; Bowling et al. 2003;
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Reichle et al. 2011) and recently served as the land

model underlying the Modern-Era Retrospective Anal-

ysis for Research and Applications (MERRA) reanalysis

(Rienecker et al. 2011; Reichle et al. 2011). The particular

version of the catchment LSM used here is the version

described in section 6 of Koster and Mahanama (2012),

a version shown to produce accurate runoff ratios and

runoff variances across the conterminous United States

when driven offline with observation-based meteorolog-

ical forcing.

The strategy employed in our simulation experiments

can be described briefly as follows. In a ‘‘reference’’ set

of forecast simulations, the catchment LSM generates

offline forecasts of runoff after being initialized with

realistic soil moisture contents, and the skill of the fore-

casts is quantified through comparison of seasonal runoff

accumulations over basins (i.e., simulated streamflow)

with corresponding streamflow observations. The fore-

casts are then repeated with degraded soil moisture

initial conditions (with different levels of error imposed

in different experiments), and the resulting loss of

streamflow forecast skill is quantified.We thereby quantify

the sensitivity of forecast skill to soil moisture initialization

accuracy, the idea being that this sensitivity has implica-

tions for forecast improvement through the improved es-

timation of soil moisture.

Naturally, prior to performing any of the forecasts,

realistic initialization states for the soil moisture vari-

ables must be established. This is accomplished through

a long-term (1920–2002) simulation of the catchment

LSM across the conterminous United States (CONUS)

at a 0.58 resolution using observation-based atmo-

spheric forcing (Andreadis et al. 2005). The use of this

approach with this particular LSM does provide soil

moisture estimates with significant skill (particularly

in terms of their time variations, which are key to

producing high correlations between forecasted and

observed streamflows), as demonstrated by the analysis

of ‘‘open loop’’ simulations in numerous data assimi-

lation studies (e.g., Reichle et al. 2007; Liu et al. 2011;

Draper et al. 2012). The offline simulation used here is

equivalent to that of the ‘‘CTRL’’ simulation described

by Mahanama et al. (2012) except for the aforemen-

tioned use of an updated version of the catchment

LSM.

The reference forecasts consist of 3-month model in-

tegrations starting on 1 January, 1 April, 1 July, and

1 October of each year in the multidecadal period (1920–

2002). The soil moisture states on a given date from the

CTRL simulation serve as the initial conditions for the

reference forecast with that start date. In contrast, we

initialize snow and ground temperatures in the landmodel

to their climatological states, as determined from the

multidecadalCTRL simulation. Similarly, the atmospheric

forcing used during each forecast is the climatological

seasonal cycle of forcing derived from the forcing da-

taset of the CTRL simulation (though with the year of

forecast excluded from the climatology calculation, for

proper cross validation)—all July–September forecasts,

regardless of year, utilize essentially the same atmo-

spheric forcing. As a result, the differences between, say,

the July–September streamflow forecasts for different

years stem solely from the different 1 July soil moisture

conditions used—any skill obtained in the forecasts

reflects the soil moisture initialization alone. While

skill would presumably increase if we included snow

initialization and forecasted meteorological condi-

tions in the simulations, we are specifically interested

here in soil moisture impacts on skill; this experi-

mental design allows us to isolate and analyze these

impacts. Note that the reference forecasts are essen-

tially equivalent to the Exp3 simulations of Mahanama

et al. (2012), the only difference being that here we

rely on the newer version of the catchment LSM

alone rather than on an ensemble of four land surface

models.

To quantify streamflow forecast skill, the grid-cell-

based seasonal runoff values produced in the forecast

simulations are averaged over the 20 basins shown in

Fig. 1 to generate a time series of seasonal streamflow

estimates for each basin. These estimates are in turn

compared to contemporaneous observations of stream-

flow in these basins. [See Table 1, Koster et al. (2010),

and Mahanama et al. (2012) for details; like Koster et al.

(2010) but unlikeMahanama et al. (2012), all streamflow

generated upstream of a gauge site is considered in

a given calculation, not just the amount generated be-

tween upstream and downstream gauges in the same

river network.Also, three basins considered byMahanama

et al. (2012) are not considered here for reasons outlined

in Koster and Mahanama (2012).]

The resulting correlation coefficient (rQ-obs) between

the simulated and observed time series serves as our skill

metric. Given the use of climatological seasonal cycles

for themeteorological forcing in our forecasts, this is the

most suitable metric for this study; we note in any case

that the correlation measure of skill can easily be con-

verted to an RMSE measure of skill through the appli-

cation of known time series moments (Entekhabi et al.

2010a). Note that the observed streamflows are natu-

ralized, having been modified to remove the impacts of

reservoir operations on streamflow totals. The consid-

eration of seasonal totals reduces any errors associated

with the neglect, in the model analysis, of the residence

time of runoff water in the river network upstream of

the gauges.
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b. Imposition of soil moisture error

The set of forecast simulations described above serves

as the reference—the ‘‘unperturbed error’’ case—for a

series of experiments in which we impose specific levels

of error in the initial soil moisture fields prior to per-

forming the forecasts. For these latter experiments, we

first generate a series of spatially correlated error fields z

with the error for a given grid cell (i, j) and year t selected

from a unit normal distribution. The imposed e-folding

decorrelation length scale of the error is taken to be 28
in longitude and latitude, which is consistent with the

length scale for errors employed by Reichle and Koster

(2003). The error z(i, j, t) is applied to the soil moisture

amounts,W(i, j, t)ctrl, in the catchment LSM’s subsurface

moisture reservoirs (i.e., its root zone excess and catch-

ment deficit variables) at that location in year t from the

CTRL simulation; this is done by modifying the stan-

dard normal deviate, or Z-score, of each soil moisture

quantity:

W(i, j, t)pert 2W(i, j)mean

s
W(i,j)

5
W(i, j, t)ctrl 2W(i, j)mean

s
W(i,j)

1 «z(i, j, t) ,

(1)

where W(i, j, t)pert is the degraded, or perturbed,

soil moisture to be used in the experiment forecast,

W(i, j)mean is the mean of the soil moisture (for that time

of year) at the grid cell, s
W(i,j) is the corresponding

standard deviation across the years (again, for that time

of year), and « is the user-imposed scaling factor that

determines the average size of the imposed error.

A note of caution is appropriate here. Although the

soil moistures represented here are large-scale averages,

so that the central limit theorem may impose some

Gaussian character to the values (and their errors) en-

countered in large-scale measurements, the actual dis-

tributions will probably be non-Gaussian, if only because

soil moisture is bounded from below by zero and from

above by the soil porosity. The most ideal strategy for

our experiment would be to apply a much more com-

plex, non-Gaussian error field to our soil moistures, with

the specified decorrelation length scale. Such a strategy,

however, would have two disadvantages: (i) it would be

difficult to implement with our current numerical tools,

and (ii) the construction of the fields would involve, in

any case, some subjective assumptions about the char-

acter of the error that might themselves cloud the inter-

pretation of the results. For our experiment, we assume

easily managed and easily understood normally distrib-

uted errors, applied in the context of (1); our results must

be considered in light of this simplifying assumption.

We note that in applying the soil moisture errors, final

soil moisture values were naturally constrained to lie

within realistic bounds. While this may modify slightly

FIG. 1. Basins examined in this analysis. The numbers are located at the stream gauge sites.
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the effective values of « used, these slight modifications

are implicitly accounted for in our plots, which will

show streamflow forecast skill versus actual soil mois-

ture error rather than versus the precise value of the

imposed «.

In analogy to the reference forecast experiment,

each ‘‘imposed error’’ forecast experiment consists of

a series of 3-month forecasts, one for each season of

each year, using a single value of «. The skill level is

again computed as the correlation coefficient rQ-obs

between the simulated streamflows in a basin and the

observed streamflows over the multidecadal period. In

fact, for thoroughness, we repeat the forecast experi-

ment with a given « value 10 times, allowing for

10 different sets of realizations of the z(i, j, t) field;

the resulting 10 values of rQ-obs (which are, of course,

similar) are averaged together prior to plotting. A total

of six experiments are performed, with increasing levels

of error: « is set in turn to 0.1, 0.3, 0.6, 1, 1.5, and 2.

c. Results

Prior to comparing the forecasts with observations, we

show in Fig. 2 the temporal correlation coefficient over

the multidecadal period, at each grid cell, between

model quantities in the reference experiment and those

in two of the experiments with imposed soil moisture

error. Setting « to 0.3 produces, for the April–June

(AMJ) forecasts, initial soil moisture contents on 1April

that correlate with those of the reference simulation

with a largely uniform correlation coefficient (rW) of

about 0.9 (top-left panel of Fig. 2). The correlation co-

efficient for 1 April soil moisture drops to about 0.5

when « is set to 1.0 (top right panel of Fig. 2). Again, the

spatial distribution of this correlation is fairly uniform,

an indication that the error generation technique was

applied correctly.

The corresponding correlations between the fore-

casted AMJ runoff rates in the reference experiment

and those in the experiments with imposed error are

similar but show some important differences. For the

«5 0.3 case (bottom-left panel of Fig. 2), the correlation

for forecasted runoff (rQ) is about the same as that for

soil moisture except in some western mountainous re-

gions, for which it is reduced significantly, and along

a north–south swath down the center of the country, for

which it is reduced slightly. This pattern of rQ reduction

is also found for the « 5 1.0 case (bottom right panel of

Fig. 2). The reductions, which result from nonlinear

runoff-generating processes in the model, should act to

amplify any streamflow forecast error associated with

the inaccurate initialization of soil moisture.

Of course, a high correlation in Fig. 2 does not imply

significant skill in streamflow forecasts, since the refer-

ence experiment itself may have limited skill. We now

turn to a comparison of forecasted streamflows with

observations, with an eye toward showing how the

TABLE 1. Characteristics of the basins examined in this study. Three small basins examined inMahanama et al. (2012) are not examined

here because of apparent inconsistencies in the observation-based precipitation and streamflow datasets; see Koster and Mahanama

(2012) for details.

River name Station name

Basin

area (km2)

Latitude

(8N)

Longitude

(8W)

Observation

Period

1 Missouri Hermann (includes basins 2, 4, 8, and 18) 1 353 275 38.71 92.75 1920–97

2 Missouri Ft. Randall Dam (includes basins 4, 8, and 18) 682 465 43.07 98.55 1950–2009

3 Ohio Metropolis 525 770 37.15 88.74 1928–2010

4 Missouri Garrison Reservoir (includes basins 8 and 18) 469 826 47.39 101.39 1950–2003

5 Upper Mississippi Grafton 443 660 38.90 90.30 1935–2010

6 Colorado Lees Ferry (includes basins 12 and 17) 289 562 36.87 111.58 1920–2003

7 Snake Ice Harbor Dam 281 015 46.25 118.88 1927–92

8 Milk Fort Peck Dam (includes basin 18) 149 070 48.04 106.36 1950–2009

9 Arkansas Ralston 141 064 36.50 98.73 1940–2008

10 Arkansas-Red Arthur City 115 335 33.88 95.50 1938–2001

11 Alabama Clairborne 56 900 31.55 87.51 1950–93

12 Green Greendale 50 116 40.91 109.42 1920–2003

13 Apalachicola Sumatra 49 728 29.95 85.02 1950–93

14 Delaware Memorial Bridge 28 567 39.69 75.52 1948–87

15 Potomac Point of Rocks 25 000 39.27 77.54 1950–96

16 Sacramento Bend Bridge 23 051 40.29 122.19 1920–2003

17 Gunnison Near Grand Junction 20 533 38.98 108.45 1920–2003

18 Musselshel Moseby 20 321 46.99 107.89 1941–2003

19 Rio Puerco Bernardo 19 036 34.41 106.85 1940–2003

20 Yakima Near Parker 9479 46.50 120.44 1925–2003
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imposition of soil moisture error (beyond that which

already exists in the reference experiment) translates to

increased error in streamflow forecasts. Again, we focus

our analysis on the hydrological basins shown in Fig. 1,

which cover a wide range of climatic regimes. We also

emphasize again that all of the simulations discussed

here represent true forecasts, in that predictions are

made without knowledge of conditions during the fore-

cast period and that the forecasts are compared directly

with observations. Thus, any skill uncovered represents

true skill and is not, for example, an artifact of model

parameterization or experimental design.

Figure 3 provides a sample set of results, focusing on

July–September (JAS) streamflow forecasts (i.e., the

3-month forecasts with 1 July initialization) in the Red

River Basin. Each dot in the figure represents a different

experiment, that is, it shows the results for a unique

value of «. The dot’s ordinate is located according to the

average skill in streamflow prediction obtained in the

experiment, measured as the correlation coefficient

(rQ-obs) between the forecasted JAS streamflow totals

and the observed totals. To compute the dot’s abscissa,

which represents the imposed soil moisture error, we

average the grid cell values of rW for 1 July, as illustrated

in Fig. 2 for two of the experiments, across the examined

basin. The dot at rW5 1 thus represents the forecast skill

obtained with the reference forecasts. As expected, the

imposition of greater soil moisture error (i.e., lower

values of rW) leads to a decrease in streamflow forecast

skill. The key result of Fig. 3, however, is the near line-

arity of this reduction in error with respect to rW. In

essence, the forecast skill of each experiment is reduced

from that of the reference experiment by a factor of

about rW, and the regression line fitted through the

points approximately goes through the origin—marks of

a direct linear relationship. This linearity is seen despite

the small but significant impacts of nonlinearity indi-

cated for this region in Fig. 2.

Figure 4 provides the results, in the same form, for all

20 basins and all four seasons. A near-linear decrease of

FIG. 2. (a) Time correlation rW between the initial (1 Apr) soil moisture contents used in the reference forecast experiment («5 0) and

those used in the experiment with imposed errors corresponding to «5 0.3. (b) As in (a), but for « set to 1.0 rather than 0.3. (c) Correlation

(rQ) between the multidecadal time series of April–June runoff totals generated in the reference forecast experiment (« 5 0) and those

generated in the experiment with « 5 0.3. (d) As in (c), but for « set to 1.0 rather than 0.3.
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forecast skill with increasing soil moisture error (de-

creasing rW) is seen here for all cases. Most of the plots

show direct linear relationships, presumably reflecting

the first-order agreement between the rW and rQ values

plotted in Fig. 2. There are exceptions, however. First,

for larger basins (those near the top of the figure), the

falloff in the skill for a given decrease in rW is not as large

as would be indicated by a direct relationship; the y in-

tercept of the regression line for these basins tends to be

positive. This presumably reflects the e-folding decor-

relation length scale (28) of the error fields imposed. For

a large enough basin, the effects of the soil moisture

errors imposed in different large-scale (28 scale) sub-

areas may cancel each other out—for example, exces-

sive streamflows induced by positive soil moisture errors

in the northern end of a basin may be offset by insuf-

ficient streamflows induced by negative soil moisture

errors in the southern end. For the smaller basins, which

are closer to a 28 scale, the imposed soil moisture errors

on a given forecast start date are necessarily more uni-

form, and such offsets cannot occur. (This is, in fact,

verified with additional experiments, not shown here. In

these additional experiments, we find that rQ-obs for a

given value of « decreases with increasing decorrelation

length scale only in the larger basins.)

Second, some small basins lie in areas for which

nonlinearities amplify the translation of soil moisture

error into runoff production error (see Fig. 2 and ac-

companying discussion), and these basins, as expected,

sometimes show a faster reduction of runoff forecast

skill with decreasing rW than would be indicated by a

direct relationship (i.e., the regression line has a nega-

tive y-intercept). Examples include the Rio Puerco,

Sacramento, and Gunnison River basins. Note that while

the reduction is faster, it is also still essentially linear.

To illustrate the translation of soil moisture error into

streamflow prediction error with a concrete example, we

show in Fig. 5 the translation associated with the pre-

diction of a specific hydrological drought. Streamflow

during June–August 1984 was anomalously low in the

Red River (as measured in Arthur City); the observa-

tions show that the naturalized streamflow during this

period was one standard deviation below the mean.

The forecast model with no imposed soil moisture error

(« 5 0) reproduced this anomaly well. (Note that such

a strong agreement for a specific event is reasonably

frequent but not typical.) As soil moisture error in-

creases, the magnitude of the streamflow deficit, aver-

aged across the 10 ensemble members, is seen to decrease,

while the spread of the predictions across the ensemble

members is seen to increase. For the maximum imposed

error («5 2), the predicted streamflow deficit, averaged

across the 10 ensemble members, is about 0.3 standard

deviations below the mean, with two of the ensemble

members for this experiment predicting a streamflow

surplus.

d. Implications for improved soil moisture estimates

The initial soil moistures used in the reference ex-

periment, which were derived by driving the land model

with antecedent meteorological forcing, are far from

perfect given imperfections in the forcing data and in the

model’s conceptualizations and parameterizations. Im-

portant improvements in initialization accuracy are ex-

pected from new data sources and new techniques for

soil moisture estimation. Both the SMOS and the SMAP

satellite missions, for example, have a target RMSE of

0.04m3m23 for soil moisture estimation (Kerr et al.

2010; Entekhabi et al. 2010b), with high spatial resolu-

tion across the globe (;10-km resolution every 3 days

for SMAP). These accuracy levels may or may not be

higher than model-based estimates (and require, in any

case, information on local soil moisture moments to

translate into the correlation metrics examined here),

but regardless, the process of data assimilation should

produce a soil moisture product that is superior to either

the model-based estimates or satellite-based estimates

alone (e.g., Reichle et al. 2007; Draper et al. 2012).

To see how the expected increases in accuracy might

affect streamflow forecasts, consider the schematic shown

in Fig. 6. The abscissa represents rW-truth, the correlation

between the estimated time series of initial soil moisture

FIG. 3. Plot showing how imposed soil moisture error acts to

reduce streamflow forecast skill. Each dot corresponds to a differ-

ent forecast experiment. A given dot’s abscissa is the average

correlation (across the Red River basin) between the time series of

initial soil moisture contents used by the forecast experiment and

those used by the reference forecast experiment (« 5 0). Its ordi-

nate is the correlation between the forecasted streamflow for the

basin (i.e., the time series of July–September totals) and the ob-

served streamflow. The dot at rW5 1 (two dots, in fact, fall on top of

each other there) thus shows the maximum skill attained with the

system for this basin and season.
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FIG. 4. As in Fig. 3, but for all basins (in order of size) and (left to right) seasons. The y axis in each panel goes from 0 to 1.
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contents and the (unknown) true time series. For the sake

of presentation only, we assume in this figure that the

reference set of forecasts discussed above has an rW-truth

of 0.8 in the considered basin. (We have, of course, no

a priori way of knowing what rW-truth is.) Given the in-

dependence between the actual errors in our reference

time series and the errors we impose through (1) in our

experiments, it can be shown that the rW-truth values for

the individual ‘‘imposed error’’ experiments are simply

their rW values (i.e., their correlations against the ref-

erence time series) multiplied by 0.8. The relationship

between streamflow forecast skill and soil moisture es-

timation skill, where the latter is now assumedmeasured

against an unknown truth, remains linear under this trans-

formation. The plot thereby provides a simple estimate of

the increase in streamflow forecast skill that would stem

from an increase in soil moisture initialization accuracy:

›rQ-obs
›rW-truth

5 S’ 0:7(in this example), (2)

where S is the slope of the line in the plot.

Knowledge of the true value of S would be quite

valuable, since it would allow us to translate improve-

ments in soil moisture estimation into quantitative es-

timates for the associated improvement in streamflow

forecast skill. Obtaining S, however, is impossible given

our lack of knowledge of rW-truth for the reference

forecasts—we cannot evaluate rW-truth without the nec-

essary comprehensive observations of historical soil

moisture. Nevertheless, we do have an estimate for Smin,

the minimum possible value of S: Smin is the slope ob-

tained when rW-truth for the reference experiments is

assumed to be 1. In essence, Smin provides the lower limit

of forecast skill increase associated with an improved

soil moisture initialization—any skill increase associated

with improved soil moisture estimation will be at least as

large as that suggested by Smin. The Smin values for the

different basins and seasons examined above are simply

the slopes of the fitted lines in Fig. 4.

The Smin values for the different basins are plotted,

for each season, in Fig. 7. The minimum sensitivity of

FIG. 5. Total streamflow in the Red River basin (as measured at Arthur City) for July–September 1984 from (left to right) observations,

the reference forecast experiment, and the six experiment forecasts with imposed error. All values are shown in terms of dimensionless

standard normal deviations. The horizontal dotted lines show the mean values across the ensemble members.
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streamflow forecast skill to improvements in soil mois-

ture estimation is seen to be largest in the summer and

fall, particularly in mountainous areas. Again, the actual

improvement in forecast skill for a given improvement

in soil moisture estimation should be larger than the

values shown. Note that by construction, the plots are

similar to the raw streamflow forecast skill plots shown

for the Exp3 simulations byMahanama et al. (2012); the

differences stem only from the use of one land model here

and,more importantly froma scientific standpoint, from the

fact that, for reasons discussed above, not all of the fitted

lines through the points in Fig. 4 go through the origin.

Finally, we note the potential for rough estimates

of the change in streamflow prediction skill (i.e., the

change in rQ-obs) associated with a specific, area-averaged

change in the RMSE of soil moisture estimation—

a quantity more familiar tomany soil moisture scientists.

To obtain such estimates, we begin with the relationship

between unbiased root-mean-square error (ubRMSE)

and correlation coefficient r as provided by Entekhabi

et al. (2010a):

ubRMSE5 (s2
est1s2

true2 2rseststrue)
0:5 , (3)

where for this discussion sest is the standard deviation

(in time) of the estimated soil moisture, strue is the true

standard deviation of soil moisture, and r is equivalent

to rW-truth as discussed above. Rearranging (3), and as-

suming that a reduction in ubRMSE (e.g., through the

assimilation of remotely sensed observations) has no im-

pact on sest or strue, we compute the derivative of rW-truth

with respect to ubRMSE:

FIG. 6. Diagram highlighting the interpretation of the forecast

experiment results in terms of the sensitivity of streamflow forecast

skill to improvements in the estimation of initial soil moisture.

FIG. 7. Estimates of the lower bound of the ratio DrQ-obs /DrW-truth (i.e., the lower bound of the sensitivity of streamflow forecast skill to

initial soil moisture accuracy), as derived from the forecast experiments: (a) January–March (JFM), (b) April–June (AMJ), (c) July–

September (JAS), and (d) October–December (OND).
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›rW-truth
›ubRMSE

52(ubRMSE)/(seststrue) , (4)

from which we derive the derivative of streamflow pre-

diction skill (rQ-obs) with respect to ubRMSE:

›rQ-obs
›(ubRMSE)

5
›rQ-obs
›rW-truth

(2ubRMSE)/(seststrue) , (5)

where again, ›rQ-obs/›rW-truth has a minimum possible

value given by the slope of the rQ-obs– rW relationship in

Fig. 4.

Utilization of (5), of course, is difficult given the need

to quantify accurately both strue and ubRMSE in the

general absence of soil moisture observations. To give

a flavor, though, for the types of values that might be

involved, consider the Ohio basin, the large basin in

eastern CONUS in Fig. 1. Assuming (arbitrarily) that

ubRMSE for this basin is 0.02 (m3m23) prior to using

satellite-based soil moisture information, and that strue

is the same as sest as computed from the model simu-

lation (0.027m3m23), we can use (5) to estimate that

reducing ubRMSE to 0.015 would cause rQ-obs for

JAS streamflow forecasts to increase from 0.58 to

at least 0.65.

e. Supplementary result: Lower bound for present-
day skill in estimating soil moisture

A curious side benefit of the linearity found in Fig. 4 is

worth mentioning. The linearity allows us to infer a

minimum value for rW-truth, that is, an estimate for a

lower bound for how well we know soil moisture state

based on present-day observational networks. The idea

is illustrated in Fig. 8. In the plot, the dots along the

heavy black line represent pairs of rW and rQ-obs from

a given panel in Fig. 4. Recall that in Fig. 6, the (un-

known) value of rW-truth was arbitrarily assumed to be

0.8, allowing the abscissas of the points to be scaled by

that factor; performing the same operation on the points

in Fig. 8 yields the points along the thinner blue line.

Notice that according to the blue line, a perfect knowl-

edge of soil moisture (rW 5 1, against truth) would lead

to a streamflow forecast skill of rQ-obs 5 0.525. That is, if

with current measuring systems we know soil moisture

with an rW-truth of 0.8, then (making use of the evident

linearity) rQ-obs 5 0.525 is the best streamflow forecast

skill we could ever attain through improvements in soil

moisture measurement systems.

Now consider the scaling that brings the points on

the heavy black line to the red line in Fig. 8. With this

scaling, streamflow is forecasted perfectly when soil

FIG. 8. Demonstration of how the lower bound of rW-truth (a measure of how well we know the true soil

moisture) can be estimated from the experiments addressing the impact of soil moisture initialization

error on streamflow forecast skill. See text for details. Dots of the same color represent results from the

same experiment, scaled in different ways; these colors are not keyed to the color bars used in any of the

maps in the figures above.
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moisture is perfectly known. Any further scaling would

lead to the impossible condition of rQ-obs . 1 for per-

fectly known soil moisture, which has an important im-

plication: although we do not know how well soil moisture

is estimated with currentmeasurement systems (i.e., we do

not know the value of rW-truth for the reference forecast

experiment), rW-truth cannot be smaller than the abscissa of

the black dot on the red line in Fig. 8 (about 0.42), for

a smaller value would imply the aforementioned impos-

sible condition. Because streamflows also depend on pre-

cipitation during the forecast period and thus can never be

forecasted perfectly with soil moisture information alone

(i.e., rQ-obs will be always be less than 1 even if rW were 1),

the actual value of rW-truth will presumably be significantly

higher than the estimated minimum value.

This estimation procedure requires more extrapola-

tion across the fitted line than the derivative calculation

associated with Fig. 6. The degree to which the under-

lying relationships are not truly linear across all possible

values of rW and are not truly direct (i.e., do not go

through the origin) may limit significantly the accuracy

of the estimates produced and may even allow an oc-

casional negative value. (Notice, for example, the small

but positive, and thus unrealistic, skill seen in Fig. 8

when rW is 0, an indication that such extrapolation is

subject to risk.)With this important caveat, Fig. 9 provides,

for each basin and season addressed in Fig. 4, estimates

of the lower bound of rW-truth as produced with the

procedure. The calculations imply, for example, that for

the Ohio River basin, the model-based soil moistures

used in our analyses, which are based on historical time

series of meteorological forcing, compare with the true

(unknown) soil moistures there with a correlation co-

efficient higher than 0.35 on 1 January and higher than

FIG. 9. Estimated lower bounds of rW-truth for each basin (in order of size) and season considered.

80 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



0.5 on 1 July. The lower bounds for soil moisture esti-

mation skill exceed 0.7 for some locations and seasons.

Such estimates of soil moisture accuracy at the large

scale, of course, are generally very difficult to obtain; the

streamflow-based diagnostic provides a lower bound for

a highly elusive quantity.

Particularly low values are seen for several larger

basins on 1 April. This may reflect the fact that snowpack

in these basins on 1 April is more important than soil

moisture for determining April–June streamflow. As a re-

sult, any streamflow-based diagnostic of howwell we know

soil moisture on 1 April would presumably be biased low.

3. Impact of an increased spatial resolution of
precipitation on streamflow forecast skill

We now turn to our second (and independent) study,

which has a different focus. Rather than examining the

impact of initialization error on streamflow forecast

skill, we examine here the potential impact of high-

resolution precipitation information on this skill. As in

the first study, an offline-distributed land-modeling sys-

tem is used to address the problem.

a. Overview of experiment

As discussed in section 1, seasonal precipitation fore-

casts from global numerical models can be used to drive

an offline hydrological model and thereby produce sea-

sonal streamflow forecasts. The mechanisms that control

streamflow generation, however, operate at spatial scales

much smaller than those captured by the global-modeling

systems. While a hydrological model may be calibrated

to operate efficiently with low-resolution precipitation

products, the subgrid (high resolution) distribution of

precipitation in nature does contain information that the

low resolution data necessarily lacks, and a distributed

hydrological model might, in theory, be able to trans-

form this extra information, if available, into improved

streamflow simulation. It is natural to ask whether a re-

alistic increase in the spatial resolution of the precipitation

forcing prior to its application in a high-resolution hydro-

logical model would improve the forecast of large-scale

streamflow.

Consider, for example, the two hydrological-modeling

designs shown in Figs. 10a and 10b. Both designs cover

the hydrological basin with a high-resolution array of

surface-modeling elements, and both produce, through

application of meteorological forcing, streamflow esti-

mates (Q1 andQ2) at the basin’s outlet. Shown in shading

is the nature of the precipitation used in the two cases—in

Fig. 10a, the precipitation is applied at low resolution

(e.g., at the resolution of the precipitation forecast model),

whereas in Fig. 10b, the low resolution precipitation

FIG. 10. Schematic illustrating the disaggregation problem addressed in section 3. See text for details.
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data are disaggregated spatially in a way that conserves

the total precipitation volume but captures its subgrid

variability. We can restate our question as follows: as-

suming the forecasted precipitation and its disaggrega-

tion to the finer scale is accurate, is Q2 inherently more

accurate than Q1?

Of course, under these assumptions, the high-resolution

streamflows produced in Fig. 10b have, by definition,

useful information not allowed by the setup in Fig. 10a.

In this analysis we do not address the impact of the

disaggregation on high resolution streamflow data; we

only address the impact of the disaggregation on the large-

scale-average streamflow, as represented in the figures by

Q1 and Q2.

Note also that we will effectively quantify here the

maximum possible impact of the disaggregation on ac-

curacy by effectively assuming perfect seasonal precip-

itation forecasts and a perfect methodology for the

disaggregation of the precipitation in both space and

time. The idealized design of this experiment is thus in

stark contrast to that employed in section 2 above, in

which true estimates of forecast skill were derived from

a comparison of model-forecasted streamflows to ob-

servations. In the present design, we purposefully avoid

presenting comparisons of forecasted runoffs with

observations; the shortness of the time period consid-

ered (as determined by the availability of high-resolution

precipitation forcing data), as well as errors in the pre-

cipitation data and in the model itself, prevent the ob-

servations from providing any definitive conclusions.

The justification for our idealized strategy is that ob-

servations are not needed to address the broader ques-

tion posed here, namely, would disaggregation be useful

even if all system components were perfect? If no impact

is seen even under such idealized conditions, then a dis-

aggregation procedure applied to a real-time large-scale

seasonal forecast would have no hope of being beneficial

for that forecast.

Two pairs of offline simulations are compared in this

analysis. Each simulation covers the CONUS regime,

applying the catchment LSM at a resolution of 1/88 3 1/88
over the period 1981–2008 after a multidecadal spinup

procedure. In the first pair of simulations [labeled high-

resolution precipitation (HRP) and low-resolution pre-

cipitation (LRP)], we characterize the land surface with

spatially varying fields (at 1/88 3 1/88 resolution) of veg-
etation, soil, and topography parameters derived from

observations. All meteorological forcing except for pre-

cipitation is derived from the observations-based dataset

of Sheffield et al. (2006); the 18 3 18 (nonprecipitation)
forcing in that dataset is applied uniformly across the 64
1/88 3 1/88 cells contained within. Simulations HRP and

LRP differ only in the nature of the precipitation

forcing. In simulation HRP, the precipitation is taken

from the 1/88 3 1/88 observations-based North American

Land Data Assimilation System (NLDAS) dataset (Xia

et al. 2012), whereas simulation LRP uses the same da-

taset, but with a twist: the 64 1/88 3 1/88 values of a given

hour’s precipitation in a given 18 3 18 cell are averaged

and then applied uniformly across those 64 cells. The

design of simulations LRP and HRP thus mimics that

illustrated in Figs. 10a and 10b—both simulations apply

the same precipitation volumes to the land surface

during each time step, but the volumes are dis-

aggregated in a realistic way in simulation HRP.

Results are processed separately for each 18 3 18 cell
across CONUS, and thus in effect we examine the sim-

plified view of the problem illustrated in Figs. 10c and 10d.

For a given 18 3 18 cell, we compute, for each year in

1981–2006, the runoff produced in simulation LRP spa-

tially averaged over the 64 higher-resolution cells

contained within it. The resulting time series of 28 annual

totals is then regressed against the corresponding time

series generated from simulation HRP. The square of the

correlation coefficient between the two time series (r2)

indicates the degree to which a large-scale (18 3 18) runoff
estimate is affected by the disaggregation of precipitation.

If r2 is small, disaggregation has an important impact on

the estimate, implying that if precipitation forecasts,

disaggregation procedures, and modeling approaches are

accurate, disaggregation would indeed contribute to the

accuracy of large-scale annual streamflow forecasts. If,

however, r2 is close to 1, we cannot expect precipitation

disaggregation to contribute to streamflow forecast skill,

regardless of how accurate the disaggregation is. The r2

diagnostic could, in principle, be similarly computed

from monthly or seasonal runoff totals.

The second set of parallel simulations (simulations

LRP-h andHRP-h, where h represents homogeneous) is

identical to the first set except for the homogenization

of the land surface properties—both the LRP-h and

HRP-h simulations apply the soil, vegetation, and to-

pographic parameters of a representative grid cell in

central Kansas to every grid cell in CONUS. The idea

behind this second set of simulations is to demonstrate

that the most dominant spatial pattern of r2 determined

from simulations LRP and HRP does not simply reflect

spatial patterns of land surface properties; it instead

reflects large-scale spatial patterns in the precipitation

forcing itself.

A note about the nature of the NLDAS precipitation

data is appropriate here. The data are based in large part

on gauge measurements, and gauge density tends to be

lower in the western half of CONUS. While the dataset

contains significant variability at scales below 18 even in

sparsely gauged regions, one might wonder if the lower
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gauge density in the west will have an impact on the

results there—that is, whether in this experiment the low

density in the west will reduce the apparent impact of

precipitation disaggregation there. The precise impact

of gauge density variations on our results is very difficult

to quantify. Nevertheless, as will be shown below, the

western half of CONUS is found to bemore affected by

disaggregation than the eastern half despite any disad-

vantage it has with regard to gauge density. We can

safely assume that this distinction, the main result of this

experiment, would be retained if precipitation gauge

density were uniformly high across CONUS.

b. Results

Results are shown in Fig. 11a. The r2 values are seen to

be very close to 1 in the eastern half of CONUS, im-

plying that the 18 3 18 annual runoffs generated there

with the low-resolution (18 3 18) and higher-resolution

(1/88 3 1/88) precipitation data are essentially the same.

(Indeed, the magnitudes of the runoff as well as their

time variability are essentially the same in the east;

comparisons of the annual runoffs produced by HRP

andLRP, not shownhere, show only slightly larger values

for Simulation HRP, of the order 0.01mmday21.) The r2

values are particularly low along a longitudinal band near

the center of CONUS, and they are higher, though still

often significantly below 1, in the western third of

CONUS. Figure 11b shows in turn the corresponding

results from simulations HRP-h and LRP-h, the simu-

lations for which spatial variations in land surface

properties do not play a role. The stark contrast in the r2

values in the western and eastern halves of CONUS is

even more apparent in these latter simulations, dem-

onstrating conclusively that the east–west contrast in r2

is driven by large-scale spatial variations in the meteo-

rological forcing. Note, however, that in the west, the r2

values produced with Simulations HRP and LRP do

differ in many places from those produced with Simu-

lations HRP-h and LRP-h; in these regions, the imposed

land surface properties do have an impact on r2 and thus

on the potential usefulness of precipitation disaggrega-

tion with this system. Identifying the particular land

FIG. 11. (a) Correlation between the time series of annual runoffs generated in the experiment with low-resolution precipitation forcing

(simulation LRP) and those generated in the simulation with high-resolution precipitation forcing (simulation HRP). (b) The corre-

sponding correlation between simulation LRP-h and simulation HRP-h, which utilized uniform soil, topography, and vegetation char-

acteristics across the United States. (c) Distribution of Budyko’s dryness index (the ratio of net radiation to precipitation, made

dimensionless with the latent heat of vaporization) across the United States. (d) The ratio of the variance of annual evaporation (from

simulation HRP) to the variance of annual precipitation.
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surface properties in play here would require additional

simulations; we note from the maps, however, that they

are not solely associated with topographic variability.

The east–west disparity in r2, the dominant pattern

seen in the maps, has a straightforward explanation.

Over long time scales, such as the annual scale consid-

ered here, precipitation is roughly balanced by the sum

of evaporation and runoff. Evaporation is generally

limited by water availability in the west but not in the

east, and as a result, for a given precipitation forcing,

corresponding impacts are seen for runoff. As argued

now, this east–west distinction manifests itself in the r2

field.

Figure 12 shows how energy-limited evaporation mit-

igates the ability of precipitation disaggregation to affect

the generation of large-scale runoff. The top of the figure

shows three different disaggregations of a given, low-

resolution precipitation volume to a higher resolution,

the third being, in fact, a simple, uniform application of

the precipitation. Under the assumption that evapora-

tion is controlled by the availability of energy rather

than water at the surface, and under the further as-

sumption that the average energy input across the large-

scale area is the same, evaporation is shown in the lower

part of the figure to be constant across the high-resolution

elements. By construction, then, the sum of the residual

water across the high-resolution elements is the same for

all three disaggregations. It is this sum of residuals that

can contribute to the large-scale runoff, especially when

averaged over long time periods, for which changes in

storage are insignificant. Because the sum of the residuals

is equal, the total runoff is the same regardless of the

disaggregation approach (or lack of such an approach)

used.

A region with soil moisture–limited evaporation, on

the other hand, would not show this behavior. Evapo-

ration in soil moisture–limited regions would vary across

the high-resolution elements and from time step to time

step (and accordingly from year to year), so that the sum

of residuals need not be constant. Different disaggre-

gation approaches (or a lack of disaggregation) would

thereby produce different large-scale runoff rates, and

the r2 diagnostic would be less than unity.

Figures 11c and 11d show two measures of evapora-

tion regime. Figure 11c shows Budyko’s dryness index

(Budyko 1974), defined as the ratio of annual net radi-

ation (converted to water units using the latent heat

of vaporization) to annual precipitation. The reflected

shortwave and outgoing longwave radiation components

of the net radiation were derived from simulation HRP;

the remaining radiation components and the precip-

itation were taken from the prescribed forcing. Clearly

seen in this field are the relatively low (roughly unity)

dryness indices in the east, implying that the east is not

characterized by soil moisture–controlled evaporation

rates and thus, according to the argument outlined in

FIG. 12. Illustration of how the runoff generated in an energy-limited evaporation regime may

be unaffected by different precipitation disaggregation schemes. See text for details.
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Fig. 12, not as amenable to improved forecasts through

precipitation disaggregation. This is underlined further

by Fig. 11d, which shows the ratio of the variance of

annual evaporation to the variance of annual precip-

itation, as derived from simulation HRP. In the eastern

half of CONUS, the variance ratio is low (and the ratio

of mean annual evaporation to mean annual precip-

itation, not shown, is also relatively low), as expected for

dryness index levels characteristic of an energy-limited

evaporation regime (Koster and Suarez 1999). The low

variance ratios in the east support the idea that the

‘‘constant evaporation’’ assumption used when discus-

sing Fig. 12 is in fact valid there.

Figure 13 providesmore evidence that thismechanism

is in play and also shows results for a monthly, rather

than yearly, averaging period. The 12 panels in Fig. 13

show the r2 values obtained for simulations LRP and

HRP when the runoffs are averaged over each month of

the year independently. Clearly seen, especially in the

center of CONUS, is the decrease in r2 during the summer

months, when the incident energy is high and evaporation

is highest. In the winter months, when the incident energy

is lower and evaporation thereby becomes energy lim-

ited, the r2 values are high. The r2 results for the com-

parison between simulations LRP-h and HRP-h on the

monthly time scale (not shown) are similar, with the

lowest r2 values again appearing in the summer months.

We note that the results on this time scale may be of

particular relevance to the science of streamflow fore-

casting, given that monthly and seasonal forecasts are

far more common than annual forecasts.

The above discussion brings up a question: could the

accurate downscaling of temperature and net radiation

(rather than precipitation) in the east, particularly in the

summer, have a positive impact on large-scale stream-

flow forecast skill? Though one might expect that the

(nonstatic) spatial variability of temperature or net ra-

diation would be substantially less than that of precip-

itation, so that the impacts of their downscaling would

be reduced, additional analyses (not performed here)

would be needed to address this question adequately.

Onemight also wonder if the noted behavior in the east

in Fig. 12 breaks down during drought periods, when

water availability rather than energy availability has the

potential to limit evaporation. Figure 14 suggests that this

is not the case, at least according to this particular land

model’s simulation of Georgia drought periods in the

2000s. The figure shows, for a representative 18 3 18 grid
cell (at 33.58N, 83.58W), the simulated time series of an-

nual precipitation (black curve), evaporation (red curves),

and runoff (blue curves) averaged across the 64 subgrid

cells, with results from simulations LRP and HRP shown

as dashed curves and solid curves, respectively. The years

1999–2002 and 2006–08 have particularly low pre-

cipitation at this cell, and this low precipitation is man-

ifested almost completely in reduced runoff rates—

evaporation rates are not reduced during these periods,

and thus the arguments outlined in Fig. 12 suggest that

simulations LRP and HRP should continue to show sim-

ilar runoff estimates during this time. They indeed do, as

indicated by the comparisons of the dashed and solid blue

curves. Of course, this result might be different for a more

severe drought or with a different land surface model.

Note, however, that the land surface does have a pro-

pensity to convert a precipitation anomaly into a runoff

anomaly rather than an evaporation anomaly in wetter

regions, as demonstrated, for example, by Koster et al.

(2006; their Fig. 7) with a purely observational dataset.

4. Summary and discussion

The two analyses above address some unanswered

questions in the science of seasonal streamflowprediction,

FIG. 14. Time series of annual precipitation (black), evaporation (red), and runoff (blue) at

a grid cell in Georgia, as produced in simulation LRP (solid) and simulation HRP (dashed).

The y axis has units of mm day21.
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a science that is key to addressing societal concerns re-

garding water supply and drought. In the first analysis,

streamflow forecast skill was found, for the most part, to

decrease linearly with increasing soil moisture initializa-

tion error. (The applied error was assumed to be normally

distributed, a simplifying assumption.) This allows the

inference of the increase in skill that should be achieved

with improvements in soil moisture monitoring, as made

possible, for example, with the advent of spaceborne L-

band soil moisture sensors. In the second analysis, we

examined how streamflow forecast skill is connected to

the information content of subgrid precipitation dis-

tributions, as might be established with a downscaling

algorithm applied to the output of global seasonal

forecast systems. Here we found that this information

content would have little impact on streamflow pre-

diction in the eastern half of CONUS, apparently because

of the fact that this region is not characterized by soil

moisture–limited evaporation. In contrast, in the western

half of CONUS, where evaporation is soil moisture–limited,

accurate downscaling applied to accurate low-resolution

precipitation forecasts may indeed lead to improved

forecast skill.

We should mention, of course, the fact that our results

are potentiallymodel dependent.Mahanama et al. (2012)

examined streamflow forecasts with four different land-

modeling systems and found that the different systems

varied in the skill levels they produced; the precise values

of rQ-obs in Figs. 3 and 4 and of the derivatives plotted in

Fig. 7 would thus presumably differ if a different land

model were used. Also, the values of the subunity

correlations plotted in Figs. 11a and 11b might differ if

computed with a land model with a different treatment,

for example, of topographic impacts on hydrology. We

expect, however, that the linearity shown in Figs. 3 and 4

and the impact of evaporative regime illustrated in Fig. 11

are robust results. This robustness can be verified through

a repeat of our experiments with alternative models.

We should also emphasize again that the second

study does not purport to be a full analysis of pre-

cipitation downscaling, which would involve more than

disaggregation—it would also involve careful calibra-

tion and bias correction. Here we examine only a sub-

set of the downscaling problem: how the information

content of high-resolution versus low-resolution pre-

cipitation data affects the simulation of large-scale

streamflow. Yuan andWood (2012) found that the main

effect of downscaling in the Ohio basin is to correct the

errors of the atmospheric model providing the forecasted

meteorology; any advantage from precipitation disag-

gregation there is likely not as important, a result con-

sistent with our findings in Fig. 11 (X. Yuan, personal

communication 2012).

While the two studies discussed here are largely in-

dependent, they are presented here in a singlemanuscript

because, together, they show that an offline-distributed

land-modeling system can be a very useful tool for tack-

ling basic questions in the science of streamflow fore-

casting. The lower bounds of soil moisture estimation

skill provided in Fig. 9 illustrate yet another example of

the usefulness of such systems. We expect that these

systems have great untapped potential as test beds for

basic hydrological research.
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