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ABSTRACT

Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three

mathematical parametersNw,Dm, andm. If only two independentmeasurements are available, as with the dual-

frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core satellite, then

retrieval algorithms are underconstrained and require assumptions about DSD parameters. To reduce the

number of free parameters, algorithms can assume that m is either a constant or a function of Dm. Previous

studies have suggested m–L constraints [where L 5 (4 1 m)/Dm], but controversies exist over whether m–L
constraints result from physical processes or mathematical artifacts due to high correlations between gamma

DSDparameters. This study avoidsmathematical artifacts by developing joint probability distribution functions

(joint PDFs) of statistically independent DSD attributes derived from the raindrop mass spectrum. These joint

PDFs are thenmapped into gamma-shapedDSDparameter joint PDFs that can be used in probabilistic rainfall

retrieval algorithms as proposed for the GPM satellite program. Surface disdrometer data show a high corre-

lation coefficient between the mass spectrummean diameterDm andmass spectrum standard deviation sm. To

remove correlations betweenDSD attributes, a normalizedmass spectrum standard deviations0
m is constructed

to be statistically independent of Dm, with s0
m representing the most likely value and std(s0

m) representing its

dispersion. Joint PDFs of Dm and m are created from Dm and s0
m. A simple algorithm shows that rain-rate

estimates had smaller biases when assuming the DSD breadth of s0
m than when assuming a constant m.

1. Introduction

Building on the successful Tropical Rainfall Measuring

Mission (TRMM), the Global Precipitation Measure-

ment (GPM) mission aims to use multiple satellites to

estimate surface rainfall with a 3-h resolution between

658S and 658N (Hou et al. 2008). The core GPM satellite

will observe precipitation with a cross-track scanning

dual-frequency precipitation radar (DPR) and a conically

scanning multiple-frequency radiometer. The constella-

tion of GPM satellites will observe precipitation with

passive microwave sensors (Huffman et al. 2007).

Algorithms will estimate surface rainfall by using dif-

ferent combinations of GPM observations. ‘‘Radar only’’

algorithms will use DPR observations (e.g., Grecu et al.
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2011), ‘‘radiometer only’’ algorithms will use passive

microwave observations (e.g., Kummerow et al. 2011),

and ‘‘combined’’ algorithms will use both radar and ra-

diometer observations (e.g., Munchak and Kummerow

2011). Algorithms will use probabilistic frameworks that

seek to reproduce the observed reflectivities and/or ra-

diances with physically realistic raindrop size distribu-

tions (DSDs) following either Bayesian theory (Haddad

et al. 2006) or optimal estimation theory (Munchak and

Kummerow 2011).

To estimate surface rainfall, retrieval algorithms often

assume that the DSD follows a gamma-shaped distribu-

tion with three parameters (e.g., Rose and Chandrasekar

2006; Iguchi et al. 2009; Kozu et al. 2009; Grecu et al.

2011; Munchak and Kummerow 2011; Seto and Iguchi

2011; Seto et al. 2013). In the ideal case, three measure-

ments are needed to constrain three unknowns. When

only two measurements are available, as in DPR obser-

vations (e.g., absolute reflectivity at two radar operating

wavelengths), assumptions are needed to constrain the

third DSD parameter.

A simple, yet problematic formulation of a gamma-

shaped distribution was introduced by Ulbrich (1983):

N(D)5N0D
m exp(2LD) , (1)

where N(D) is the raindrop concentration representing

the number of raindrops per diameter interval per unit

volume (mm21m23); D is the raindrop diameter (mm);

and N0 (mm212mm23), L (mm21), and m (unitless) are

the ‘‘scale,’’ ‘‘slope,’’ and ‘‘shape’’ parameters, respec-

tively. These three parameters are mathematical param-

eters because they do not represent physical quantities

unless m 5 0, which is the inverse exponential case. Sev-

eral studies have shown that these three mathematical

parameters are not statistically independent but are

correlated, with high Pearson correlation coefficients

(Ulbrich 1983; Ulbrich and Atlas 1985; Chandrasekar

and Bringi 1987; Moisseev and Chandrasekar 2007;

Illingworth and Blackman 2002). By exploiting the

correlations between m and L, Zhang et al. (2001, 2003)
developed a m–L relationship:

L5 0:0365m21 0:735m1 1:935, (2)

so that the three-parameter DSD in Eq. (1) is described

as a ‘‘constrained DSD’’ with two free parameters and

a m–L constraint. Using a m–L constraint improved

rainfall estimates from polarimetric radar because two

radar measurements, reflectivity factorZ and differential

reflectivity Zdr, are used to solve for the two free DSD

parameters in the constrained DSD (Cao and Zhang

2009). Over the past few years, studies found that m–L
relationships vary with rain microphysics (Atlas and

Ulbrich 2006) and with radar reflectivity (Munchak and

Tokay 2008). Studies have also shown that radar rainfall

estimates improve after adjusting the m–L relationship to

ground observations (Cao et al. 2008). In aggregate, these

prior studies suggest that a m–L constraint improves rain-

rate estimates, but a single m–L relationship does not

describe the storm-to-storm or within-storm rain micro-

physics variability that modifies the DSD shape.

There is concern that m–L relationships similar to

Eq. (2) result from mathematical artifacts due to corre-

lations between the three mathematical parameters in

Eq. (1) (Chandrasekar and Bringi 1987; Moisseev and

Chandrasekar 2007). Another concern is that surface

disdrometer observations used in developing m–L rela-

tionships may underestimate the number of small rain-

drops in rain because of wind blowing small raindrops

around the instrument inlet or low instrument sensitivity

to detecting small raindrops (Moisseev and Chandrasekar

2007). The limited detection of small raindrops causes

truncated raindrop spectra that lead to narrower spectra

and biased m–L relationships. Even if m–L relationships

contain mathematical artifacts, Zhang et al. (2003) have

argued that m–L relationships contain physical meaning

and lead to improved rain-rate estimates [as later docu-

mented by Cao and Zhang (2009)].

Even without concerns over mathematical artifacts,

single-value m–L relationships as in Eq. (2) cannot be

used in probabilistic rainfall retrieval algorithms because

they only provide the expected (or initial) value of aDSD

constraint. Probabilistic algorithms need the expected

value plus a range of acceptable values to converge to

a final solution (Haddad et al. 2006; Munchak and

Kummerow 2011). The National Aeronautics and Space

Administration (NASA) Precipitation Measurement

Missions (PMM) DSD Working Group1 is investigating

whether the DSD constraints, or assumptions, used in

rainfall retrieval algorithms are observed in field cam-

paign raindrop spectra and whether new constraints can

be constructed that fit probabilistic algorithm logic. This

study focuses on developing probabilistic DSD con-

straints through analysis of disdrometer observations.

Developing probabilistic algorithms will be described

elsewhere (e.g., Munchak and Kummerow 2011).

The DSD Working Group is investigating new DSD

constraints by rephrasing the problem in two key ways.

First, to avoid mathematical artifacts, relationships be-

tween directly measurable physical attributes of the

DSD are investigated, and relationships between fitted

1TheDSDWorkingGroup is composed ofNASAPMMScience

Team members and includes GPM algorithm developers and ob-

servational scientists.
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mathematical parameters of a gamma function are not

investigated. Since gamma parameters are not statisti-

cally independent, mathematical artifacts will appear in

relationships once a DSD is assumed to follow a gamma

mathematical model. Second, the relationships between

physical DSD attributes are expressed in terms of joint

probability distribution functions (joint PDFs) and not

only as a best-fit line. The problem is now rephrased as,

Given an algorithm estimate of one DSD physical at-

tribute, what is the expected value and range of another

DSD physical attribute? After determining joint PDFs

of statistically independent DSD physical attributes,

joint PDFs of gammamodel parameters are constructed

so that physically based constraints can be used in

probabilistic rainfall retrieval algorithms that are for-

mulated using gamma-shaped DSDs.

This study has the following structure: After defining

a normalized gammaDSD, a simple dual-frequency radar

rain-rate algorithm is described to highlight how a con-

straint, or assumption, is needed in the algorithm to solve

the three-parameter DSD when only two measurements

are available. Without an assumption of a gamma-shaped

DSD a priori, section 3 uses the raindrop mass spectrum

mean diameterDm and standard deviation sm to describe

the DSD shape. Surface disdrometer observations are

introduced in section 4, and in section 5 a power-law re-

lationship between estimated Dm and sm is removed to

construct a new mass spectrum standard deviation esti-

mate s0
m that is statistically independent ofDm. The DSD

shape can now be defined by two uncorrelated physical

attributes: Dm and s0
m. From the definition of gamma-

shaped DSDs, a transformation, or mapping, is generated

between (Dm, s
0
m) and gamma parameters (Dm, m). Sec-

tion 6 uses the simple rain-rate algorithm from section 2 to

show that the rain rates estimated with the most likely, or

expected, value of the new power-law Dm–m constraint

have smaller biases than when a constant m value is as-

sumed. Section 7 presents some conclusions and proposes

future work.

2. Gamma-shaped DSD and a simple DPR
algorithm

This section describes the assumptions a simple rainfall

retrieval algorithm needs to make when it has two radar

input measurements and models the DSD with three pa-

rameters. This simple algorithm follows the GPM DPR

rainfall algorithm general logic (Seto et al. 2013), but only

at a single altitude and without attenuation correction.

Because the gamma function parameters N0, L, and m

used in Eq. (1) are highly correlated, using normalized

gamma function parameters (defined below as Nw, Dm,

and m) should help to reduce the mathematical artifacts

betweenDSDparameters (Testud et al. 2001; Illingworth

and Blackman 2002; Bringi et al. 2003). In constructing

DPR algorithms, it is convenient to rewrite the normal-

ized gamma DSD model as a scaled quasi PDF with the

form (Chandrasekar et al. 2005; Seto et al. 2013)

N(D;Nw,Dm,m)5Nwf (D;Dm,m) , (3)

where

Nw5
44

prw

�
q

D4
m

�
, (4)

f (D;Dm,m)5
6

44
(41m)m14

G(m1 4)

�
D

Dm

�m
exp

�
2(41m)

�
D

Dm

��
,

(5)

D is the raindrop equivalent spherical diameter (mm),

rw is the density of water (1 g cm23), q is the liquid water

content (gm23) given by

q5
p

63 103
r w �

D
max

D
min

N(D)D3 dD , (6)

G() is the gamma function, and Dm (mm) is defined as

Dm 5

�
D

max

D
min

N(D)D4 dD

�
D

max

D
min

N(D)D3 dD

. (7)

The summations extend from the minimum to the maxi-

mum diameters (from Dmin to Dmax) with raindrop di-

ameter interval dD. The variableNw acts to scale theDSD

concentration, and Dm and m determine the DSD shape.

The function f(D; Dm, m) is called a quasi PDF because

the magnitude of the integral over all D depends on Dm

and m whereas the integral of a true PDF is unity.

Following Seto et al. (2013), the scaled quasi PDF

allows the effective radar reflectivity factor [denoted by

Ze (mm6m23)] to be estimated using

Ze5NwF(Dm,m) , (8)

where

F(Dm,m)5
l4

p5

����n2w1 2

n2w2 1

����
2

�
D

max

D
min

sb,l(D)f (D;Dm,m) dD ,

(9)

sb,l is the backscattering cross section (mm2) at radar

wavelength l (mm), and nw is the refractivity index of
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water in liquid phase. The DPR on the GPM satellite

will observe the same precipitation volume at 13.6 and

35.5GHz (denoted as Ku and Ka bands, respectively) in

the inner swath of the Ku-band radar. The quasi-PDF

notation allows the dual-frequency ratio of reflectivity

[denoted as DFR (dBZ)] at the DPR frequencies to be

independent of Nw and a function of only Dm and m:

DFR(Dm,m)5 10 log10

 
ZKu
e

ZKa
e

!
5 10 log10

"
FKu(Dm,m)

FKa(Dm,m)

#
,

(10a)

which can be written as

DFR(Dm,m)5 10 log10[F
Ku(Dm,m)]

2 10 log10[F
Ka(Dm,m)] , (10b)

where the superscripts Ka and Ku indicate the value for

the Ka- and Ku-band frequencies estimated using

wavelength-dependent parameters in Eq. (9). Calculat-

ing DFR(Dm, m) with known values of Dm and m is

straightforward and is shown in Fig. 1 with m equal to 0,

3, 5, and 10, but a DPR retrieval algorithm using radar-

measured reflectivities at Ka- and Ku-band frequencies

must estimate Dm and m from estimates of attenuation

corrected reflectivities ZKu
e and ZKa

e [attenuation correc-

tion involves many calculations and algorithm-dependent

assumptions that are not discussed here; see Seto et al.

(2013) for details]. Without any prior information, re-

trieval algorithms assume a m value and then Dm is esti-

mated from aDFR(Dm,m) lookup table constructed using

Eq. (10) (note that in some cases multiple values of Dm

may represent valid solutions).

The scale parameter Nw is then estimated by rearrang-

ing Eq. (8) and using either the estimated ZKu
e or ZKa

e .

For Ku-band observations, Nw is estimated using

Nw 5
ZKu
e

FKu(Dm,m)
. (11)

The retrieval algorithm can now estimate rain rate R

using

R5
6p

103
�
D

max

D
min

Nwf (D;Dm,m)D
3y(D) dD , (12)

where y(D) (m s21) is the fall speed of raindrops with

diameterD (mm). Section 6 will use this simple retrieval

algorithm to show improved rain-rate estimates by as-

suming m is a function of Dm rather than assuming m is

a constant.

3. Attributes of the raindrop mass spectrum

In the previous section, the DSD was modeled with

a modified gamma function using parameters Nw, Dm,

and m. In this section, the DSD is not assumed to have

any a priori shape but is expressed as a raindrop number

concentration N(D) observed by a surface disdrometer

with discrete diameter size bins. By expressing theDSDs

as raindrop mass spectra, the shape of the discrete dis-

tribution can be described by two attributes: the mass-

weighted mean diameter and the mass spectrum standard

deviation.

a. Mass spectrum mean diameter and standard
deviation

The raindrop mass spectrum m(D) (gmm21m23)

represents the mass of liquid water as a function of

raindrop diameter and is determined from the raindrop

number concentration N(D) by using

m(D)5
p

63 103
rwN(D)D3 . (13)

FIG. 1. Dual-frequency ratio (DFR) (dBZ) vs Dm calculated at 13.6- (Ku band) and

35.5-GHz (Ka band) radar frequencies using DFR5 10 log10(Z
Ku
e )2 10 log10(Z

Ka
e ). DFR is es-

timated for m values of 0, 3, 5, and 10.
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The first moment of themass spectrum is called themass

spectrum mean diameter Dm (mm) and can be ex-

pressed by using N(D) [as in Eq. (7)] or by using m(D):

Dm 5

�
D

max

D
min

N(D)D4 dD

�
D

max

D
min

N(D)D3 dD

5

�
D

max

D
min

m(D)DdD

�
D

max

D
min

m(D) dD

. (14)

The second moment of the mass spectrum is the mass

spectrum variance s2
m (mm2). The mass spectrum stan-

dard deviation sm (mm) is dependent onDm and can be

expressed by using N(D) or m(D):

sm 5

2
666664
�
D

max

D
min

(D2Dm)
2N(D)D3 dD

�
D

max

D
min

N(D)D3 dD

3
777775

1/2

5

2
666664
�
D

max

D
min

(D2Dm)
2m(D) dD

�
D

max

D
min

m(D) dD

3
777775

1/2

. (15)

The summations in Eqs. (14) and (15) extend from the

minimum to the maximum observed diameters (from

Dmin toDmax) with raindrop diameter interval dD. Since

raindrops have positive diameters, the DSD is said to be

‘‘one sided,’’ with the smallest raindrops having diam-

eters greater than approximately 0.2mm (Pruppacher

and Klett 1978) and the largest raindrop (Dmax) observed

to increasewith rain-rate intensity andDm (Ulbrich 1985).

If we assume that Dmin remains constant (near 0.2mm)

while Dmax varies, then we would expect the mass spec-

trum standard deviation to increase as bothDm andDmax

increase.

b. Relationship between sm and Dm for simulated
mass spectra

To illustrate how sm can increase as Dm increases,

Fig. 2a shows three simulated ‘‘top hat’’ mass spectra

with constant amplitude for D5 0–2 (squares),D 5 0–3

(circles), and D 5 0–4 (triangles) mm. The amplitudes

were arbitrarily set to 1/2, 1/3, and 1/4, respectively, to help

to visualize the three distributions. From Eqs. (14) and

(15),Dm andsm for these three distributionswere 1.0, 1.5,

and 2.0mm and 0.58, 0.87, and 1.16mm, respectively.

Figure 2b shows these three pairs of Dm and sm values

along with a line indicating a linear relationship between

Dm andsm formass spectra having a top-hat shape. Thus,

for a general mass spectrum shape, the mass spectrum

breadth increases as the mean diameter increases.

4. Disdrometer observations

To examineDm and sm relationships in real data, an

analysis of spectra collected using low-profile two-

dimensional video disdrometers (2DVDs),manufactured

FIG. 2. Demonstration that sm increases as Dm increases: (a) Simulated top-hat mass

spectra withDm5 1.0 (squares),Dm5 1.5 (circles), andDm5 2.0 (triangles) mm. Abscissa is

raindrop diameter. (b) Calculated sm vs. Dm for simulated top-hat mass spectra. The sym-

bols represent curves shown in (a), and the solid line represents the general relationship for

all top-hat mass spectra with various Dm values. The abscissa is mass spectrum mean di-

ameter Dm.
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by JoanneumResearchFgmbH(Graz,Austria; Sch€onhuber

et al. 2007), was undertaken. The diameter resolutionwas

0.2mm, with 50 uniformly spaced diameter bins from 0.1

to 9.9mm. After manually verifying with ancillary ob-

servations that precipitation was rain and not snow, the

first quality-control stage for each 1-min raindrop spectra

consisted of retaining spectra with 1) at least 50 raindrops

in at least 3 different diameter bins, 2) reflectivity fac-

tor greater than 10 dBZ, and 3) rain rate greater than

0.1mmh21. The rain estimates were not divided by rain

regime. A total of 29705min of raindrop spectra passed

these criteria from three disdrometers deployed near

Huntsville, Alabama, over an 18-month period from

December 2009 to October 2011. After secondary filter-

ing (discussed below), the number of raindrop spectra

decreased to 24 872.

a. Disdrometer instrument limitations

Disdrometers count the number of raindrops pass-

ing through or hitting a surface. Because of their lim-

ited sample volume, disdrometers underestimate the

number of small and large drops passing through the

sample volume (Ulbrich and Atlas 1998; Kruger and

Krajewski 2002). Also, wind can advect small rain-

drops around the instrument opening, causing the in-

strument to underestimate further the number of small

raindrops. Ne�spor et al. (2000) showed wind effects us-

ing an early version of the 2DVD, which prompted the

development of the low-profile 2DVDs that were used

in this study. Underestimating the small and large

raindrops has an impact on estimated rain parameters

(Wong and Chidambaram 1985; Chandrasekar and

Bringi 1987; Smith et al. 1993, 2009; Smith and Kliche

2005) and will artificially narrow mass spectra, leading to

underestimated sm.

To understand the impact of undercounting the

number of small raindrops on sm estimates, a simulation

was performed following the method of Moisseev and

Chandrasekar (2007). In general, these simulations

showed that the sm bias was severe for small Dm and

small Dmax and that the bias decreased as Dm and Dmax

increased. To understand whether the disdrometers

were undercounting the number of small raindrops, the

observed raindrop spectra were processed twice. First,

sm was estimated using unaltered observed spectra

(denoted as sobs
m ). Then, the spectra were truncated to

remove all number concentrations with diameters of

0.5mm and smaller (denoted as strunc
m ). The percent

change in sm was calculated using

%Dsm 5 100
(strunc

m 2sobs
m )

sobs
m

. (16)

A value of%Dsm5 0 indicates that the observation was

already truncated and did not observe any raindrops of

0.5mm and smaller. Since truncated spectra are always

narrower than the original spectra (strunc
m #sobs

m ), trun-

cating will always cause a negative %Dsm.

Using 29 705min of quality controlled observations

from three side-by-side disdrometers located near

Huntsville, Fig. 3a shows %Dsm for each 0.1-mm in-

terval of Dm. The squares indicate the mean, and the

lines show 61 standard deviation. ForDm greater than

1mm, the mean%Dsm is less than 10%, indicating that

truncation will have a small impact on sm. For Dm less

than 1mm, however, the mean %Dsm has a very large

magnitude, indicating that truncation significantly

narrows the spectra causing sm to decrease. This sen-

sitivity to small-drop truncation when Dm is less than

1mm indicates that the disdrometers are observing

some small raindrops. But without independent ob-

servations, it is difficult to determine whether wind

effects and instrument limitations are reducing the

number of detected small drops relative to the un-

known true population. To avoid using potentially

biased sm estimates in power-law calculations in sec-

tion 5, all power-law calculations are performed using

only estimates with Dm . 1mm. The power-law re-

lations are then extrapolated into the Dm # 1mm

range.

Figure 3b shows the normalized maximum diameter

Xmax 5 Dmax/Dm for each 0.1-mm interval of Dm. Since

our Moisseev and Chandrasekar (2007) method simu-

lations indicated that sm biases decrease as Xmax in-

creases (not shown), all observations with Xmax # 1.5

were filtered from the dataset. Approximately 84%

(24 872min) of the original Huntsville observations had

Xmax . 1.5 and were used for further analysis.

b. Observed 2D distributions

Using 24 872min of filtered Huntsville raindrop

spectra (see previous section for the filtering procedure),

Fig. 4 shows the frequency of occurrence of reflectivity

factorZ (dBZ), rain rate as 10 log10(R) (dBR), and sm as

a function ofDm. The pixel with the most occurrences in

each panel is normalized to have 0 dB. Each 50% de-

crease in occurrence has a 3-dB decrease on the loga-

rithmic color scale. Table 1 lists the Pearson correlation

coefficients between reflectivity Ze (mm6m23), rain rate

R (mmh21), Dm, and sm.

Using observations with Dm . 1.0mm (a total of

18 969 observations), power-law curves are estimated

with the form y5 aDb
m (where y5 Ze, R, or sm) and are

shown in Fig. 4 with solid lines (Dm . 1.0mm) and

dashed lines (Dm# 1.0mm). The power-law coefficients

and exponents were determined using the correlation

MAY 2014 W I LL IAMS ET AL . 1287



method described in Haddad et al. (1996) and also de-

scribed in section 5.

c. Dm–sm–m relationships for gamma-shaped DSDs

The sm and Dm estimates in Fig. 4c were calculated

directly from the disdrometer spectra using Eqs. (14)

and (15) and do not assume a gamma-shaped DSD. As

discussed in the introduction, there are mathematical

relationships betweenDm, sm, and m for gamma-shaped

DSDs (Ulbrich 1983; Ulbrich andAtlas 1998; Bringi and

Chandrasekar 2001). These mathematical relationships

are derived in this section to define a mapping from

DSD physical attributes (Dm and sm) to gamma func-

tion parameters (Dm and m).

The mass spectrum standard deviation for a gamma-

shaped DSD sm,gamma (the subscript ‘‘gamma’’ indicates

a gamma function) is a function of Dm and m and is de-

termined by substituting Eqs. (3) and (5) into Eq. (15) to

yield

sm,gamma(Dm,m)5

8>>>>><
>>>>>:
�
D

max

D
min

(D2Dm)
2

�
D

Dm

�m13

exp

�
2(41m)

�
D

Dm

��
dD

�
D

max

D
min

�
D

Dm

�m13

exp

�
2(41m)

�
D

Dm

��
dD

9>>>>>=
>>>>>;

1/2

. (17)

FIG. 3. Sensitivity of estimated sm to truncated spectra: (a) Percent change in sm between the observed and

truncated spectra estimated for 0.1-mm intervals ofDm. Squares represent the mean, and lines span over the mean6
one standard deviation (STD). All raindrops 0.5mm and smaller are removed from spectra before calculating

truncated sm. (b) The mean (squares) and mean6 STD (lines) of normalized maximum observed diameterXmax 5
Dmax/Dm for 0.1-mm intervals ofDm. The dashed line indicates the threshold used to filter narrow spectra. (c) Percent

accumulation of observations as a function ofXmax. Approximately 16% of the observations hadXmax , 1.5, leaving

84% (24872min) of observations available for further analysis.
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With an assumption thatDmin5 0,Dmax5‘, and dD/ 0,

Eq. (17) simplifies to (Ulbrich 1983; Ulbrich and Atlas

1998)

sm,gamma(Dm,m)5Dm/(41m)1/2 . (18)

To illustrate the relationship of Eq. (18), Fig. 5a shows

sm versus Dm frequency of occurrence shown in Fig. 4c

along with sm,gamma for constant m values of 0 (squares),

3 (circles), 5 (triangles), and 10 (inverted triangles). The

derived power-law curves are shown with dashed lines

(Dm # 1.0mm) and solid lines (Dm . 1.0mm) and pass

through the constantm5 10 inverted triangles andm5 5

triangles near Dm 5 0.7 and 1.3mm, respectively. The

normalized sm PDF is shown in Fig. 5b. As a reference,

the Zhang et al. (2003) m–L relationship in Eq. (2) is

shown in Fig. 5a (blue solid line) after converting Eq. (2)

to a sm–Dm relationship using Eq. (17) and

Dm 5 (41m)/L . (19)

There are three important points to glean from Fig. 5a.

First, since sm and Dm were estimated without assuming

a gamma-shaped DSD and the gamma DSD sm,gamma

function with m ranging from 0 to 10 bounds the observed

distribution of sm versus Dm, we can conclude that a

family of gamma functions can describe the shape of the

observed DSDs. Second, the Zhang et al. (2003) m–L
relationship passes through the sm–Dm distribution for

Dm , 2.0mm. Third, the sm PDF shown in Fig. 5b is

FIG. 4. Demonstration that Z, R, and sm are correlated with Dm: frequency of occurrence from 24872min of

2DVD observations from Huntsville of (a) Z (dBZ) (b) R (dBR), and (c) sm vsDm (color tiles; scale is logarithmic

defined such that the pixel with the most occurrences has 0 dB and each 50% decrease in occurrence has a 3-dB

decrease on the color scale). The solid black lines in (a)–(c) are power-law curves given by the equations in the labels.

TABLE 1. Pearson correlation coefficients between rain parame-

ters estimated from 24872min of filtered Huntsville disdrometer

observations. Correlation coefficients are between reflectivity

Ze (mm6m23), rain rateR (mmh21), mean mass spectrum diameter

Dm (mm), mass spectrum standard deviation sm (mm), and nor-

malized mass spectrum standard deviation s0
m (unitless).

R Dm sm s0
m

Ze 0.85 0.47 0.45 20.01

R — 0.52 0.47 20.04

Dm — — 0.91 0.01

sm — — — 0.38
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asymmetric and indicates it would be difficult to use sm

directly in probabilistic retrieval algorithms that assume

that parameters are Gaussian distributed.

Note that Eq. (18) is a simple mathematical relation-

ship between Dm, sm, and m and was determined after

‘‘mathematically’’ forcing raindrop diameters to extend

from Dmin 5 0 to Dmax 5 ‘. Equation (18) does not

account for any small-drop truncation in observed dis-

drometer raindrop spectra as discussed in section 4a.

Also, Eq. (18) does not account for finite maximum di-

ameter, Dmax , ‘. Both topics need to be addressed in

future work.

5. Statistically independent DSD shape attributes

Figure 4 shows frequency of occurrence of Z, R, and

sm as a function ofDm. The largest correlation coefficient

is between Dm and sm (see Table 1) and indicates that

these two DSD shape attributes are not independent.

Developing constraints using Dm and sm will be subject

tomathematical artifacts similar to m–L relationships. To

avoid potential mathematical artifacts, DSD relation-

ships need to be developed using statistically independent

shape attributes. This section uses the method described

byHaddad et al. (1996) to construct a newmass spectrum

standard deviation that is statistically independent ofDm.

a. Statistically independent DSD shape attributes

To construct a new mass spectrum standard deviation

s0
m that is independent of Dm, Haddad et al. (1996)

proposed a power-law transformation of the form

s0
m5sm/D

b
m

m . (20)

To make s0
m and Dm statistically independent, the ex-

ponent bm is adjusted until the Pearson correlation

FIG. 5. Demonstration that weighting sm with D1:36
m provides a variable s0

m that is uncorrelated with Dm:

(a) Frequency of occurrence ofsm vsDm (same as Fig. 4c). The black solid line is the power-law fit (same as Fig. 4c),

and the blue line is the Zhang et al. (2003) m–L relationship mapped into sm vs. Dm. (b) The sm PDF normalized

such that maximum occurrence is unity. (c) Frequency of occurrence of s0
m vs Dm. (d) Two normalized PDFs.

The solid black line is the observed normalized s0
m PDF with s0

m 5 0:30 and STD std(s0
m)5 0:058. The dashed

black line is a normalizedGaussian curve with the samemean and STD.Dashed blue and red lines aremean1 STD

and mean 2 STD, respectively. In (a) and (c), symbols represent constant m values of 0 (squares), 3 (circles),

5 (triangles), and 10 (inverted triangles) and the color scale is the same as in Fig. 4.
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coefficient between s0
m and Dm is zero (Haddad et al.

1996).

Using the 18 969 disdrometer observations withDm .
1.0mm, a zero correlation coefficient occurred when

bm 5 1.36. This is the exponent shown in the power-law

curves in Fig. 4c. Using sm and Dm estimated for each

disdrometer observation, s0
m is determined using Eq. (20)

and bm 5 1.36 with the two-dimensional frequency of oc-

currence shown in Fig. 5c. The normalized s0
m PDF is

shown in Fig. 5d.

The mean s0
m (denoted as s0

m) and s0
m standard de-

viation [denoted as std(s0
m)] had values of 0.30 and

0.058, respectively. Figure 5d shows the normalized s0
m

PDF (solid black line) and a normalized Gaussian curve

with the same mean and standard deviation (dashed

black lines). The observed and Gaussian s0
m PDF curves

are very similar suggesting that s0
m distributions can be

described using Gaussian statistics and can be used in

probabilistic retrieval algorithms. The upper bound s0
m 1

std(s0
m) (blue dashed line) and lower bound s0

m 2 std(s0
m)

(red dash–dotted line) are shown in Fig. 5c with 55% of

the observed s0
m within these two bounds. For refer-

ence, sm,gamma for constant m values of 0 (squares),

3 (circles), 5 (triangles), and 10 (inverted triangles) is

also shown in Fig. 5c.

One way to interpret Fig. 5c is to consider it as joint

PDF plots ofDm and s0
m. For each possible value ofDm,

the breadth of theDSD is described by s0
m. Since s

0
m was

constructed to be statistically independent of Dm, the

most likely, or expected, value of s0
m is given by s0

m. And

the spread of possible breadth values is Gaussian shaped

with standard deviation of std(s0
m).

It is now possible to describeDm and sm as joint PDFs

by rearranging Eq. (20) to yield

sm 5s0
mD

b
m

m . (21)

For each value of Dm, the most likely, or expected, sm

value is given by

s
expected_value
m 5s0

mD
b
m

m 5 0:30D1:36
m . (22)

And the upper bound and lower bounds of sm that

capture 55% of the observations are given by

s
upper_bound
m 5 [s0

m 1 std(s0
m)]D

b
m

m 5 0:358D1:36
m and

(23)

s
lower_bound
m 5 [s0

m 2 std(s0
m)]D

b
m

m 5 0:242D1:36
m . (24)

To visualize the Dm and sm as joint PDFs, the sm fre-

quency of occurrence is shown in Fig. 6a along with the

expected value, lower bound, and upper bound for each

value of Dm. Note that the breadth of sm, centered on

the expected value, increases as Dm increases.

b. Transformation from physical attributes to gamma
parameters

The new mass spectrum standard deviation s0
m is de-

fined without assuming the DSD follows a gamma dis-

tribution, but if an algorithm assumes that the DSD

follows a gamma distribution then each (Dm, s
0
m) pair

can be transformed into a (Dm, m) pair using Eqs. (18)

and (21) to obtain

m5
D

222b
m

m

s02
m

2 4. (25)

Each of the 24 872 disdrometer s0
m estimates are trans-

formed into m estimates using Eq. (25) and are shown in

Fig. 6c as a frequency of occurrence plot. The normal-

ized m PDF is shown in Fig. 6d (black solid line) along

with a normalized Gaussian curve (black dashed line)

constructed with the same m5 6:9 and std(m)5 5.1. The

normalized m PDF does not follow a Gaussian shape,

but is an asymmetric distribution with a peak nearm5 4.

Similar to interpreting Fig. 6a as a joint PDF plot of

Dm and sm, Fig. 6c can be considered a joint PDF plot of

Dm and m. For each possibleDm, the expected m value is

given by Eq. (25) with s0
m replaced with s0

m 5 0:30 and

bm 5 1.36:

mexpected5
D

222b
m

m

s02
m

2 45
D20:72

m

0:09
2 45 11:1D20:72

m 2 4.

(26)

The lower and upper m bounds containing 55% of the

observations are given by Eq. (25) with s0
m replaced with

s0
m 1 std(s0

m) and s0
m 2 std(s0

m), respectively. The ex-

pectedm value, lower bound, and upper bound are shown

in Fig. 6c. With this joint PDF interpretation, Fig. 6c in-

dicates that the expected value and breadth of possible m

values decrease as Dm increases.

6. Estimated rain rate using m constraints

This section uses the simple DPR rain-rate retrieval

algorithm developed in section 2 to evaluate whether

more accurate rain rates occur ifm is held constant or if it

is described as a function of Dm. Six different rain-rate

estimates are produced using the same observed dis-

drometer reflectivity Zdisd
e (mm6m23) and Ddisd

m (mm)

but using six different m values. Four models used a

constant m of 0, 3, 5, and 10. The other two models
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expressed m as a function of Dm: one model used the

expected m value fromEq. (26) and the other model used

a m derived from the Zhang et al. (2003) m–L constraint

presented in Eq. (2).

Following the logic of the simple DPR rain algorithm in

section 2, the normalized number concentration Ndisd
w (mi)

is estimated for each mi (i 5 1, . . . , 6) using the observed

Zdisd
e and Ddisd

m estimates and

Ndisd
w (mi)5

Zdisd
e

6

44
(41mi)

m
i
14

G(mi 1 4)
�
D

max

D
min

 
D

Ddisd
m

!m
i

exp

"
2(41mi)

 
D

Ddisd
m

!#
D6 dD

. (27)

Following the format of Eq. (12), sixmodel rain rates are

estimated using

Rmodel(mi)5
6p

103
�
D

max

D
min

Ndisd
w (mi)f (D;Ddisd

m ,mi)D
3y(D) dD.

(28)

The observed rain rate is derived from the observed

discrete number concentration Ndisd
obs (D) by using

Robs 5
6p

103
�
D

max

D
min

Ndisd
obs (D)D3y(D) dD . (29)

The same raindrop fall speed relationship y(D) is used for

both Rmodel(mi) and Robs. One difference in calculating

FIG. 6. Mapping from (Dm, sm) space to (Dm, m) space: (a) Frequency of occurrence of sm vsDm (same as Figs. 4c

and 5a); black solid line is power-law fit (same as Figs. 4c and 5a), and blue dashed and red dash–dotted lines

represent upper and lowers0
m bounds, respectively. (b) Normalized sm PDF. (c) Frequency of occurrence ofm vsDm;

blue dashed and red dash–dotted lines represent upper and lower s0
m bounds, respectively. (d) Two normalized

PDFs. The solid line is the normalized m PDF with mean m5 6:9 and std(m) 5 5.1. The dashed black line is a nor-

malizedGaussian curvewithm5 6:9 and std(m)5 5.1. Black dash–dotted lines arem6 std(m). In (a) and (c), the color

scale is the same as in Fig. 4.
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the two rain-rate estimates is that the summation limits

extend from 0.1 to 9.9mm for Rmodel(mi) and from the

observed Dmin to Dmax for Robs.

The observations are divided into small intervals of

Dm. For each 0.1-mmDm interval, the mean normalized

bias (MNB) and fractional standard error (FSE) (both

expressed as a percent) between Rmodel and Robs are

estimated by using

MNB ð%)5
100

n
�
n

j51

[Rmodel( j)2Robs( j)]

Robs( j)
and (30)

FSE ð%)5 100
std(Rmodel 2Robs)

Robs

, (31)

with j representing the samples within each interval.

Figures 7a and 7b show theMNB and FSE for eachmodel

as a function of Dm. Figure 7c shows the occurrence

versus Dm. The constant m models have similar-shaped

MNB curves that increase in value with increasing Dm.

The m 5 0 model has the most negative bias, with MNB

ranging from235% to220%. The m5 10 model has the

most positive bias, with MNB ranging from 0% to 25%.

The model using the Zhang et al. (2003) m–L constraint

has a positive bias forDm of less than 1.25mm but makes

a transition to a negative bias for larger Dm. The power-

law mexpected 5 11:1D20:72
m 2 4 constraint has the smallest

bias, with MNB never exceeding 3.5% in magnitude.

Except for the m 5 0 model, the FSE for all models

is nearly the same, with an average of 20% 6 4% (the

m5 0 model average is 32%). Table 2 lists theMNB and

FSE for the six models atDm of 1.0, 1.5, and 2.0mm. The

large FSE for all models reflects the simplicity of the rain-

rate retrieval algorithm. All models represent the DSD

with just one m value for each Dm. An algorithm that

variesm on the basis of additional information will reduce

the FSE.

7. Conclusions

The dual-frequency precipitation radar planned for

the core satellite of the Global Precipitation Measure-

ment mission will provide dual-frequency reflectivity

measurements of precipitation. Rainfall retrieval algo-

rithms will assume a gamma raindrop size distribution

with three mathematical parametersNw,Dm, and m. One

challenge for the DPR retrieval algorithm is to esti-

mate rainfall that is modeled with three DSD parameters

using only two radar measurements. This undercon-

strained problem requires the algorithm to assume that

FIG. 7. Demonstration that the s0
m 2Dm 2m constraint in rainfall algorithm has smaller

mean normalized bias than a constantm constraint: (a)MNB (%) and (b) FSE (%) for rain rate

estimated with the six different m assumptions that are listed in (a). (c) The normalized fre-

quency of occurrence as a function of Dm. The dashed line at 10% indicates the threshold for

evaluating model results.
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one parameter is a constant or a function of another pa-

rameter. Since GPM rainfall algorithms will use either

optimal estimation theory (Munchak and Kummerow

2011) or Bayesian theory (Haddad et al. 2006) to form

probabilistic algorithms, the DSD constraint needs to

have an initial (or expected) value plus an acceptable

range of values. The acceptable range of values allows the

algorithm to deviate from the expected value as dictated

by the observations.

One option is to constrain the DSD parameters with

a m–L constraint (Zhang et al. 2003), but m–L constraints

only provide an expected value and do not provide

a range of values allowing probabilistic algorithms to

deviate from the expected value. Also, since m and L
represent mathematical parameters of a gamma function

they are highly correlated and thus m–L relationships

may contain mathematical artifacts (Chandrasekar and

Bringi 1987; Moisseev and Chandrasekar 2007). To avoid

these mathematical artifacts, relationships need to be

developed before assuming the DSD follows any partic-

ular mathematical shape.

This study analyzed over 20 000minutes of surface

disdrometer raindrop mass spectra and found that the

mean diameter Dm and mass spectrum standard de-

viation sm were highly correlated (r2 5 0.91). This high

correlation may lead to mathematical artifacts in DSD

constraints based on sm–Dm relationships. To avoid

mathematical artifacts, a new breadth variable s0
m is

defined and constructed to be statistically independent

of Dm. This new breadth variable is nearly Gaussian

distributed and thus is well suited for probabilistic al-

gorithms, with the mean value (s0
m) representing the

expected value and std(s0
m) representing a dispersion of

possible breadth values.

Since s0
m is independent of Dm and is determined

without assuming a DSD shape, s0
m and Dm represent

two moments of the DSD mass spectrum. For algo-

rithms that assume gamma-shapedDSDs withDm andm

parameters, there is a mapping from (Dm, s
0
m) space to

(Dm, m) space with joint PDFs describing the expected

value and range of m for each Dm. For a disdrometer

dataset collected in Huntsville, the s0
m 2Dm 2m map-

ping yielded a power-law expected m value of the

form mexpected 5 11:1D20:72
m 2 4. One benefit of using a

s0
m 2Dm 2m constraint is that rainfall estimates have

smaller biases than assuming a constant m constraint.

Using a simple rainfall algorithm, the expected value

s0
m 2Dm 2m constraint had a mean normalized bias of

less than 3.5%, whereas all constant m constraints had

biases over 20%.

This analysis used disdrometer observations to de-

velop DSD constraints that provide initial values and

ranges of acceptable values for underconstrained prob-

abilistic rainfall algorithms. Without any other in-

formation, an algorithm can start at the initial value and

then use observations and algorithm logic to deviate

from this initial value. This analysis provides a statistical

representation of DSD parameter assumptions that can

be incorporated into algorithm logic. For completeness,

note that power-law DSD constraints developed in this

analysis should not be used to estimate DSD parameters

in disdrometer datasets. The DSD constraints are sta-

tistical representations of DSD physical attributes or

DSD parameters and do not represent instantaneous

values estimated from individual DSD spectra.

There are topics of this study that need further re-

search. First of all, if surface disdrometers underestimate

the number of small raindrops, then the mass spectrum

will be too narrow and sm will be negatively biased. The

sm bias that is due to small raindrop truncation is

a function of Dm, with the biases decreasing with in-

creasingDm. To avoid potentialsm biases, this study used

sm when Dm was greater than 1.0mm. Since this work

focused on developing joint PDFs of Dm and sm, the

impacts of small-drop truncationmay be within the upper

and lower bounds (or other statistics) of the joint PDFs.

Future work needs to address if and how often surface

disdrometers underestimate the number of small rain-

drops in rain, including the raindrops that are advected

around the instrument. Future work should also aim to

TABLE 2. MNB and FSE for modeled rain-rate estimates at selected Dm and six different values of m. The number of samples in each

0.1-mm interval is labeled as n.

Dm 5 1.0 6 0.05

(mm; n 5 2455)

Dm 5 1.5 6 0.05

(mm; n 5 1822)

Dm 5 2.0 6 0.05

(mm; n 5 565)

m MNB (%) FSE (%) MNB (%) FSE (%) MNB (%) FSE (%)

0 233 46 228 28 223 31

3 213 27 25.1 16 1.7 16

5 25.8 22 3.5 15 11 23

10 5.2 21 16 18 25 38

11:1D20:72
m 2 4 20.1 21 1.0 15 0.3 15

Zhang et al. (2003) m–L 7.9 22 21.9 15 220 28
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understand how undercounting the number of small

raindrops affects joint PDFs derived from observed

physical attributes of the DSD.

The maximum observed raindrop diameter Dmax af-

fects the calculated mass spectrum breadth and also has

an impact on the mapping of physical attributes in (Dm,

s0
m) space into gamma parameters in (Dm, m) space. The

mapping assumed that raindrops ranged in size from

Dmin 5 0 to Dmax 5 ‘, allowing the use of complete

gamma functions in deriving Eq. (18).Work is needed to

determine how the range of observed raindrop sizes,

from Dmin . 0 to Dmax , ‘, affects the mapping of

physical attributes into gamma parameters.

Another topic that needs further investigation is the site-

to-site and rain regime-to-regime variability of the power-

law relationship that causes Dm and s0
m to be statistically

independent. The data used in this study were from one

site and were not divided by rain regime. Investigations of

the cloud physics mechanisms that may be regionally de-

pendent and lead to variations in these statistical re-

lationships will be critical for global rainfall estimation.

Shifts in s0
m from the mean value s0

m are reflective

of different microphysical processes. Deviations of s0
m

from s0
m indicate narrower (s0

m ,s0
m) or broader

(s0
m .s0

m) spectra. It is plausible that cloud processes

(such as convective vs stratiform rain) and meteoro-

logical regimes lead to shifts in these relationships.
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