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[1] The Gravity Recovery and Climate Experiment mission has demonstrated the ability
to quantify global mass variations at large spatial scales with monthly to sub‐monthly
temporal resolution. Future missions of this type taking advantage of improved
measurement technologies will be limited by temporal aliasing errors. We suggest the
addition of a second pair of satellites to reduce these errors. Using an optimized mission
architecture consisting of a polar pair of satellites coupled with a lower inclined pair of
satellites (72°), both in 13‐day repeating orbits, we quantify the expected scientific
improvements that having two pairs of satellites will provide over one pair. Numerical
simulations to spherical harmonic degree 100 are run over one full year. Analysis using
empirical orthogonal functions reveals that two satellite pairs determine annual mass
variations in small basins which are undetected using one pair of satellites. Averaging
kernels are used to show that two satellite pairs offer an 80% reduction in the level of
error in determining mass variations in 53 hydrological basins and 12 Greenland basins
over the year. After standard GRACE post‐processing techniques have been applied to
the one‐pair solutions, it is seen that two satellite pairs (with no post‐processing) still offer
a 25%–75% improvement in determining the mass variations. Spatiospectral localization
analysis is used to show increased spatial resolution and higher signal‐to‐noise ratios
in recovering hydrology in the Amazon River basin, ocean bottom pressure signals
in the Southeast Pacific basin, and a simulated earthquake signal representative of the
2010 Maule, Chile earthquake.
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1. Introduction

[2] The Gravity Recovery and Climate Experiment
(GRACE) satellite mission consists of two identical satel-
lites in polar orbits separated by 220 km at a mean orbital
altitude of 480 km. GRACE infers mass variations over the
globe by measuring the change in distance between the two
spacecraft with a microwave ranging instrument. This
remarkable data set has allowed scientists to quantify the rate
that ice sheets and glaciers are melting, mass fluxes across
large river basins, global ocean mass, and large earthquakes,
to name a few. GRACE resolves these signals at large spatial

scales (typically 160,000 km2, corresponding to spherical
harmonic degree 50, is viewed as a limit on the spatial reso-
lution) and monthly to sub‐monthly (10‐day) temporal res-
olution [Tapley et al., 2004; Bruinsma et al., 2009]. GRACE
is limited by instrument errors, system errors, temporal
aliasing errors, and an anisotropic sensitivity due to the for-
mation type; however, the dominant source of error is not yet
fully understood.
[3] It is expected that future missions designed to measure

temporal gravity variations will take advantage of improved
technologies and sensors. For example, the microwave
ranging instrument is expected to be replaced with a laser
interferometer [Pierce et al., 2008; Bender et al., 2003],
increasing the precision of the inter‐satellite ranging mea-
surements from the micrometer level to the nanometer level.
Additionally, the spacecraft could fly drag‐free at a much
lower altitude, similar to the Gravity field and steady state
Ocean Circulation Explorer (GOCE) mission, lowering the
error associated with the measurement of non‐conservative
forces [Battrick, 1999]. Studies have shown that adopting
these new technologies for future missions will likely result
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in the error budget being dominated by temporal aliasing
errors [Visser et al., 2010; Loomis, 2009].
[4] Temporal aliasing errors fall into two categories: (1)

errors due to undersampling signals of interest (such as
hydrology), and (2) errors due tomismodeling unwanted high
frequency mass variations (such as the atmosphere and ocean
tides) [Han et al., 2004; Thompson et al., 2004]. Given the
fact that these errors will likely dominate future missions, it is
desirable to consider methods to reduce them. One practical
method is to increase the sampling frequency of the mission
by adding additional satellite pairs [Visser et al., 2010;
Reubelt et al., 2009; van Dam et al., 2008]. While one could
theoretically reduce temporal aliasing errors to zero (dis-
regarding the issue of signal separation) by flying dozens of
satellites pairs, we are interested in the more economically
feasible option of adding only one additional pair of satellites.
Having two pairs of satellites not only increases the sampling
frequency of the mission, reducing the level of temporal
aliasing errors, but also reduces the level of striping in the
solutions should one of the satellite pairs be at a lower
inclination due to the addition of East‐West information to
the observable [Bender et al., 2008].
[5] Several studies have been carried out to address the

expected improvements in performance that adding addi-
tional satellite pairs would provide in recovering temporal
gravity variations [Visser et al., 2010; Elsaka, 2010; Wiese
et al., 2009]. Each of these studies has been limited, how-
ever, by considering only selected mission architectures for
analysis; in essence, they have been point case studies. A
more recent study [Wiese et al., 2011a], addressed this issue,
and via a Monte‐Carlo analysis involving numerical simu-
lations, gave recommendations for selecting orbital parameters
to provide near‐optimal results for a mission architecture
consisting of two satellite pairs. While providing the foun-
dation for selecting the proper orbits, the expected improve-
ments in performance that an optimized two‐pair architecture
would offer over a single satellite pair architecture were not
discussed in detail. This paper builds on the results presented
byWiese et al. [2011a], by selecting a near‐optimal two‐pair
mission architecture and quantifying the expected improve-
ments in determining hydrology, ice mass variations (par-
ticularly in Greenland), ocean bottom pressure signals, and
earthquakes. Results are analyzed on both a global and
regional scale.

2. Methodology

2.1. Orbit Selection

[6] The search space for selecting an optimal set of orbital
parameters for two satellite pairs with the goal of recovering
temporal gravity variations is infinite. In fact, speaking
strictly in terms of the satellite orbits, the mission perfor-
mance is a function of 15 variables: the position and velocity
of the lead spacecraft of each pair, the separation distance
between each pair, and the length of time that data are
accumulated. After assuming that the satellites are in cir-
cular, repeating orbits, and separated by 100 km,Wiese et al.
[2011a] used a Monte‐Carlo type of analysis with numerical
simulations to spherical harmonic degree and order 100 to
reduce the search space to two variables with the utmost
impact on mission performance: the repeat period of both
satellite pairs k, (shown to be near‐optimal when they are

equal to each other) expressed in nodal days, and the
inclination of one of the satellite pairs i2 (the other pair is
assumed to be in a polar orbit). Note that only repeating
orbits were considered, so as to guarantee consistency
between solutions, which is something that GRACE lacks.
Although the inter‐satellite separation distance was fixed
at 100 km based on anticipated instrument requirements,
it should be noted that this parameter does affect the quality
of the gravity solutions. As such, with the previously
mentioned assumptions, the mission performance, P, can be
described to first order as

P � f k; i2ð Þ: ð1Þ
[7] Furthermore, the selected architecture was shown to

depend on the specific scientific goals of the mission as well
as the targeted altitude for the mission. When selecting a
nominal measurement altitude, there is a constant trade‐off
of gaining improved sensitivity to short wavelength features
in the gravity field at lower altitudes at the expense of a
shortened mission lifetime due to increased atmospheric
drag forces. Wiese et al. [2011a] selected a minimum
allowable altitude of 290 km based on a projected 10‐year
mission lifetime assuming drag‐free control operation of the
spacecraft (analysis performed by Marchetti et al. [2008]
and St. Rock et al. [2006]) and the same initial mass pro-
pellant fraction as GRACE. It was found that given the
scientific objectives of determining hydrology, ice mass
variations, and ocean bottom pressure signals with high
spatial resolution, a near‐optimal architecture of this type is
found when 11 ≤ k ≤ 14 and 70° ≤ i2 ≤ 75°.
[8] Using the results fromWiese et al. [2011a], we select a

near‐optimal two‐pair architecture consisting of a polar pair
of satellites at 320 km coupled with a lower inclined pair of
satellites at 72° at 290 km, both pairs being in 13‐day
repeating ground tracks. This architecture ensures a ground
track pattern where the two pairs of satellites cross each
other at constant lines of latitude. While perhaps not yet
fully exploited, a ground track pattern of this type is
expected to be beneficial for future missions, allowing for
consistent synoptic mapping of time variable gravity varia-
tions. The architecture involving one pair of satellites cho-
sen for comparison consists of the same polar pair of
satellites that is in the two‐pair architecture: a pair at 320 km
in a 13‐day repeating orbit. Figure 1 shows the ground
tracks of the two‐pair case with the polar pair being in blue
and the lower inclined pair being in red. Note that the lower
inclined pair geographically extends to cover the southern
half of Greenland as well as the western Antarctic peninsula.
The ground track from the one‐pair architecture is given by
the polar pair (blue) track alone. Figure 1b shows the spacing
at the equator between adjacent tracks is 1.75° for the
one‐pair case, allowing for solutions up to degree and order
100 based on the Colombo‐Nyquist rule [Colombo, 1984].
All analyses and comparisons made in this paper involve
these selected architectures. The case of having two polar
pairs of satellites is also discussed in section 3.

2.2. Numerical Simulation

[9] Numerical simulations are necessary to perform an
in‐depth analysis of this type. GEODYN [Pavlis et al., 2010]
(an orbit determination software package) and SOLVE
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[Ullman, 1997] (a large linear systems solver), both provided
by Goddard Space Flight Center, are used to perform the
numerical simulations. The numerical simulation procedure
is identical to that described by Wiese et al. [2011a], where
the majority of the details are provided. A summary of the
procedure is provided here. Table 1 shows the design of the
simulation and model definitions for hydrology, atmosphere,
oceans, tides, and ice mass variations. This simulation is
designed to recover ice mass variations (given by the ESA
model [van Dam et al., 2008]) and continental hydrology
(given by the GLDAS model [Rodell et al., 2004]) in the
presence of model errors due to the atmosphere (defined as the
difference between ECMWF [Klinker et al., 2000] and NCEP
[Kalnay et al., 1996], oceans (defined as the difference
between OMCT [Flechtner, 2007] and MOG‐2D [Carrère
and Lyard, 2003], and tides (defined as the difference
between FES2004 [Lyard et al., 2006] and GOT00 [Ray,
1999], as well as measurement system errors. The static
gravity field model is given by EIGEN‐GL04C [Förste et al.,
2008]. Ocean bottom pressure variations are calculated by
treating the NCEP and MOG‐2D models as forward models,
estimating corrections to them, and then examining differences
with respect to the truth models over the oceans. All models
have either 3‐hour or 6‐hour temporal resolution, and are
interpolated linearly during the numerical simulation process.
All simulations are performed for the year 2003.
[10] The satellites are assumed to be equipped with a laser

interferometer which replaces the K‐band microwave
ranging instrument on GRACE. The measurement noise
associated with the laser interferometer is taken to be 5 nm/ffiffiffiffiffiffi
Hz

p
and is frequency independent from 10−3 Hz to 10−1

Hz, and includes an inverse correlation to frequency due to
thermal effects from 10−5 Hz to 10−3 Hz [Alnis et al., 2008;
Mueller et al., 2005; Pierce et al., 2008;Wiese et al., 2009].
The spacecraft are also assumed to implement a drag‐free
control system to counteract non‐conservative forces in real
time. The noise associated with this system is taken to be
0.01 nm/s2/

ffiffiffiffiffiffi
Hz

p
, which is the level that the GOCE accel-

erometers are capable of observing variations of the
remaining non‐gravitational accelerations [Battrick, 1999].
Errors in the position of the spacecraft are accounted for by
adding white noise with a 1 cm RMS in all three directional
components.

[11] The simulation process is performed in three steps.
First, the spacecraft states are estimated using range‐rate
residuals coupled with spacecraft position measurements.
Second, using the updated spacecraft state, corrections to the
geopotential coefficients and the spacecraft states are made
using only the updated range‐rate residuals after converting
the state to baseline elements according to Rowlands et al.
[2002]. The third step involves combining daily batches of
data using SOLVE into a final multiday estimate of the
gravity field. Additionally, in this analysis, daily low degree
and order gravity fields are estimated simultaneously in an
effort to reduce temporal aliasing errors. For the case of two
satellite pairs, we estimate 18 × 18 gravity fields every day,
as this has been shown to be near‐optimal [Wiese et al.,
2011b]. For the case of a single pair of satellites, high fre-
quency/low resolution gravity fields are not estimated since
the solutions necessitate the standard post‐processing pro-
cedures associated with GRACE (removal of correlated
errors and smoothing of the solutions), negating any
reduction in errors that performing the daily (or 2‐day)
estimates provides. For an in‐depth discussion on how and
why we estimate daily low degree and order gravity fields,
the reader is referred to Wiese et al. [2011b].

3. Results: A Global Perspective

[12] Prior to performing regional analysis, it is useful to
examine the errors on a global basis to gain insights into
necessary post‐processing techniques. Figure 2 shows the
logarithm of the formal errors (Figures 2a and 2b) along
with the actual errors (Figures 2c and 2d) for a simulation
designed to recover hydrology and ice mass variations, as
illustrated in Table 1. The covariance analysis indicates that
two pairs of satellites are expected to have substantially

Figure 1. Ground track over 13 days for the two‐pair architecture showing the polar pair (blue) and
lower inclined pair (red) for (a) the entire globe and (b) over the Amazon River Basin. The ground track
from the one‐pair architecture is given by the blue ground track alone.

Table 1. Simulation and Model Definitions

Models Truth Nominal

Static gravity field EIGEN‐GL04C EIGEN‐GL04C
Ocean tide model FES2004 GOT00
Atmospheric model ECMWF NCEP
Ocean model OMCT MOG‐2D
Hydrological model GLDAS none
Ice model ESA none
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lower errors for the entire spectral domain of spherical har-
monic coefficients, with particular improvements in deter-
mining the sectorials and near‐sectorials. For the case of a
single pair of satellites, the actual errors show that higher
degree and order tesseral harmonics are poorly determined, as
is expected via the covariance analysis. Additionally, it is
seen that the actual errors manifest themselves at the resonant
order and multiples of the resonant order (m = 16, 32, 48, ..).
These can be reduced via estimating empirical accelerations
with a frequency of once per revolution, twice per revolution,
and so on. Many of the GRACE processing centers employ
this step during their estimation schemes. While we have
found that this step does reduce the errors at the resonant
order andmultiples of the resonant order, the resulting gravity
field estimate still has longitudinal stripes, requiring standard
post‐processing procedures, as discussed in the following
paragraph. Once these post‐processing procedures have been
invoked, there are negligible differences in the resulting
gravity field estimates whether we estimate empirical once
per revolution and twice per revolution acceleration terms or
not; hence, we forgo this step. With the addition of the lower
inclined pair of satellites, the bands of error at the resonant
order and multiples of the resonant order diminish substan-
tially. The highest errors are seen at the high degree and order
tesseral harmonic coefficients, beginning at approximately
degree 60. The larger errors for high degree and low order

coefficients are a localized effect over the polar regions at
latitudes greater than 72° where only North‐South informa-
tion is present in the observable.
[13] Users of the GRACE data have developed multiple

techniques for post‐processing of the data tailored to optimize
mass recovery of specific geophysical signals. Typically,
there are two ever present problems associated with the
data that must be addressed: 1) Errors at high degrees tend
to dominate the gravity solutions (seen in Figure 2), and
(2) correlations between coefficients of a particular order
and the same parity of degree lead to longitudinal striping
in the gravity solutions. Several methods have been devised
to handle (1) and (2) both collectively and independently.
Techniques for handling (1) independently involve spatial
smoothing of the data [Jekeli, 1981; Wahr et al., 1998; Han
et al., 2005; Chen et al., 2006; Guo et al., 2010]. These
techniques can reduce the effects of (2) as well if a large
enough smoothing radius is selected. Filters devised to handle
(2) independently (some of which simultaneously address
(1)), can be classified into two categories: empirical filters not
reliant on outside information [Swenson and Wahr, 2006;
Chambers, 2006; Chen et al., 2007; Schrama et al., 2007;
Wouters and Schrama, 2007; Davis et al., 2008; Duan et al.,
2009], and filters which make use of error‐covariance infor-
mation [Kusche, 2007; Klees et al., 2008; Save, 2009]. Each
of these techniques has advantages and disadvantages: some

Figure 2. Logarithm of the formal error of the spherical harmonic coefficients for (a) one pair of satel-
lites and (b) two pairs of satellites, along with the logarithm of the actual error in the spherical harmonic
coefficients for (c) one pair of satellites and (d) two pairs of satellites.
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reducing errors more than others, and some requiring less
computation time than others. Due to lack of error‐covariance
information and desiring a relatively easy and computation-
ally efficient process to account for the errors, typical users of
the GRACE data tend to remove correlated errors via an
empirical filter similar to Swenson and Wahr [2006] and
reduce errors at high degrees via Gaussian smoothing [Jekeli,
1981]. As such, these are the two processes we employ when
analyzing the solutions obtained from one pair of satellites.
[14] The solutions using two pairs of satellites have a

completely different error spectrum than that of one pair, as
illustrated in Figure 2. High degree and order tesseral har-
monics still dominate the error budget, but the errors aremuch
lower. Correlations between coefficients still exist, but are
substantially reduced. As such, an entirely different suite of
post‐processing tools could be developed for analyzing
solutions of this type. Rather than developing these techni-
ques for a hypothetical mission, it is much more desirable to
develop a simple, consistent method to analyze the results.
Given that the errors are much lower, and do not increase
substantially until approximately degree 60, it was deter-
mined that the two‐pair solutions would be truncated at
degree 60, and the results would be analyzed with no post‐
processing of the data. It was found that if the degree of
truncation is increased beyond 60, the error in the high degree
coefficients manifests as longitudinal stripes, requiring the
development of an optimized filter to remove them. It is
possible that the degree of truncation could be increased in
combination with tailored filters to then gain additional spa-
tial resolution in the solutions over those presented here.
[15] The increased spatial resolution that two pairs of

satellites offers over one pair is illustrated in both the spatial
domain (Figure 3) as well as the spectral domain (Figure 4).

Figure 3 shows the truth hydrology and ice signals (Figure 3a),
along with the recovered signal using two pairs of satellites
(Figure 3b), the recovered signal using one pair of satellites
(Figure 3c), and the recovered signal using one pair of satellites
that has been destriped via Swenson and Wahr [2006] and
smoothed with a 300 km Gaussian averaging radius
(Figure 3d). All destriped and smoothed solutions will be
denoted as ‘DS’ throughout the paper, and all one‐pair solu-
tions will be smoothed with a 300 km Gaussian averaging
radius unless otherwise noted. The solutions are averaged over
a single 13‐day timespan, have been truncated at degree 60,
and are expressed in cm of equivalent water height (EWH).
[16] Figure 3 illustrates that while the solutions from one

pair of satellites necessitate the destriping and smoothing
processes when studying signals to degree 60, as described
above, the solutions using two pairs of satellites require much
less. While the destriping and smoothing processes substan-
tially reduce the level of error in the one‐pair solutions, it is
also seen that the geophysical signals are damped and
smoothed with respect to the truth signals. The two‐pair
solution retains much of the spatial information that the
destriping and smoothing processes remove from the one‐
pair solutions. It should also be mentioned that the case of
having two polar pairs of satellites has been studied in con-
junction with the two cases presented here. Results from this
architecture are not presented in this article, however. It was
found that while an architecture consisting of two polar pairs
does have slightly lower errors than the case of a single polar
pair, this architecture has a similar error pattern as that of one
satellite pair, and correlations between coefficients of a fixed
order and same parity of degree are still strong. These cor-
relations result in longitudinal striping dominating the solu-
tion, which is also the case for one pair of satellites, as seen in
Figure 3c. As such, the solutions necessitate the standard
destriping and smoothing processes, and the resulting post‐
processed gravity field models are nearly identical to those
produced using one pair of satellites (with the same post‐
processing). It can then be assumed that minimal increases in
spatial resolution (although the temporal resolution will be
increased by a factor of two) will be seen by simply adding a
second polar pair of satellites.

Figure 3. (a) Truth hydrology and ice signals along with the
recovered hydrology and ice signals from: (b) two pairs of satel-
lites, (c) one pair of satellites, and (d) one pair of satellites DS
averaged over 13 days. Units are in cm of EWH.

Figure 4. Geoid degree error for architectures consisting of
one and two pairs of satellites.
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[17] Figure 4 shows the error in terms of geoid height in
determining hydrology and ice mass variations over a partic-
ular 13‐day timespan as a function of spherical harmonic
degree of the gravity field l for both cases. Generally, the
expected spatial resolution is approximated by ∼40,000/2l km.
It is seen that with one pair of satellites, the errors become
larger than the signal that is being estimated somewhere
between degree 15 and 25 (corresponding to basin sizes of
800 and 1300 km), while using two satellite pairs increases
the spatial resolution to approximately 450 km (correspond-
ing to degree 45). Figure 4 indicates that after the solutions
from one pair of satellites are destriped and smoothed, the
spatial resolution increases to be approximately commensu-
rate with that of two satellite pairs. One cannot, however, take
the results in Figure 4, and assume that one pair of satellites
after post‐processing provides the same spatial resolution
that two pairs of satellites provides (a visual inspection of
Figure 3 reveals the inaccuracies with such an assumption).
A global analysis of this kind is insufficient, as it disregards
the different spatial distributions of signals and errors, as
pointed out by Han and Ditmar [2008]. As such, regional
analyses are necessary to more accurately quantify the
expected improvements that the addition of a second pair of
satellites provides.
[18] Finally, we use empirical orthogonal functions (EOFs)

to analyze the time series of results globally. This technique
has been successfully applied to GRACE data for many
applications, for example Wouters and Schrama [2007].
Figure 5 shows the first (Figures 5a, 5c, 5e, and 5g) and
second (Figures 5b, 5d, 5f, and 5h) modes for hydrology and
ice signals, which together account for 82% of the variance
(the first mode accounts for 69% and the second mode
accounts for 13%). The EOFs were constructed using 27 13‐
day solutions spanning the year. The time series are shown in
Figures 5a and 5b followed by the spatial representations of
the truth signal (Figures 5c and 5d), recovered signals using
two satellite pairs (Figures 5e and 5f ), and recovered signals
using one satellite pair (Figures 5g and 5h). The one‐pair
solutions have been destriped and smoothed with a 300 km
averaging radius. The two pair solutions have been destriped
via a modified destriping algorithm (referred to as D*). It was
discovered that correlated errors in spherical harmonic coef-
ficients lead to spurious errors at latitudes greater than 72°,
where there is only North‐South information in the observ-
able. These errors can be seen spatially in Antarctica in
Figure 3b. It was found that if the destriping algorithm
described by Swenson and Wahr [2006] was applied to
coefficients with 3 ≤ m ≤ 14 and n ≥ 40, correlated errors at
high latitudes are removed with minimal effect on signals at
lower latitudes. Including this step in the analysis generally
improves the EOF results (by removing correlated errors at
high latitudes), due to the global nature of this technique.
[19] The EOF analysis shown in Figure 5 shows that two

pairs of satellites more accurately determine the first two
modes both temporally and spatially. Perhaps most impres-
sive is the ability of two satellite pairs to accurately resolve
annual mass variations on much finer spatial scales than one
satellite pair. A visual inspection of the recovered modes
(particularly for the second mode) reveals small‐scale
hydrology signals in each continent (i.e. Alaska, central
Africa, India, Australia) that are detected using two satellite

pairs which are either not detected, or smoothed over, using
one pair of satellites.
[20] As a summary, in an effort to perform consistent

analysis, all remaining results presented in this paper will be
post‐processed via the following: all gravity solutions are
truncated at degree 60; for the case of one pair of satellites
we destripe via Swenson and Wahr [2006] and perform
Gaussian smoothing with an averaging radius of 300 km,
and for the case of two satellite pairs we do not perform any
post‐processing procedures. While the modified destriping
algorithm is effective for the EOF analysis due to its global
nature, it is not implemented in the regional analysis pre-
sented in section 4.

4. Results: A Regional Perspective

4.1. Performance Metrics

[21] As with the processes designed to reduce correlated
errors in the gravity solutions, there are a host of methods one
can use to perform regional analysis. The two techniques
utilized in this paper are averaging kernels [Swenson and
Wahr, 2002] and spatiospectral localization [Wieczorek and
Simons, 2005; Simons et al., 2006].
4.1.1. Averaging Kernels
[22] Averaging kernels are traditionally used to quantify

mass variations in a region of interest over a specified
amount of time. From Wahr et al. [1998], a local change in
surface mass density for a certain colatitude (�) and longi-
tude (’), is given by

D� �; �ð Þ ¼ a�E
3

X∞
l¼0

Xl

m¼0

2l þ 1

l þ kl
Plm cos �ð Þ

� DClm cosm�þDSlm sinm�
� �

: ð2Þ

In this equation, a is the radius of the Earth, r E is the
average density of the solid Earth, kl are the load love
numbers, Plm are the normalized associated Legendre
functions, and Clm and Slm are the normalized spherical
harmonic coefficients. From Swenson and Wahr [2006], we
can define an exact averaging kernel to represent the shape
of a basin, given by

# �; �ð Þ ¼
0 outside the basin

1 inside the basin

8<
: ð3Þ

Using this definition, equation (2) can be rewritten to rep-
resent the average surface mass density over a region by

D�region ¼ a�E
3Wregion

X∞
l¼0

Xl

m¼0

2l þ 1

1þ kl
#c
lmDClm þ #s

lmDSlm
� �

; ð4Þ

where W is the area of the region, and #lm
c and #lm

s are
the spherical harmonic coefficients describing # (�, ’).
In practice, one would not sum l to ∞, but rather would
truncate at some specific degree, ltrunc. Truncating intro-
duces an error, as not including all values of l results in an
inaccurate representation of the basin shape, and causes
ringing around the boundaries of the basin known as the
Gibbs phenomenon. Alternately, one can define an
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Figure 5. EOF analysis for recovering hydrology and ice signals. Shown are mode 1 and mode 2 with the
(a and b) time series, (c and d) truth signal, (e and f) recovered signal using two pairs with modified destriping,
and (g and h) recovered signal using one pair with destriping and 300 km smoothing. Units are in cm of EWH.
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approximate averaging kernel, W, by replacing #lm
c and

#lm
s in equation (4) with Wlm

c and Wlm
s . This new kernel can

be computed a variety of ways; Swenson and Wahr [2002]
compute it using Gaussian smoothing as well as with a
Legendre multiplier method. The drawback to introducing
an approximate averaging kernel, given byW, is that while it
does decrease truncation error by suppressing short wave-
length coefficients, it introduces leakage error into the
solution. For our analysis, given the case of smoothing the
solutions obtained from one pair of satellites, we use a 300 km
Gaussian averaging radius to compute W for the basins of
interest. For the case of two satellite pairs, we use exact
averaging kernels to eliminate leakage error since the solu-
tions do not necessitate smoothing. While there will be
truncation error with this approach, analysis by Swenson and
Wahr [2002] indicates it will beminimal based on the fact that
the smallest basin analyzed is one in Greenland with a size of
approximately 100,000 km2, corresponding to about l = 60.
The majority of the other basins analyzed are substantially
larger than this (see Tables 2 and 3).
4.1.2. Spatiospectral Localization
[23] The principle behind spatiospectral localization is

simply to apply an isotropic windowing function that
maximizes the ratio of energy of the function within the
defined region of interest to that of the entire sphere to
obtain a localized representation of the signal. In general, we
wish to solve for a localized version (y(W)) of a global signal
(f(W)) given by the following

y Wð Þ ¼ h �ð Þf Wð Þ; ð5Þ

where h(�), is an optimal zonal windowing function. The
spherical harmonic coefficients describing y(W) are given
by Wieczorek and Simons [2005] as

ylm ¼
XLh
j¼0

Xlþj

i¼ l�jj j
hj fim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iþ 1ð Þ 2jþ 1ð Þ 2l þ 1ð Þ

p

� �1ð Þm i j l

0 0 0

� �
i j l

m 0 �m

� �
: ð6Þ

The matrix symbols in parentheses in equation (6) are
Wigner 3‐j functions [Messiah, 1962]. The only unknown
parameter in equation (6) is the term hj which are the
coefficients of the windowing function, and it is left to the
user to define an optimal set. Wieczorek and Simons [2005]
elaborate on how to choose an optimal windowing function.
It is done by maximizing the value l, which defines the ratio
of energy of the function within the region of interest
(whose area is given by Wo) to the energy over the entire
sphere, given by

� ¼
Z
Wo

h2 Wð ÞdW
,Z

W
h2 Wð ÞdW: ð7Þ

[24] The solution for l is attained by solving for the
eigenvalues of a matrix given by Wieczorek and Simons
[2005, equation 13]. The matrix ultimately depends on
user‐selected values for the radius of the spherical cap, �o,
along with the maximum degree of expansion, Lh. These
values should be selected such that Lo is close to 2, since
typically Lo − 1 gives the number of well‐concentrated

windows, where Lo (the Shannon number) is given by [Han
and Ditmar, 2008]

Lo ¼ Lh þ 1ð Þ �o
�
: ð8Þ

[25] This technique has been shown to be particularly
useful for examining mass variations with large spatial scales
in addition to recovering earthquake signals [Han and
Ditmar, 2008]. In this paper, we apply it to estimating
hydrology in the Amazon river basin, ocean bottom pressure
signals, as well as a simulated earthquake signal.We calculate
localized degree‐RMS plots using the calculated coefficients,
ylm, and as such, can calculate a localized signal‐to‐noise ratio
(SNR). This is explained in detail byHan and Ditmar [2008].
For more details on the spatiospectral localization technique,
the reader is referred to Wieczorek and Simons [2005] and
Simons et al. [2006].

4.2. Hydrology

[26] The Amazon river basin has been the subject of many
analyses using GRACE data due to the magnitude of the
signal as well as the large spatial extent of the region. This
region makes an excellent candidate to compare the capa-
bilities of the one‐pair and two‐pair architectures using the
spatiospectral localization technique. A spherical harmonic
expansion of degree Lh = 10 with a spherical cap radius of
�o = 45° is used to calculate the optimal windowing function.
The results from a single 13‐day gravity solution are dis-
played in Figure 6, showing the truth signal (Figure 6a), and
recovered signals from two pairs (Figure 6b), one pair (Figure
6c), and one pair destriped and smoothed (Figure 6d).
[27] Visually, one can see the improved spatial resolution

that two pairs of satellites allow for in this region over one
pair. As expected, the one pair results contain longitudinal
stripes, and once these solutions are destriped and smoothed,
the signals are damped and much of the finer spatial resolu-
tion is lost. Figure 7 shows the localized SNR computed from
a localized degree‐RMS plot. It is seen that for two pairs of
satellites, the SNR is positive out to degree 50, corresponding
to a spatial resolution of approximately 400 km. Alternately,
for the case of one pair of satellites, information is only
present out to degrees 30–40, corresponding to spatial reso-
lutions of 500–667 km. Furthermore, the SNR for two sat-
ellite pairs is substantially higher than for the case of one pair
for all degrees higher than 8, allowing for greater accuracy in
determining the signal. It is also seen that the destriping and
smoothing processes significantly dampen the signal in the
degree bandwidth 15–25.
[28] Next, we use averaging kernels to calculate mass var-

iations over the year in 53 different hydrological basins shown
in Figure 8. This selection of basins represents different basin
sizes, latitudes, geographic orientations, signal strengths, etc,
and gives a good sampling on the type of performance one
could hope to achieve with two pairs of satellites over one pair
of satellites. Figure 9 focuses on the results for the Fraser Basin
(Basin 18), in northwestern British Columbia. Mass variations
for this analysis were calculated each day using a sliding
boxcar filter with a window width of 13 days centered on the
day of interest. Each solution has approximately the same
spatial information in it, given that the orbits are in repeating
ground tracks; however, it has different space‐time sampling
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characteristics. Note that these solutions are not true “daily”
solutions in the sense that solutions between days are inde-
pendent from one another. In fact, independent solutions will
happen every 13 days. It is also not being argued that this type
of filter is optimal for recovering mass variations each day, as
other filters have been explored for this purpose, including
using a Gaussian filter similar to the boxcar filter that we use
[Bonin, 2010], as well as using a Kalman filter during the
estimation process to gain daily solutions [Kurtenbach et al.,
2009]. This simple analysis, however, allows one to see the
variability in the solutions resulting from replacing a single
day of data.
[29] Figure 9 illustrates the calculated mass variations

over the year using an averaging kernel for Basin 18, the
Fraser Basin. Shown are the solution for one pair of satel-
lites with no post‐processing, the one‐pair solution that has
been destriped and smoothed, the one‐pair solution that has
been destriped and smoothed with a scale factor (SF)
applied, and the two‐pair solution. Scale factors are used
within the GRACE community to account for signal that the
destriping and smoothing processes remove from the solu-
tion. Typically, they are calculated by taking a model
representing mass variations in the region, destriping and
smoothing that model, and calculating how much mass has
been removed via these processes. A scale factor is then
calculated to restore this lost mass. For this study, we cal-
culated scale factors three ways: (1) using the truth GLDAS
hydrology model, (2) using an alternate hydrology model
provided by the European Space Agency (ESA), and (3)
using a uniform mass distribution over the basin. It was
found that the scale factor computed was extremely sensi-
tive to which method was used due to the empirical nature
of the destriping filter. In fact, using a scale factor from
methods (2) and (3) provided worse results on average than
not using a scale factor at all. Thus, it was decided to
compute scale factors using method (1): destriping and
smoothing the truth model. This leads to overly‐optimistic
results for the case of one pair of satellites, as it represents
the best possible scale factor one could hope to compute.
Hence, the actual level of mass variations for one pair of
satellites that one would compute most likely lies some-
where between the case of not applying any scale factor, and
the case of applying the best possible scale factor.
[30] Figure 9 shows that the signal calculated using one

pair of satellites without post‐processing has large vari-
ability, changing by as much as 15 cm EWH from one time
step to the next. Once the solution is destriped and
smoothed, the variability in the solution decreases substan-
tially; however, the signal is damped in amplitude with
respect to the truth signal. Figure 8 illustrates that the Fraser
Basin is predominantly oriented in the North‐South direc-
tion. As such, the destriping process removes a substantial
amount of signal (in addition to error) from the basin since
the empirical filter developed by Swenson and Wahr [2006]
is designed to remove North‐South features. After applying
the scale factor to account for this loss of signal, the one‐
pair solution compares fairly well with the truth signal. The
solution obtained from two pairs of satellites, however, still
agrees much better with the truth signal than the best‐case
scenario involving one pair of satellites, with the red curve
almost completely overlying the black curve. The reader

should be reminded, as well, that no post‐processing has
been applied to the solution involving two pairs of satellites.
[31] Table 2 shows the RMS of the errors (in cm of EWH)

calculated over the year for the Fraser Basin in addition to
the other 52 basins that were analyzed. Listed are the name
of each basin, the area, the amplitude (amp.) of the signal in
the basin over one full year (taken to be half of the peak‐to‐
peak amplitude), as well as the RMS of the error for each
case. Note that ‘Reg.’ stands for regular processing (i.e. no
post‐processing).
[32] Studying the RMS values in Table 2 shows that in all

but four of the basins, two pairs of satellites has a lower
RMS than for the case of one pair of satellites being des-
triped and smoothed with an optimal scale factor applied.
It has a lower RMS than the one‐pair case with no post‐
processing 100% of the time. Furthermore, if one looks at
the effect of applying the scale factor, it is seen that in some
cases, the scale factor actually makes the solution slightly
worse. This indicates the risks that one takes by applying
scale factors to the mass estimates. Even given an optimal
scale factor, the results sometimes degrade. Taking the RMS
of the RMS of each basin (seen in the last row of Table 2),
it can be concluded that two pairs of satellites determines the
hydrological mass variations in the basins with approxi-
mately 25% more accuracy than the case of one pair of
satellites destriped and smoothed with an optimal scale
factor applied, 40% more accuracy than the case of one
pair of satellites destriped and smoothed with no scale
factor applied, and 80% more accuracy than in the case of
one pair of satellites with no post‐processing.

4.3. Ice Mass Variations

[33] Ice mass variations in this paper are defined as mass
variations in Greenland and Antarctica. In order to study ice
mass variations on a regional scale, Greenland has been
subdivided into 12 basins, as shown in Figure 10, in
accordance with basin definitions given by Luthcke et al.
[2006]. The melting of Greenland around the coastal
areas, particularly the southern regions, has been the focus
of many recent investigations due to accelerating ice mass
loss. As such, detailed simulation results for mass variations
in Basin 5, along the southwestern coast of Greenland, are
shown in Figure 11.
[34] Figure 11 paints a similar picture as that of the Fraser

basin shown in Figure 9. The solution from one pair of
satellites is quite noisy; however, once the solutions are
destriped and smoothed, the daily variability has decreased
and the amplitude of the signal has been suppressed with
respect to the truth. This is in a large part due to the North‐
South orientation of this particular basin, and the fact that
the destriping process is designed to remove North‐South
features in the gravity field. Once an optimal scale factor is
applied, the amplitude has been restored and the calculated
mass matches much closer to the truth. However, particu-
larly for the first half of the year, there is a poor estimate of
the rate of mass increase. The mass variations calculated
with two pairs of satellites, conversely, recovers the true
mass variations in the basin accurately for the duration of
the year.
[35] Table 3 shows the calculated error RMS values for

all 12 Greenland basins over the year. In all but 2 of the
basins, two pairs of satellites provide lower RMS values
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than the best case scenario using one pair of satellites. Two
pairs of satellites provides lower RMS values 100% of the
time over what one pair of satellites provides with no post‐
processing. It is also interesting to note that the basins in the
southern half of Greenland (Basins 4, 5, 10, and 11) which
get coverage from both pairs of satellites have a larger
signal‐to‐noise ratio than the basins in the northern half of
Greenland (Basins 1, 2, 7, and 8) which get coverage from
only the polar pair of satellites. Again, it should be noted
that applying an optimal scale factor does not always

guarantee a better solution for the case of one pair of
satellites, indicating that care must be taken when applying
scale factors to real data.
[36] By calculating the RMS of the yearly error RMS

values (displayed in the last row of Table 3), it can be
concluded that on average, two pairs of satellites provides
mass estimates for Greenland that are approximately 55%
more accurate than in the case of one pair of satellites that
have been destriped and smoothed with an optimal scale
factor applied, 75% more accurate than in the case of one

Table 2. RMS of the Error, in cm of EWH, in Determining Mass Variations in the Hydrological Basins Over One Yeara

Basin Basin Name Area (km2) Amp. (cm)

One Pair RMS (cm)

Two Pairs RMS (cm)Reg. DS DS/SF

1 Khatanga‐Popigai 501,552 6.58 5.68 1.68 1.26 0.66
2 Olenek 309,322 2.83 4.24 1.69 1.00 0.82
3 Lena 2,415,920 3.51 1.56 0.78 0.79 0.78
4 Yana 242,039 2.97 11.26 1.54 1.29 0.98
5 Indigirka 341,076 3.33 10.95 1.51 1.99 1.23
6 Yenisei 2,376,483 4.38 2.32 0.81 0.79 0.64
7 Kolyma 617,341 5.51 5.19 2.09 1.83 1.53
8 Taz 382,104 10.87 7.26 1.36 1.08 0.79
9 Mackenzie 1,770,040 4.53 1.26 1.01 0.92 0.63
10 Pechora 254,272 10.52 7.06 1.65 1.29 1.24
11 Ob 3,012,693 7.59 1.32 0.91 0.92 0.74
12 Severnaya Dvina 661,781 10.91 1.79 1.22 0.98 0.89
13 Anadyr 410,068 5.12 6.57 2.02 1.46 1.26
14 Yukon 940,852 5.90 2.47 1.42 1.39 0.95
15 Nelson 1,693,827 4.18 1.54 0.67 0.62 0.52
16 Ural 312,629 5.35 4.92 1.07 1.14 1.09
17 Amur 2,876,880 3.87 1.28 0.82 0.85 0.63
18 Fraser 357,057 11.15 6.04 4.14 1.83 0.77
19 Saint Lawrence 1,263,145 6.04 1.63 1.21 1.20 0.47
20 Volga 1,580,750 6.17 1.41 0.94 0.91 0.65
21 Dnieper 446,335 8.34 2.85 1.21 1.15 0.73
22 Don 278,565 7.21 6.75 2.21 1.96 1.05
23 Columbia 1,048,534 6.56 2.79 1.95 1.07 0.63
24 Danube 836,815 10.47 2.23 1.76 1.19 0.64
25 Yellow River 1,872,050 4.12 1.40 0.88 0.91 0.66
26 Colorado (U.S.) 838,512 1.32 2.65 0.83 0.93 0.79
27 Yangtze River 1,833,747 4.34 1.56 0.92 0.93 0.62
28 Mississippi 3,525,101 4.19 0.90 0.53 0.53 0.46
29 Nile 3,761,542 3.54 1.94 0.92 0.96 0.57
30 Shatt al‐Arab 1,732,018 2.39 2.11 0.95 1.04 0.64
31 Rio Grande 1,021,678 3.54 2.37 1.05 1.49 0.85
32 Indus 1,429,312 3.19 2.17 1.05 1.18 0.70
33 Ganges 1,920,796 10.12 1.53 1.23 0.82 0.62
34 Pearl River 439,492 9.22 3.64 1.42 1.33 1.30
35 Irrawaddy 296,014 3.94 8.54 2.14 0.91 1.89
36 Salween 1,014,279 2.63 3.67 1.48 1.35 0.93
37 Sénégal 765,749 3.49 2.47 0.99 0.91 1.25
38 Mekong 743,472 11.34 3.01 2.91 1.63 1.26
39 Orinoco 1,255,019 10.04 1.99 1.28 1.08 0.95
40 Magdalena 195,874 9.59 8.76 2.69 2.01 1.81
41 Volta 572,618 12.17 3.24 1.43 1.15 1.14
42 Niger 6,918,253 4.83 0.97 0.74 0.70 0.39
43 Jubba 627,755 4.63 3.05 0.99 1.18 1.14
44 Amazon 6,129,528 8.11 0.97 0.82 0.74 0.49
45 Tocantins 1,011,450 18.44 3.62 3.22 2.09 1.29
46 Zaire 4,449,039 3.57 1.02 0.92 0.91 0.56
47 São Francisco 904,455 8.89 3.26 1.59 1.62 1.18
48 Victoria 816,232 7.90 3.50 1.12 1.12 1.14
49 Zambezi 2,351,974 10.18 1.19 1.32 0.84 0.52
50 Oranje 891,596 2.15 2.03 1.66 1.66 0.80
51 Paraná 3,635,738 7.38 1.34 1.40 1.10 0.48
52 Murray 2,452,8734 2.63 1.92 1.06 1.09 0.76
53 Colorado (Argentina) 659,923 3.46 4.54 0.89 1.01 1.16

RMS of RMS 4.22 1.55 1.23 0.94

aReg = no post‐processing, DS = destriped and smoothed, DS/SF = destriped and smoothed with an optimal scale factor applied.
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pair of satellites that have been destriped and smoothed
without applying a scale factor, and 80% more accurate than
in the case of one pair of satellites with no post‐processing.
The reason that the magnitude of the RMS values in Table 3
are substantially larger than those associated with hydrology
in Table 2 can be attributed to three factors. First, as was
shown by Loomis [2009], temporal aliasing errors from atmo-
sphere and ocean dealiasing (AOD) products in Greenland
are larger than AOD errors over areas such as the Amazon,

or North America, where there are substantially more
data available as input for the models. Second, high degree
resonant order coefficients manifest themselves spatially
between 70° and 75°, which is where Greenland lies [Wiese,
2011]. Particularly for the case of a single pair of satellites,
the errors at high degree resonant coefficients are high, as
seen in Figure 2c, and as such, there is a substantial amount
of error at this latitude band. Finally, the amplitude of the
signal in Greenland is, on average, larger than the amplitude

Table 3. RMS of the Error, in GT of Ice, in Determining Mass
Variations in the Greenland Basins Over One Yeara

Basin Area (km2) Amp. (GT)

One Pair RMS (GT) Two Pairs
RMS(GT)Reg. DS DS/SF

1 207,331 11.36 4.63 5.56 6.26 2.83
2 225,127 6.97 9.77 4.19 7.49 2.73
3 178,723 17.14 21.04 5.23 3.29 3.31
4 109,816 34.34 7.03 12.37 1.97 1.21
5 194,759 70.35 17.86 34.52 9.63 2.82
6 149,417 14.72 17.64 7.91 6.51 2.06
7 103,225 3.14 3.63 3.15 5.01 2.10
8 190,789 4.18 9.57 4.79 12.05 4.77
9 191,186 11.02 28.12 2.94 3.21 4.08
10 146,600 23.84 14.31 3.36 3.41 2.06
11 196,199 22.95 21.32 4.87 4.49 2.46
12 235,481 9.97 21.06 8.78 9.74 3.66

RMS of RMS 16.43 11.68 6.78 2.99

aReg = no post‐processing, DS = destriped and smoothed, DS/SF =
destriped and smoothed with an optimal scale factor applied.

Figure 6. Spatiospectral localization technique applied to the Amazon region using �o = 45°, Lh = 10.
(a) Truth signal along with the recovered signals from: (b) two pairs of satellites, (c) one pair of satellites,
and (d) one pair of satellites DS averaged over 13 days. Units are in cm of EWH.

Figure 7. Signal‐to‐noise ratio for mass variations in the
Amazon computed with the spatiospectral localization tech-
nique (see Figure 6).
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of the continental hydrology signals. Hence, larger absolute
errors in determining ice mass variations in Greenland lead
to similar signal‐to‐noise ratios between the two types of
signals.

4.4. Ocean Bottom Pressure Signals

[37] Ocean bottom pressure (OBP) signals are, on aver-
age, much larger in spatial scale and smaller in magnitude
than hydrology or ice signals. The smaller magnitude of the
signals indicates that OBP signals will have a smaller SNR
when recovering them than hydrology and ice mass varia-
tions, making them more difficult to detect. As a result of

this, OBP signals have been more difficult to quantify using
GRACE, and regional analyses of the data have been limited
to a handful of studies. In this analysis, we use spatiospectral
localization to analyze OBP signals in the Southeast Pacific
Basin. This particular basin is of interest due to high vari-
ability in the OBP signals, primarily due to topographically
trapped signals. Figure 12 illustrates the dipole signal in the
Southeast Pacific Basin via spatiospectral localization using
a spherical cap radius of �o = 25° and maximum degree of
expansion Lh = 15. Shown are the 13‐day average of the

Figure 10. Map showing the location of the 12 Greenland
basins.

Figure 8. Map showing the location of the 53 hydrological basins for which averaging kernels are
computed.

Figure 9. Mass variations calculated in the Fraser Basin
(Basin 18) over the year for one pair of satellites, one pair
of satellites DS, one pair of satellites DS with a scale factor
applied, and for two pairs of satellites.
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truth signal (Figure 12a), and the 13‐day averages of the
recovered signal using two satellite pairs (Figure 12b), one
pair (Figure 12c), and one pair destriped and smoothed
(Figure 12d), expressed in cm of EWH.
[38] Figure 12 shows that two pairs of satellites recover

this signal particularly well. The signal is not discernible
with one pair of satellites and no post‐processing. Once the

solutions are destriped and smoothed, the negative part of the
dipole signal is present, although distorted spatially, while
the positive part is faintly present in the solution. Figure 13
illustrates the SNR as a function of spherical harmonic
degree of the three cases. The solution obtained with two
pairs of satellites has a positive SNR out to approximately
degree 35, while the destriped and smoothed solution using
one pair of satellites has information until approximately
degree 25 or so. This represents an improvement in spatial
resolution from 800 km to 571 km in determining this par-
ticular signal.
[39] Finally, we analyze mass variations over the year in

this basin (boundaries given by 90°–140°W, 35°–55°S, as
defined by Boening et al. [2011]) using an averaging kernel.
Figure 14 shows the ability of each architecture to recover
OBP variations in the Southeast Pacific Basin. Figure 14
shows excellent agreement between the truth signal and
the recovered signal using two pairs of satellites, particularly
during times of high variability, with the red curve nearly
completely overlying the black curve. The RMS of the error
is decreased by over 70%, from 0.36 cm to 0.10 cm, with
the addition of the second pair of satellites. One pair of
satellites fails to capture much of the high frequency vari-
ability in OBP in this region.

4.5. Earthquakes

[40] GRACE has been used effectively to determine
coseismic and postseismic gravity deformations due to

Figure 12. Spatiospectral localization technique applied to the Southeast Pacific Basin using �o = 25°,
Lh = 15. (a) Truth signal along with the recovered signals from: (b) two pairs of satellites, (c) one pair of
satellites, and (d) one pair of satellites DS averaged over 13 days. Units are in cm of EWH.

Figure 11. Mass variations calculated in southwestern
Greenland (Basin 5) over the year for one pair of satellites,
one pair of satellites DS, one pair of satellites DS with a
scale factor applied, and for two pairs of satellites.
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earthquakes, in particular the 2004 Sumatra‐Andaman
earthquake [Chen et al., 2007; Panet et al., 2007; Han and
Simons, 2008] and the 2010 Maule, Chile earthquake [Han
et al., 2010; Heki and Matsuo, 2010]. It is our goal to
quantify the expected performance that two satellite pairs
offers in sensing the coseismic part of the earthquake signal
via spatiospectral localization. To perform this simulation,
we use an earthquake model representative of the magnitude
8.8 2010 Maule, Chile earthquake (available from the U.S.
Geological Survey, http://earthquake.usgs.gov). This model
is introduced in the truth set of models as a step function
that is added to the static gravity field model, EIGEN‐
GL04C, and is then recovered in addition to the hydrology
and ice signals. We apply an optimal windowing function
with �o = 25° and Lh = 15 to analyze the signal. Figure 15
shows the modeled earthquake signal (Figure 15a), the
recovered signal using two satellite pairs (Figure 15b), the
recovered signal using one pair of satellites (Figure 15c),
and the recovered signal if the single satellite pair solution is
destriped and smoothed (Figure 15d). The plots are
expressed in cm of EWH. It should be noted that the posi-
tive mass anomaly in the upper‐right part of the truth signal
is actually a hydrology signal in the Paraná Basin that has
been captured by the windowing function which is applied.
It could be removed via forward modeling to isolate the
earthquake signal, but this was deemed unnecessary for the
purposes of this study. Figure 16 illustrates the localized
SNR associated with the recovered earthquake signal.
[41] It is seen that while two pairs of satellites does an

exceptional job of recovering the signal with a high SNR
out to degree 45, one pair of satellites is equally capable of
recovering the signal, although with a lower SNR. It is
expected that two pairs of satellites will be able to recover
earthquakes lower in magnitude than what one pair of
satellites can recover. The threshold of recovery will depend
on the location of the earthquake, the magnitude of the
earthquake, as well as the type of earthquake. An extensive
set of simulations varying the size, strength, and type of
earthquake is necessary to characterize a detection threshold
that two pairs of satellites offers over one pair. This analysis

is not presented in this paper; however, we have shown that
large earthquakes, such as the 2010 Maule, Chile earthquake
can be detected with much greater accuracy using two pairs
of satellites over one pair of satellites.

5. Conclusions

[42] It is expected that future satellite missions dedicated
to recovering temporal gravity variations will be limited in
their performance by temporal aliasing errors. An effective
way to reduce these errors is by adding a second pair of
satellites. Previous studies have shown that a near‐optimal
architecture involving two dedicated pairs of satellites is
obtained when both satellite pairs are in 13‐day repeating
orbits, one pair in a polar orbit at 320 km and the other pair
lower inclined, at 72°, at 290 km. Given this scenario, we
show expected improvements in determining continental
hydrology, ice mass variations, ocean bottom pressure sig-
nals, and earthquake signals. An EOF analysis examining
the first two modes reveals that two satellite pairs detects
annual variations in small river basins which are undetected
using one pair of satellites. Global analysis of results are
insufficient, however, as the ability to recover mass varia-
tions in a particular region depend on the size of the signal
and error, the geographic location, and the space‐time
sampling characteristics of the satellites. As such, the best
one can hope to do to characterize mission performance is to
perform realistic numerical simulations to recover mass
variations in a variety of regions.
[43] Averaging kernels are used to analyze 53 hydrological

basins across the globe as well as 12 basins in Greenland.
On average, when no post‐processing is applied to the
gravity solutions, two pairs of satellites offers an 80%
reduction in error in determining mass variations in the
basins over the year. After the single satellite pair solutions
have been destriped, smoothed, and mass has been restored
using an appropriate scale factor, two pairs of satellites (with

Figure 14. Mass variations in the Southeast Pacific Ocean
over the year showing the calculated mass from one pair of
satellites, one pair DS, and two pairs of satellites.

Figure 13. Signal‐to‐noise ratio for OBP signals in the
Southeast Pacific Basin computed using spatiospectral local-
ization (see Figure 12).
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no post‐processing) still, on average, provides a 25%–40%
reduction in errors in determining mass variations in the
hydrological basins and a 55%–75% reduction in errors in
determining mass variations in the Greenland basins over
the year. Spatiospectral localization analysis is used to
analyze ocean bottom pressure signals in the Southeast
Pacific Basin as well as a simulated earthquake signal
similar to the 2010 Maule, Chile earthquake. Two pairs of
satellites improves the spatial resolution in determining the
ocean bottom pressure signal from 800 km to 570 km, and
determines the total mass in the basin over the year with
70% more accuracy than one satellite pair. While the
earthquake signal is detected using both architectures, two
pairs of satellites increases the signal‐to‐noise ratio at higher
degrees by approximately one‐half of an order of magni-
tude. It is expected that the addition of a second pair of
satellites will also allow for earthquakes smaller in magni-
tude to be quantified which otherwise would be undetected
with gravity measurements.
[44] Perhaps the largest advantage of adding a second pair

of satellites is that the solutions do not necessitate ad hoc
GRACE post‐processing procedures when studying signals
to spatial resolution of ∼330 km. This eliminates much of
the confusion as to what the destriping and smoothing
algorithms do to geophysical signals. Additionally, one does
not need to worry about applying incorrect scale factors to
the solutions when trying to restore mass that the destriping

and smoothing processes have removed. The results in this
paper are regarded to be relatively pessimistic for the case of
two pairs of satellites. It is expected that optimized post‐
processing techniques will be developed for such an archi-
tecture which would increase the spatial resolution in the
solutions even further. This, in turn, would allow for mass
variations to be determined in smaller river basins than those
analyzed in this study.

Figure 15. Spatiospectral localization technique applied to recover a simulated signal similar to the 2010
Maule, Chile earthquake, using � = 25°, Lh = 15. (a) Truth signal along with the recovered signals from:
(b) two pairs of satellites, (c) one pair of satellites, and (d) one pair of satellites DS averaged over 13 days.
Units are in cm of EWH.

Figure 16. Localized SNR for recovering the simulated
2010 Maule, Chile earthquake (see Figure 15).
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